查询TPIC6A596供应商

捷多邦,专业PCB打样工厂,24小时加急出货TPIC6A596 POWER LOGIC 8-BIT SHIFT REGISTER

SLIS094 - MARCH 2000

- Low r_{DS(on)} . . . 1 Ω Typ
- Output Short-Circuit Protection
- Avalanche Energy . . . 75 mJ
- Eight 350-mA DMOS Outputs
- 50-V Switching Capability
- Enhanced Cascading for Multiple Stages
- All Registers Cleared With Single Input
- Low Power Consumption

description

The TPIC6A596 is a monolithic, high-voltage, high-current power logic 8-bit shift register designed for use in systems that require relatively high load power. The device contains a built-in voltage clamp on the outputs for inductive transient protection. Power driver applications include relays, solenoids, and other mediumcurrent or high-voltage loads. Each open-drain DMOS transistor features an independent chopping current-limiting circuit to prevent damage in the case of a short circuit.

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit, D-type storage register. Data transfers through both the shift and storage registers on the rising edge of the shiftregister clock (SRCK) and the register clock (RCK), respectively. The storage register transfers data to the output buffer when shift-

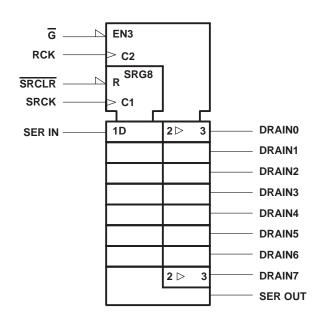
NE PACKAGE (TOP VIEW)						
DRAIN2 DRAIN3 SRCLR PGND PGND PGND RCK SRCK DRAIN4 DRAIN5	1 20 DRAIN1 2 19 DRAN0 3 18 SER IN 4 17 V _{CC} 5 16 PGND 6 15 PGND 7 14 LGND 8 13 SER OUT 9 12 DRAIN7 10 11 DRAIN6					
D	W PACKAGE (TOP VIEW)					
DRAIN2 DRAIN3 SRCLR G PGND PGND PGND PGND PGND RCK DRAIN4 DRAIN5	1 24 DRAIN1 2 23 DRAIN0 3 22 SER IN 4 21 V _{CC} 5 20 PGND 6 19 PGND 7 18 PGND 8 17 PGND 9 16 LGND 10 15 SER OUT 11 14 DRAIN7 12 13 DRAIN6					

register clear (SRCLR) is high. When SRCLR is low, all registers in the device are cleared. When output enable \overline{G} is held high, all data in the output buffers is held low and all drain outputs are off. When \overline{G} is held low, data from the storage register is transparent to the output buffers. The serial output (SER OUT) is clocked out of the device on the falling edge of SRCK to provide additional hold time for cascaded applications. This will provide improved performance for applications where clock signals may be skewed, devices are not located near one another, or the system must tolerate electromagnetic interference.

Outputs are low-side, open-drain DMOS transistors with output ratings of 50 V and a 350-mA continuous sink current capability. When data in the output buffers is low, the DMOS-transistor outputs are off. When data is high, the DMOS-transistor outputs have sink current capability.

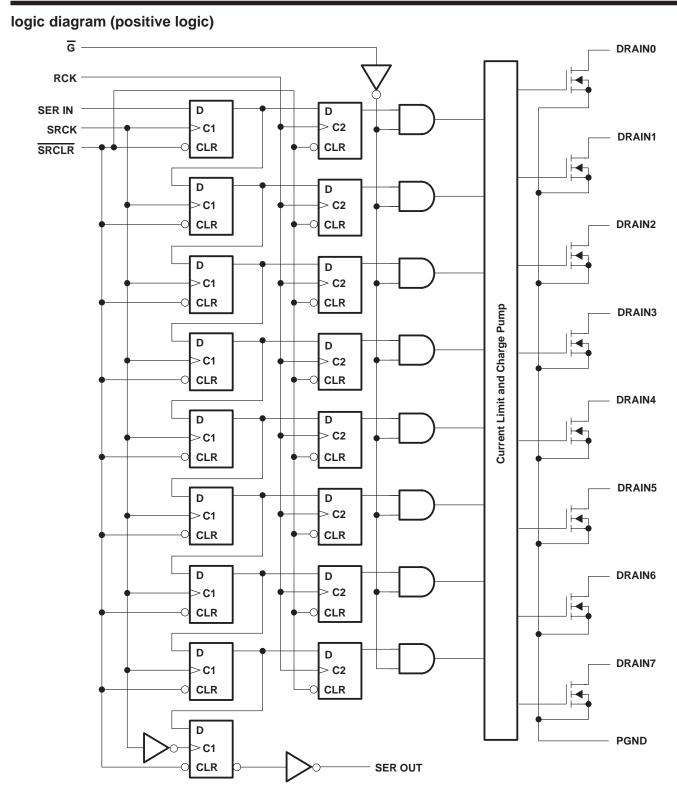
Separate power ground (PGND) and logic ground (LGND) terminals are provided to facilitate maximum system flexibility. All PGND terminals are internally connected, and each PGND terminal must be externally connected to the power system ground in order to minimize parasitic impedance. A single-point connection between LGND and PGND must be made externally in a manner that reduces crosstalk between the logic and load circuits.

The TPIC6A596 is offered in a thermally-enhanced dual-in-line (NE) package and a wide-body surface-mount (DW) package. The TPIC6A596 is characterized for operation over the operating case temperature range of -40°C to 125°C.

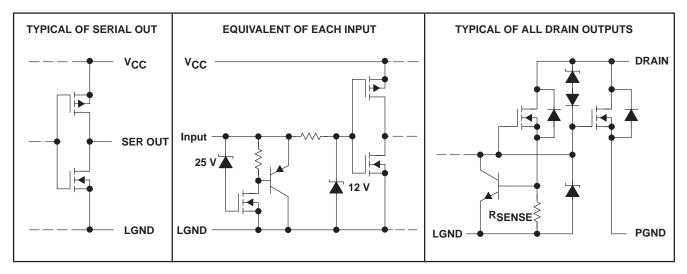


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLIS094 – MARCH 2000


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


SLIS094 - MARCH 2000

SLIS094 - MARCH 2000

schematic of inputs and outputs

absolute maximum ratings over recommended operating case temperature range (unless otherwise noted)[†]

Logic supply voltage, V_{CC} (see Note 1)7 VLogic input voltage range, V_{I} -0.3 V to 7 VPower DMOS drain-to-source voltage, V_{DS} (see Note 2)50 VContinuous source-drain diode anode current1 APulsed source-drain diode anode current (see Note 3)2 APulsed drain current, each output, all outputs on, I_{Dn} , $T_A = 25^{\circ}C$ (see Note 3)1.1 AContinuous drain current, each output, all outputs on, I_{Dn} , $T_A = 25^{\circ}C$ 350 mAPeak drain current, single output, $T_A = 25^{\circ}C$ (see Note 3)1.1 ASingle-pulse avalanche energy, E_{AS} (see Figure 6)75 mJAvalanche current, I_{AS} (see Note 4)600 mAContinuous total dissipationSee Dissipation Rating TableOperating case temperature range, T_C $-40^{\circ}C$ to $125^{\circ}C$ Operating virtual junction temperature range, T_J $-40^{\circ}C$ to $150^{\circ}C$ Storage temperature range, T_{stg} $-65^{\circ}C$ to $150^{\circ}C$ Logic temperature 1,6 mm (1/16 inch) from case for 10 seconds260^{\circ}C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to LGND and PGND.
 - 2. Each power DMOS source is internally connected to PGND.
 - 3. Pulse duration \leq 100 µs and duty cycle \leq 2 %.
 - 4. DRAIN supply voltage = 15 V, starting junction temperature (T_{JS}) = 25°C, L = 210 mH, I_{AS} = 600 mA (see Figure 6).

DISSIPATION RATING TABLE							
PACKAGE	$T_{C} \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _C = 25°C	T _C = 125°C POWER RATING				
DW	1750 mW	14 mW/°C	350 mW				
NE	2500 mW	20 mW/°C	500 mW				

SLIS094 - MARCH 2000

recommended operating conditions

		MIN	MAX	UNIT
Logic supply voltage, V _{CC}		4.5	5.5	V
High-level input voltage, VIH	0	.85 VCC	VCC	V
Low-level input voltage, VIL		0	0.15 V _{CC}	V
Pulsed drain output current, $T_C = 25^{\circ}C$, $V_{CC} = 5 V$ (see Notes 3 and 5)		-1.8	0.6	А
Setup time, SER IN high before SRCK [↑] , t _{SU} (see Figure 2)		10		ns
Hold time, SER IN high after SRCK↑, t _h (see Figure 2)		10		ns
Pulse duration, t _W (see Figure 2)		20		ns
Operating case temperature, T _C		-40	125	°C

NOTES: 3. Pulse duration \leq 100 µs and duty cycle \leq 2%.

5. Technique should limit $T_J - T_C$ to 10°C maximum.

electrical characteristics, V_{CC} = 5 V, T_C = 25°C (unless otherwise noted)

	PARAMETER	TES	ST CONE	DITIONS	MIN	TYP	MAX	UNIT
V _(BR) DSX	Drain-to-source breakdown voltage	I _D = 1 mA			50			V
V _{SD}	Source-to-drain diode forward voltage	I _F = 350 mA, See Note 3				0.8	1.1	V
Vau	High-level output voltage,	I _{OH} = -20 μA	I _{OH} = -20 μA		V _{CC} -0.1	Vcc		V
VOH	SER OUT	$I_{OH} = -4 \text{ mA}$			V _{CC} -0.5	V _{CC} -0.2		V
Max	Low-level output voltage,	I _{OL} = 20 μA				0	0.1	V
VOL	SER OUT	I _{OL} = 4 mA				0.2	0.5	V
IН	High-level input current	VI = VCC					1	μA
۱ _{IL}	Low-level input current	V ₁ = 0					-1	μA
I _{O(chop)}	Output current at which chopping starts	T _C = 25°C,	See No	te 5 and Figures 3 and 4	0.6	0.8	1.1	А
ICC	Logic supply current	IO = 0,	$V_I = V_C$;C or 0		0.5	5	mA
ICC(FRQ)	Logic supply current at frequency	$f_{SRCK} = 5 \text{ MHz},$ V _I = V _{CC} or 0,		C _L = 30 pF, 5 V, See Figure 7		1.3		mA
l(nom)	Nominal current	V _{DS(on)} = 0.5 V, V _{CC} = 5 V,		= I _D , T _C = 85°C, tes 5, 6, and 7		350		mA
1_	Ducia compart off state	V _{DS} = 40 V,	$T_{C} = 25$	5°C		0.1	1	A
D	Drain current, off-state	V _{DS} = 40 V,	$T_{C} = 12$	25°C		0.2	5	μA
	Static drain-source	I _D = 350 mA, T _C =	= 25°C	See Notes 5 and 6 and		1	1.5	0
rDS(on)	on-state resistance	I _D = 350 mA, T _C =	= 125°C	Figures 10 and 11		1.7	2.5	Ω

NOTES: 5. Technique should limit T_J-T_C to 10°C maximum.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

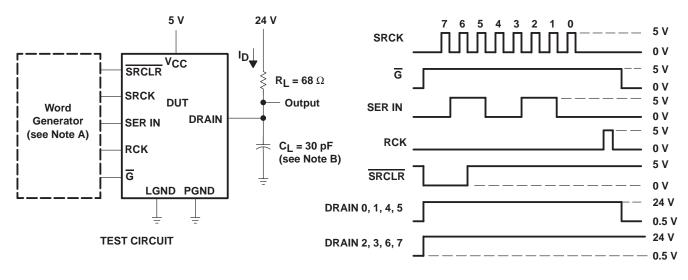
7. Nominal current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at $T_C = 85^{\circ}C$.

SLIS094 - MARCH 2000

switching characteristics, V_{CC} = 5 V, T_C = 25°C

		i		
PARAMETER		TEST CONDITIONS	MIN TYP MAX	UNIT
^t PHL	Propagation delay time, high-to-low-level output from \overline{G}	$C_L = 30 \text{ pF}, \qquad I_D = 350 \text{ mA},$ See Figures 1, 2, and 12	30	ns
^t PLH	Propagation delay time, low-to-high-level output from \overline{G}		125	ns
tr	Rise time, drain output		60	ns
t _f	Fall time, drain output		30	ns
^t pd	Propagation delay time, SRCK \downarrow to SEROUT	$C_L = 30 \text{ pF}, \qquad I_D = 350 \text{ mA},$ See Figure 2	20	ns
^f (SRCK)	Serial clock frequency	$C_L = 30 \text{ pF}, \qquad I_D = 350 \text{ mA},$ See Note 8	10	MHz
ta	Reverse-recovery-current rise time	I _F = 350 mA, di/dt = 20 A/μs,	100	ns
t _{rr}	Reverse-recovery time	See Notes 5 and 6 and Figure 5	300	ns

NOTES: 5. Technique should limit $T_J - T_C$ to 10°C maximum.


6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

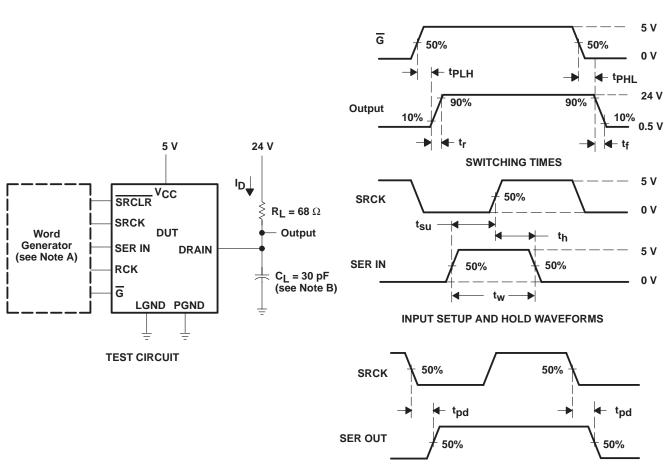
 This is the maximum serial clock frequency assuming cascaded operation where serial data is passed from one stage to a second stage. The clock period allows for SRCK → SEROUT propagation delay and setup time plus some timing margin.

thermal resistance

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
Reic Thermal resistance, junction-to-case	DW	All eight outputs with equal power		10	°C/W
	NE			10	
R _{0JA} Thermal resistance, junction-to-ambient	DW	All eight outputs with agual power		50	°C/W
	NE	All eight outputs with equal power		50	-C/W

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

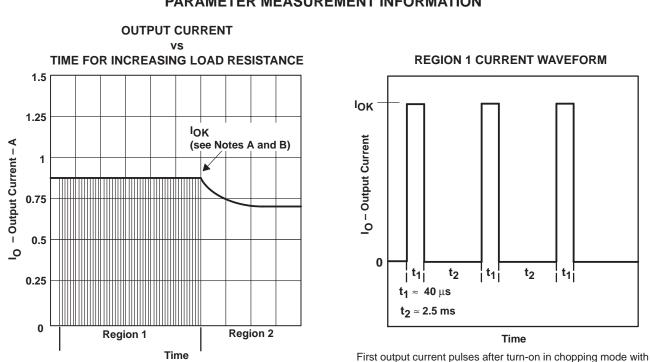

NOTES: A. The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 300$ ns, pulsed repetition rate (PRR) = 5 kHz, $Z_O = 50 \ \Omega$.

B. CL includes probe and jig capacitance.

Figure 1. Resistive Load Operation

SLIS094 - MARCH 2000

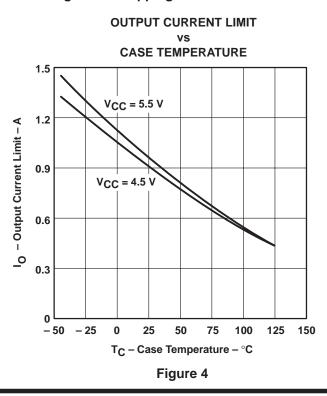
PARAMETER MEASUREMENT INFORMATION


SER OUT PROPAGATION DELAY WAVEFORM

- NOTES: A. The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 300$ ns, pulsed repetition rate (PRR) = 5 kHz, $Z_O = 50 \Omega$.
 - B. C_L includes probe and jig capacitance.

Figure 2. Test Circuit, Switching Times, and Voltage Waveforms

SLIS094 - MARCH 2000



PARAMETER MEASUREMENT INFORMATION

First output current pulses after turn-on in chopping mode with resistive load.

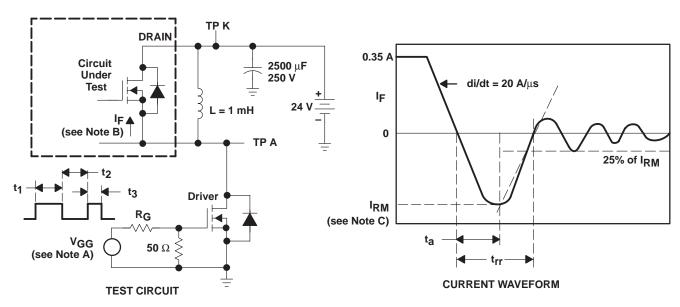
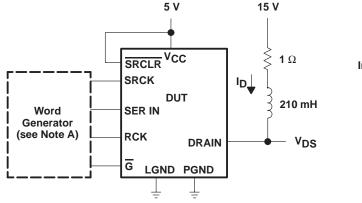
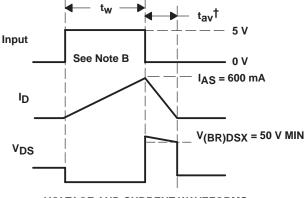

NOTES: A. Figure 3 illustrates the output current characteristics of the device energizing a load having initially low, increasing resistance, e.g., an incandescent lamp. In region 1, chopping occurs and the peak current is limited to I_{OK}. In region 2, output current is continuous. The same characteristics occur in reverse order when the device energizes a load having an initially high, decreasing resistance.
B. Region 1 duty cycle is approximately 2%.

Figure 3. Chopping-Mode Characteristics


SLIS094 - MARCH 2000



PARAMETER MEASUREMENT INFORMATION

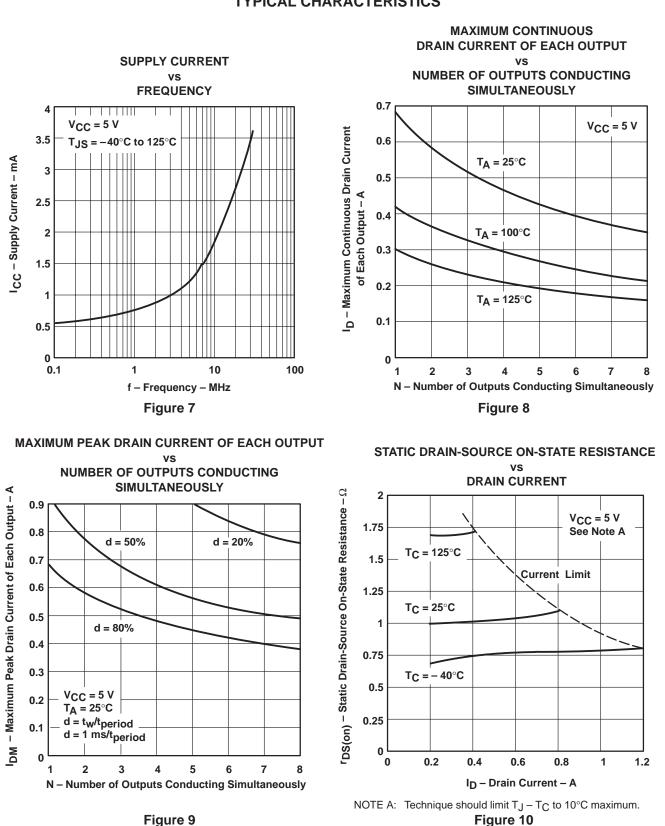
- NOTES: A. The V_{GG} amplitude and R_G are adjusted for di/dt = 20 A/ μ s. A V_{GG} double-pulse train is used to set I_F = 0.35 A, where t₁ = 10 μ s, t₂ = 7 μ s, and t₃ = 3 μ s.
 - B. The DRAIN terminal under test is connected to the TP K test point. All other terminals are connected together and connected to the TP A test point.
 - C. IRM = maximum recovery current

Figure 5. Reverse-Recovery-Current Test Circuit and Waveforms of Source-Drain Diode

SINGLE-PULSE AVALANCHE ENERGY TEST CIRCUIT

VOLTAGE AND CURRENT WAVEFORMS

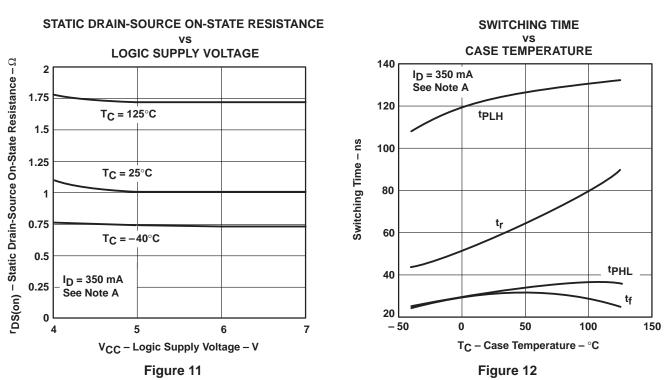
[†]Non JEDEC symbol for avalanche time.


NOTES: A. The word generator has the following characteristics: $t_{f} \le 10$ ns, $t_{f} \le 10$ ns, $Z_{O} = 50 \Omega$. B. Input pulse duration, $t_{W_{f}}$ is increased until peak current $I_{AS} = 600$ mA.

Energy test level is defined as $E_{AS} = (I_{AS} \times V_{(BR)DSX} \times t_{av})/2 = 75 \text{ mJ}.$

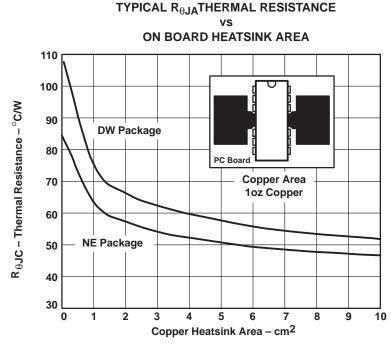
Figure 6. Single-Pulse Avalanche Energy Test Circuit and Waveforms

SLIS094 - MARCH 2000



TYPICAL CHARACTERISTICS

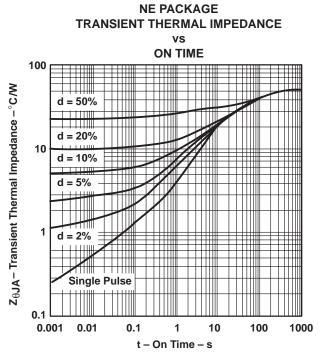
Figure 9



SLIS094 - MARCH 2000

TYPICAL CHARACTERISTICS

NOTE A: Technique should limit $T_J - T_C$ to 10°C maximum.



SLIS094 - MARCH 2000

THERMAL INFORMATION

The single-pulse curve represents measured data. The curves for various pulse durations are based on the following equation:

$$\begin{aligned} \mathsf{Z}_{\theta \mathsf{J}\mathsf{A}} &= \left| \left| \frac{\mathsf{t}_{\mathsf{W}}}{\mathsf{t}_{\mathsf{C}}} \right| \mathsf{R}_{\theta \mathsf{J}\mathsf{A}} + \left| 1 - \frac{\mathsf{t}_{\mathsf{W}}}{\mathsf{t}_{\mathsf{C}}} \right| \mathsf{Z}_{\theta}(\mathsf{t}_{\mathsf{W}} + \mathsf{t}_{\mathsf{C}}) \\ &+ \mathsf{Z}_{\theta}(\mathsf{t}_{\mathsf{W}}) - \mathsf{Z}_{\theta}(\mathsf{t}_{\mathsf{C}}) \end{aligned} \end{aligned}$$

Where:

- $Z_{\theta}(t_{W}) =$ the single-pulse thermal impedance for t = t_{W} seconds
- $\label{eq:constraint} \begin{array}{lll} {\sf Z}_{\theta}(t_{c}) \ = \ the \ single-pulse \ thermal \ impedance \\ for \ t = \ t_{c} \ seconds \end{array}$
- $$\label{eq:constraint} \begin{split} \mathsf{Z}_{\theta} \! \left(t_W \, + \, t_C \right) \, = \, & \text{the single-pulse thermal impedance} \\ & \text{for } t = \, t_W + t_C \, \text{seconds} \end{split}$$

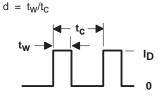


Figure 14

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated