捷多邦,专业PCB打样工厂,24小时加急出货TPIC1501A QUAD AND HEX POWER DMOS ARRAY SLIS046A - MAY 1995 - REVISED JUNE 1996 - Low r_{DS(on)}: 0.1 Ω Typ (Full H-Bridge) 0.4 Ω Typ (Triple Half H-Bridge) - Pulsed Current: 12 A Per Channel (Full H-Bridge) 6 A Per Channel (Triple Half H-Bridge) - Matched Sense Transistor for Class A-B Linear Operation - Fast Commutation Speed ### description The TPIC1501A is a monolithic power array that consists of ten electrically isolated N-channel enhancement-mode power DMOS transistors, four of which are configured as a full H-bridge and six as a triple half H-bridge. The lower stage of the full H-bridge features an integrated sense FET to allow biasing of the bridge in class A-B operation. The TPIC1501A is offered in a 24-pin wide-body surface-mount (DW) package and is characterized for operation over the case temperature range of -40°C to 125°C. #### schematic NOTES: A. Pins 2 and 23 must be externally connected. B. Pins 14 and 24 must be externally connected. C. No output may be taken greater than 0.5 V below GND. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SLIS046A - MAY 1995 - REVISED JUNE 1996 ## absolute maximum ratings, $T_C = 25^{\circ}C$ (unless otherwise noted) | Supply-to-GND voltage | |--| | Source-to-GND voltage (Q3A, Q4A, Q5A) | | Output-to-GND voltage | | Sense-to-GND voltage | | Gate-to-source voltage range, V _{GS} (Q1A, Q1B, Q2A, Q2B, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) ±20 V | | Gate-to-source voltage range, V _{GS} (Q2C) | | Continuous drain current, each output (Q1A, Q1B, Q2A, Q2B) | | Continuous drain current, each output (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) | | Continuous drain current (Q2C) | | Continuous source-to-drain diode current (Q1A, Q1B, Q2A, Q2B) | | Continuous source-to-drain diode current (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) | | Continuous source-to-drain diode current (Q2C) | | Pulsed drain current, each output, I _{max} (Q1A, Q1B, Q2A, Q2B) (see Note 1 and Figure 24) 12 A | | Pulsed drain current, each output, I _{max} (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) | | (see Note 1 and Figure 25) | | Pulsed drain current, I _{max} (Q2C) (see Note 1) | | Continuous total power dissipation, $T_C = 70^{\circ}C$ (see Note 2 and Figures 24 and 25) | | Operating virtual junction temperature range, T _J | | Operating case temperature range, T _C —40°C to 125°C | | Storage temperature range, T _{stg} –65°C to 150°C | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. Pulse duration = 10 ms, duty cycle = 2% - 2. Package is mounted in intimate contact with infinite heat sink. SLIS046A - MAY 1995 - REVISED JUNE 1996 ## electrical characteristics, Q1A, Q1B, Q2A, Q2B, T_C = 25°C (unless otherwise noted) | | PARAMETER | TEST CON | DITIONS | MIN | TYP | MAX | UNIT | | |---------------------|--|--|---|------|---------|------|----------|--| | V(BR)DSX | Drain-to-source breakdown voltage | $I_D = 250 \mu A$, | $V_{GS} = 0$ | 20 | | | V | | | V _{GS(th)} | Gate-to-source threshold voltage | I _D = 1 mA,
See Figure 5 | $V_{DS} = V_{GS}$ | 1.4 | 1.7 | 2.1 | ٧ | | | VGS(th)match | Gate-to-source threshold voltage matching | $I_D = 1 \text{ mA},$ | V _{DS} = V _{GS} | | | 40 | mV | | | V _(BR) | Reverse drain-to-GND breakdown voltage | Drain-to-GND curren (D1, D2) | t = 250 μA | 20 | | | V | | | V _{DS(on)} | Drain-to-source on-state voltage | I _D = 2 A,
See Notes 3 and 4 | V _{GS} = 10 V, | | 0.2 | 0.24 | V | | | VF | Forward on-state voltage, GND-to-V _{DD1} , GND-to-V _{DD2} | I _D = 3 A (D1, D2)
See Notes 3 and 4 | | | 1.8 | | V | | | ., | Encoder de la contraction l | I _S = 2 A,
See Notes 3 and 4 a | VGS = 0,
nd Figure 19 | 0.85 | | 1.05 | ,. | | | V _F (SD) | Forward on-state voltage, source-to-drain | I _S = 3 A,
See Notes 3 and 4 a | V _{GS} = 0,
nd Figure 19 | | 0.9 1.1 | | V | | | | Zone materialisms durin summer | V _{DS} = 16 V, | T _C = 25°C | 0.05 | | 1 | | | | IDSS | Zero-gate-voltage drain current | V _{GS} = 0 | T _C = 125°C | | 0.5 | 10 | μΑ | | | IGSSF | Forward-gate current, drain short circuited to source | V _{GS} = 16 V, | V _{DS} = 0 | | 10 | 100 | nA | | | IGSSR | Reverse-gate current, drain short circuited to source | V _{SG} = 16 V, | V _{DS} = 0 | | 10 | 100 | nA | | | l | Leakage current, V _{DD1} -to-GND, | V= 0.15 - 16 V | T _C = 25°C | | 0.05 | 1 | | | | ^I lkg | V _{DD2} -to-GND, gate shorted to source | V _{DGND} = 16 V | T _C = 125°C | | 0.5 | 10 | μΑ | | | | | V _{GS} = 10 V,
I _D = 2 A, | T _C = 25°C | | 0.1 | 0.12 | | | | IDS(on) | Static drain-to-source on-state resistance | See Notes 3 and 4 and Figure 9 | T _C = 125°C | | 0.14 | 0.18 | Ω | | | rDS(on) | otatio drain to source on state resistance | V _{GS} = 10 V,
I _D = 3 A, | T _C = 25°C | | 0.1 | 0.12 | 32 | | | | | See Notes 3 and 4 and Figures 7 and 9 | T _C = 125°C | | 0.14 | 0.18 | | | | | Forward transcens directors | V _{DS} = 14 V,
See Notes 3 and 4 | I _D = 1 A, | 1.5 | 2.5 | | | | | 9fs | Forward transconductance | V _{DS} = 14 V, I _D = 1.5 A,
See Notes 3 and 4 and Figure 13 | | 3.1 | | S | | | | C _{iss} | Short-circuit input capacitance, common source | See Notes 3 and 4 at | na rigule 13 | | 240 | | | | | C _{oss} | Short-circuit output capacitance, common source | V _{DS} = 14 V,
f = 1 MHz, | V _{GS} = 0,
See Figure 17 | | 170 | | pF | | | C _{rss} | Short-circuit reverse transfer capacitance, common source | 1 | | | 130 | | | | | α_{S} | Sense-FET drain current ratio | V _{DS} = 6 V, | I _D (Q ₂ C) = 40 μA | 75 | 130 | 200 | | | | | : | 1 | -, 42-0) | | | | | | NOTES: 3. Technique should limit T_J – T_C to 10°C maximum. ^{4.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts. SLIS046A - MAY 1995 - REVISED JUNE 1996 ## source-to-drain diode characteristics, Q1A, Q2A, $T_C = 25^{\circ}C$ | | PARAMETER | TEST COI | MIN | TYP | MAX | UNIT | | |-----------------|-----------------------|---|-------------------------|-----|-----|------|----| | t _{rr} | Reverse-recovery time | Is = 1.5 A, | VGS = 0, | | 70 | | ns | | Q_{RR} | Total diode charge | V _{DS} = 14 V,
See Figures 1 and 23 | $di/dt = 100 A/\mu s$, | | 90 | | nC | | t _{rr} | Reverse-recovery time | I _S = 2 A, | V _{GS} = 0, | | 75 | | ns | | Q _{RR} | Total diode charge | $V_{DS} = 14 V$, | $di/dt = 100 A/\mu s$ | | 110 | | nC | ## resistive-load switching characteristics, Q1A, Q1B, Q2A, Q2B, T_C = 25°C | PARAMETER | | | TEST CONDITIONS | | | TYP | MAX | UNIT | | | | | | | | | | | | | |-----------------------|---------------------------------|---|-----------------|----------------------------|---|----------------------------|----------------------------|----------------------------|----------------------------|--|--------------|--|--|----|----------------|-----------------|--|-----|---|----| | td(on) | Turn-on delay time | | | | | 20 | | | | | | | | | | | | | | | | td(off) | Turn-off delay time | $V_{DD} = 14 \text{ V},$ $t_{dis} = 10 \text{ ns},$ | - | $R_L = 9.3 \Omega$, | $= 9.3 \Omega$, $t_{en} = 10 \text{ ns}$, | | 30 | | 20 | | | | | | | | | | | | | t _r | Rise time | | | $t_{dis} = 10 \text{ ns},$ | t _{dis} = 10 ns, See Figure 3 | See Figure 3 | | | 15 | | ns | | | | | | t _f | Fall time | | | | | 25 | | | | | | | | | | | | | | | | Qg | Total gate charge | I | | | | 5.6 | 7 | | | | | | | | | | | | | | | Q _{gs(th)} | Threshold gate-to-source charge | V _{DS} = 14 V,
See Figure 4 | | | | | | | | | | | | | $I_D = 1.5 A,$ | $V_{GS} = 10 V$ | | 0.8 | 1 | nC | | Q _{gd} | Gate-to-drain charge | | | | cc riguic 4 | | | 1.4 | 1.75 | | | | | | | | | | | | | L(drain) | Internal drain inductance | | | | | 5 | | nH | | | | | | | | | | | | | | L _(source) | Internal source inductance | | | | | 5 | | ш | | | | | | | | | | | | | | r(gate) | Internal gate resistance | | | | | 0.25 | · | Ω | | | | | | | | | | | | | SLIS046A - MAY 1995 - REVISED JUNE 1996 ## | | PARAMETER | TEST COND | ITIONS | MIN | TYP | MAX | UNIT | |----------------------|---|--|---|-----|------|------|------| | V _{(BR)DSX} | Drain-to-source breakdown voltage | I _D = 250 μA, | V _{GS} = 0 V | 20 | | | V | | VGS(th) | Gate-to-source threshold voltage | I _D = 1 mA,
See Figure 6 | $V_{DS} = V_{GS}$ | 1.4 | 1.7 | 2.1 | V | | VGS(th)match | Gate-to-source threshold voltage matching | $I_D = 1 \text{ mA},$ | $V_{DS} = V_{GS}$ | | | 40 | mV | | V _(BR) | Reverse drain-to-GND breakdown voltage | Drain-to-GND current | = 250 μA (D3) | 20 | | | V | | V _{DS(on)} | Drain-to-source on-state voltage | I _D = 1.5 A,
See Notes 3 and 4 | V _{GS} = 10 V, | | 0.6 | 0.68 | V | | VF | Forward on-state voltage, GND-to-V _{DD3} | I _D = 1.5 A (D3)
See Notes 3 and 4 | | | 1.7 | | V | | ., | | I _S = 1.5 A,
See Notes 3 and 4 and | VGS = 0,
d Figure 20 | | 1 | 1.2 | ., | | VF(SD) | Forward on-state voltage, source-to-drain | I _S = 2 A,
See Notes 3 and 4 and | V _{GS} = 0,
d Figure 20 | | 1.1 | 1.3 | V | | | | V _{DS} = 16 V, | T _C = 25°C | | 0.05 | 1 | • | | IDSS | Zero-gate-voltage drain current | V _{GS} = 0 | T _C = 125°C | | 0.5 | 10 | μΑ | | IGSSF | Forward-gate current, drain short circuited to source | V _{GS} = 16 V, | V _{DS} = 0 | | 10 | 100 | nA | | I _{GSSR} | Reverse-gate current, drain short circuited to source | V _{SG} = 16 V, | V _{DS} = 0 | | 10 | 100 | nA | | 1 | Leakage current, V _{DD3} -to-GND, | 1 V D C N D = 16 V | T _C = 25°C | | 0.05 | 1 | | | llkg | gate shorted to source | | T _C = 125°C | | 0.5 | 10 | μΑ | | | | V _{GS} = 10 V,
I _D = 0.3 A, | T _C = 25°C | | 0.35 | 0.39 | | | rDS(on) | Static drain-to-source on-state resistance | See Notes 3 and 4 and Figure 10 | T _C = 125°C | | 0.5 | 0.56 | Ω | | 103(011) | Challe drain to course on chale resistance | $V_{GS} = 10 \text{ V},$
$I_{D} = 1.5 \text{ A},$ | T _C = 25°C | | 0.4 | 0.45 | 22 | | | | See Notes 3 and 4 and Figures 8 and 10 | T _C = 125°C | | 0.56 | 0.65 | | | | | V _{DS} = 14 V, | $I_D = 500 \text{ mA},$ | 0.3 | 0.8 | | | | 9fs | Forward transconductance | See Notes 3 and 4 | | | | | S | | | | V _{DS} = 14 V,
See Notes 3 and 4 and | I _D = 750 mA,
d Figure 14 | 0.4 | 0.93 | | | | C _{iss} | Short-circuit input capacitance, common source | | | | 96 | | | | C _{oss} | Short-circuit output capacitance, common source | V _{DS} = 14 V,
f = 1 MHz, | V _{GS} = 0,
See Figure 18 | | 98 | | pF | | C _{rss} | Short-circuit reverse transfer capacitance, common source | | | | 65 | | | NOTES: 3. Technique should limit $T_J - T_C$ to 10°C maximum. ^{4.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts. SLIS046A - MAY 1995 - REVISED JUNE 1996 ## source-to-drain diode characteristics, Q3A, Q4A, Q5A, $T_C = 25^{\circ}C$ | | PARAMETER | TEST CON | MIN | TYP | MAX | UNIT | | |-----------------|-----------------------|---|-----------------------|-----|-----|------|----| | t _{rr} | Reverse-recovery time | I _S = 750 mA, | VGS = 0, | | 60 | | ns | | Q_{RR} | Total diode charge | V _{DS} = 14 V,
See Figures 2 and 23 | di/dt = 100 A/μs, | | 55 | | nC | | t _{rr} | Reverse-recovery time | I _S = 1.5 A, | V _G S = 0, | | 120 | | ns | | Q _{RR} | Total diode charge | $V_{DS} = 14 V$, | di/dt = 100 A/μs | | 150 | | nC | ## resistive-load switching characteristics, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, $T_C = 25^{\circ}C$ | | PARAMETER | 1 | TEST CONDITION | NS | MIN | TYP | MAX | UNIT | | | | | | | | | | | | | |-----------------------|---------------------------------|--|-------------------------|-------------------|-----|------|-----------------------|---------------------------|--|----|--|----|----------------------------|----------------------------|----------------------------|--|--------------|--|--|----| | t _d (on) | Turn-on delay time | | | | | 18 | | | | | | | | | | | | | | | | t _d (off) | Turn-off delay time | $V_{DD} = 14 \text{ V},$
$t_{dis} = 10 \text{ ns},$ | | | | | $R_L = 18.7 \Omega$, | $t_{en} = 10 \text{ ns},$ | | 25 | | 20 | | | | | | | | | | t _r | Rise time | | | | | | | | | | | | $t_{dis} = 10 \text{ ns},$ | $t_{dis} = 10 \text{ ns},$ | $t_{dis} = 10 \text{ ns},$ | | See Figure 3 | | | 13 | | t _f | Fall time | | | | | | | 20 | | | | | | | | | | | | | | Qg | Total gate charge | | | | | 1.6 | 2 | | | | | | | | | | | | | | | Q _{gs(th)} | Threshold gate-to-source charge | V _{DS} = 14 V,
See Figure 4 | $I_D = 750 \text{ mA},$ | $V_{GS} = 10 V$, | | 0.26 | 0.32 | nC | | | | | | | | | | | | | | Q _{gd} | Gate-to-drain charge | Goo'r iguro 'r | | | | 0.42 | 0.52 | | | | | | | | | | | | | | | L(drain) | Internal drain inductance | | | | | 5 | | nH | | | | | | | | | | | | | | L _(source) | Internal source inductance | | | | | 5 | | iin. | | | | | | | | | | | | | | r(gate) | Internal gate resistance | | _ | | | 0.25 | | Ω | | | | | | | | | | | | | ### thermal resistance | | PARAMETER | TEST CONDITIONS | MIN TYP MAX | | | UNIT | |-----------------|--|-------------------|-------------|----|--|------| | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | See Notes 5 and 8 | | 90 | | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | See Notes 6 and 8 | | 38 | | °C/W | | $R_{\theta JP}$ | Junction-to-pin thermal resistance | See Notes 7 and 8 | | 28 | | | NOTES: 5. Package is mounted on a FR4 printed-circuit board with no heat sink. 6. Package is mounted on a 24 in², 4-layer FR4 printed-circuit board. - 7. Package is mounted in intimate contact with infinite heat sink. - 8. All outputs have equal power. ### PARAMETER MEASUREMENT INFORMATION †I_{RM} = maximum recovery current Figure 1. Reverse-Recovery-Current Waveform of Source-to-Drain Diodes ### PARAMETER MEASUREMENT INFORMATION † I_{RM} = maximum recovery current Figure 2. Reverse-Recovery-Current Waveform of Source-to-Drain Diodes NOTE A: C_L includes probe and jig capacitance. Figure 3. Resistive-Switching Test Circuit and Voltage Waveforms ### PARAMETER MEASUREMENT INFORMATION Figure 4. Gate-Charge Test Circuit and Voltage Waveform ### **TYPICAL CHARACTERISTICS** ### STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE ## STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE Figure 7 Figure 8 ## STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE Figure 9 ### STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE Figure 10 ### **DRAIN CURRENT DRAIN-TO-SOURCE VOLTAGE** 12 $\Delta V_{GS} = 0.5 V$ (unless otherwise noted) T_J = 25°C 10 Q1A, Q1B, Q2A, Q2B ID - Drain Current - A 8 6 $V_{GS} = 4 V$ **VGS = 3 V** 2 1 2 4 5 6 7 8 V_{DS} - Drain-to-Source Voltage - V Figure 11 Figure 13 Figure 12 ## DISTRIBUTION OF FORWARD TRANSCONDUCTANCE Figure 14 Figure 15 Figure 17 Figure 16 Figure 18 ## **SOURCE-TO-DRAIN DIODE CURRENT SOURCE-TO-DRAIN VOLTAGE** 10 $V_{GS} = 0$ SD - Source-to-Drain Diode Current - A Q1A, Q1B, Q2A, Q2B 6 4 2 0.6 T_J = 125°C $T_J = -40^{\circ}C$ 0.4 T_J = 150°C T_J = 25°C 0.2 TJ = 75°C 0.1 0.1 10 V_{SD} - Source-to-Drain Voltage - V Figure 19 ## DRAIN-TO-SOURCE VOLTAGE AND GATE-TO-SOURCE VOLTAGE Figure 21 # SOURCE-TO-DRAIN DIODE CURRENT vs SOURCE-TO-DRAIN VOLTAGE Figure 20 ## DRAIN-TO-SOURCE VOLTAGE AND GATE-TO-SOURCE VOLTAGE Figure 22 VGS - Gate-to-Source Voltage - ## REVERSE RECOVERY TIME vs Figure 23 ### THERMAL INFORMATION # MAXIMUM DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE Figure 24 ### MAXIMUM DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE Figure 25 [§] Device is mounted in intimate contact with infinite heat sink. [†]Less than 10% duty cycle [‡] Device is mounted on a 24 in², 4 layer FR4 printed-circuit board. ### THERMAL INFORMATION ## DW PACKAGE† JUNCTION-TO-BOARD THERMAL RESISTANCE PULSE DURATION [†] Device is mounted on 24 in², 4-layer FR4 printed-circuit board with no heat sink. NOTE A: $Z_{\theta B}(t) = r(t) R_{\theta JB}$ $t_W = \text{pulse duration}$ $t_C = \text{cycle time}$ $d = \text{duty cycle} = t_W/t_C$ Figure 26 #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1998, Texas Instruments Incorporated