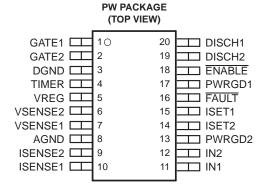


www.ti.com

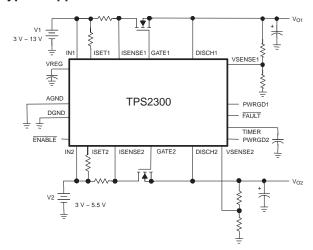
# DUAL HOT-SWAP POWER CONTROLLERS WITH INDEPENDENT CIRCUIT BREAKER AND POWER-GOOD REPORTING

#### **FEATURES**


- Dual-Channel High-Side MOSFET Drivers
- IN1: 3 V to 13 V; IN2: 3 V to 5.5 V
- Output dV/dt Control Limits Inrush Current
- Circuit-Breaker With Programmable Overcurrent Threshold and Transient Timer
- Power-Good Reporting With Transient Filter
- CMOS- and TTL-Compatible Enable Input
- Low, 5-μA Standby Supply Current (Max)
- Available in 20-Pin TSSOP Package
- 40°C to 85°C Ambient Temperature Range
- Electrostatic Discharge Protection

#### **APPLICATIONS**

- Hot-Swap/Plug/Dock Power Management
- Hot-Plug PCI, Device Bay
- Electronic Circuit Breaker


#### DESCRIPTION

The TPS2300 and TPS2301 are dual-channel hot-swap controllers that use external N-channel MOSFETs as high-side switches in power applications. Features of these devices, such as overcurrent protection (OCP), inrush current control, output-power status reporting, and the ability to discriminate between load transients and faults, are critical requirements for hot-swap applications.



NOTE: Terminal 18 is active high on TPS2301.

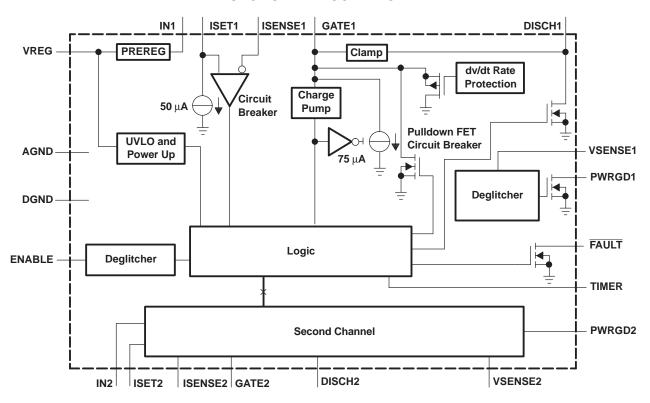
#### typical application



The TPS2300/01 devices incorporate undervoltage lockout (UVLO) and power-good (PG) reporting to ensure the device is off at start-up and confirm the status of the output voltage rails during operation. Each internal charge pump, capable of driving multiple MOSFETs, provides enough gate-drive voltage to fully enhance the N-channel MOSFETs. The charge pumps control both the rise times and fall times (dv/dt) of the MOSFETs, reducing power transients during power up/down. The circuit-breaker functionality combines the ability to sense overcurrent conditions with a timer function; this allows designs such as DSPs, that may have high peak currents during power-state transitions, to disregard transients for a programmable period.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.




**Table 1. AVAILABLE OPTIONS** 

| <b>T</b>       | HOT-SWAP CONTROLLER DESCRIPTION                        |       | TSSOP PACKAGES (PW, PWR)(1) |            |  |  |
|----------------|--------------------------------------------------------|-------|-----------------------------|------------|--|--|
| T <sub>A</sub> | HOT-SWAP CONTROLLER DESCRIPTION                        | COUNT | ENABLE                      | ENABLE     |  |  |
|                | Dual-channel with independent OCP and adjustable PG    | 20    | TPS2300IPW                  | TPS2301IPW |  |  |
| 40°C to 95°C   | Dual-channel with interdependent OCP and adjustable PG | 20    | TPS2310IPW                  | TPS2311IPW |  |  |
| 40°C to 85°C   | Dual-channel with independent OCP                      | 16    | TPS2320IPW                  | TPS2321IPW |  |  |
|                | Single-channel with OCP and adjustable PG              | 14    | TPS2330IPW                  | TPS2331IPW |  |  |

(1) The packages are available left-end taped and reeled (indicated by the R suffix on the device type; e.g., TPS2301IPWR).

## **FUNCTIONAL BLOCK DIAGRAM**



**Table 2. Terminal Functions** 

| TERMINAL<br>NAME | NO. | I/O | DESCRIPTION                                                      |
|------------------|-----|-----|------------------------------------------------------------------|
| AGND             | 8   | 1   | Analog ground, connects to DGND as close as possible             |
| DGND             | 3   | ı   | Digital ground                                                   |
| DISCH1           | 20  | 0   | Discharge transistor 1                                           |
| DISCH2           | 19  | 0   | Discharge transistor 2                                           |
| ENABLE/ ENABLE   | 18  | - 1 | Active low (TPS2300) or active high enable (TPS2301)             |
| FAULT            | 16  | 0   | Overcurrent fault, open-drain output                             |
| GATE1            | 1   | 0   | Connects to gate of channel 1 high-side MOSFET                   |
| GATE2            | 2   | 0   | Connects to gate of channel 2 high-side MOSFET                   |
| IN1              | 11  | - 1 | Input voltage for channel 1                                      |
| IN2              | 12  | - 1 | Input voltage for channel 2                                      |
| ISENSE1          | 10  | 1   | Current-sense input channel 1                                    |
| ISENSE2          | 9   | ı   | Current-sense input channel 2                                    |
| ISET1            | 15  | ı   | Adjusts circuit-breaker threshold with resistor connected to IN1 |



| Table 2. Terminal Functions (continued |
|----------------------------------------|
|----------------------------------------|

| TERMINAL |     | I/O | DESCRIPTION                                                                  |
|----------|-----|-----|------------------------------------------------------------------------------|
| NAME     | NO. | 1/0 | DESCRIPTION                                                                  |
| ISET2    | 14  | I   | Adjusts circuit-breaker threshold with resistor connected to IN2             |
| PWRGD1   | 17  | 0   | Open-drain output, asserted low when VSENSE1 voltage is less than reference. |
| PWRGD2   | 13  | 0   | Open-drain output, asserted low when VSENSE2 voltage is less than reference. |
| TIMER    | 4   | 0   | Adjusts circuit-breaker deglitch time                                        |
| VREG     | 5   | 0   | Connects to bypass capacitor, for stable operation                           |
| VSENSE1  | 7   | I   | Power-good sense input channel 1                                             |
| VSENSE2  | 6   | I   | Power-good sense input channel 2                                             |

## **DETAILED DESCRIPTION**

**DISCH1**, **DISCH2** – DISCH1 and DISCH2 should be connected to the sources of the external N-channel MOSFET transistors connected to GATE1 and GATE2, respectively. These pins discharge the loads when the MOSFET transistors are disabled. They also serve as reference-voltage connections for internal gate voltage-clamp circuitry.

**ENABLE** or **ENABLE** – ENABLE for TPS2300 is active-low. ENABLE for TPS2301 is active-high. When the controller is enabled, both GATE1 and GATE2 voltages powers up to turn on the external MOSFETs. When the ENABLE pin is pulled high for TPS2300 or the ENABLE pin is pulled low for TPS2301 for more than 50 μs, the gate of the MOSFET is discharged at a controlled rate by a current source, and a transistor is enabled to discharge the output bulk capacitance. In addition, the device turns on the internal regulator PREREG (see VREG) when enabled and shuts down PREREG when disabled so that total supply current is less than 5 μA.

**FAULT** – FAULT is an open-drain overcurrent flag output. When an overcurrent condition in either channel is sustained long enough to charge TIMER to 0.5 V, the overcurrent channel latches off and pulls this pin low. The other channel runs normally if not in overcurrent. In order to turn the channel back on, either the enable pin has to be toggled or the input power has to be cycled.

**GATE1**, **GATE2** – GATE1 and GATE2 connect to the gates of external N-channel MOSFET transistors. When the device is enabled, internal charge-pump circuitry pulls these pins up by sourcing approximately 15  $\mu$ A to each. The turnon slew rates depend upon the capacitance present at the GATE1 and GATE2 terminals. If desired, the turnon slew rates can be further reduced by connecting capacitors between these pins and ground. These capacitors also reduce inrush current and protect the device from false overcurrent triggering during power up. The charge-pump circuitry generates gate-to-source voltages of 9 V–12 V across the external MOSFET transistors.

**IN1**, **IN2** – IN1 and IN2 should be connected to the power sources driving the external N-channel MOSFET transistors connected to GATE1 and GATE2, respectively. The TPS2300/TPS2301 draws its operating current from IN1, and both channels remains disabled until the IN1 power supply has been established. The IN1 channel has been constructed to support 3-V, 5-V, or 12-V operation, while the IN2 channel has been constructed to support 3-V operation

**ISENSE1, ISENSE2, ISET1, ISET2** – ISENSE1 and ISENSE2, in combination with ISET1 and ISET2, implement overcurrent sensing for GATE1 and GATE2. ISET1 and ISET2 set the magnitude of the current that generates an overcurrent fault, through external resistors connected to ISET1 and ISET2. An internal current source draws 50  $\mu$ A from ISET1 and ISET2. With a sense resistor from IN1 to ISENSE1 or from IN2 to ISENSE2, which is also connected to the drains of external MOSFETs, the voltage on the sense resistor reflects the load current. An overcurrent condition is assumed to exist if ISENSE1 is pulled below ISET1 or if ISENSE2 is pulled below ISET2.



## **DETAILED DESCRIPTION (continued)**

**PWRGD1**, **PWRGD2** – PWRGD1 and PWRGD2 signal the presence of undervoltage conditions on VSENSE1 and VSENSE2, respectively. These pins are open-drain outputs and are pulled low during an undervoltage condition. To minimize erroneous PWRGDx responses from transients on the voltage rail, the voltage sense circuit incorporates a 20-μs deglitch filter. When VSENSEx is lower than the reference voltage (about 1.23 V), PWRGDx is active low to indicate an undervoltage condition on the power-rail voltage. PWRGDx may not correctly report power conditions when the device is disabled, because there is no gate drive power for the PWRGD output transistor in the disable mode, or, in other words, PWRGD is floating. Therefore, PWRGD is pulled up to its pullup power supply rail in disable mode.

**TIMER** – A capacitor on TIMER sets the time during which the power switch can be in overcurrent before turning off. When the overcurrent protection circuits sense an excessive current, a current source is enabled which charges the capacitor on TIMER. Once the voltage on TIMER reaches approximately 0.5 V, the circuit-breaker latch is set and the power switch is latched off. Power must be recycled or the ENABLE pin must be toggled to restart the controller. In high-power or high-temperature applications, a minimum 50-pF capacitor is strongly recommended from TIMER to ground, to prevent any false triggering.

VREG – VREG is the output of an internal low-dropout voltage regulator, where IN1 is the input. The regulator is used to generate a regulated voltage source, less than 5.5 V, for the device. A 0.1-μF ceramic capacitor should be connected between VREG and ground to aid in noise rejection. In this configuration, upon disabling the device, the internal low-dropout regulator will also be disabled, which removes power from the internal circuitry and allows the device to be placed in low-quiescent-current mode. In applications where IN1 is less than 5.5 V, VREG and IN1 may be connected together. However, under these conditions, disabling the device does not place the device in low-quiescent-current mode, because the internal low-dropout voltage regulator is being bypassed, thereby keeping internal circuitry operational. If VREG and IN1 are connected together, a 0.1-μF ceramic capacitor between VREG and ground is not needed if IN1 already has a bypass capacitor of 1 μF to 10 μF.

**VSENSE1**, **VSENSE2** – VSENSE1 and VSENSE2 can be used to detect undervoltage conditions on external circuitry. If VSENSE1 senses a voltage below approximately 1.23 V, PWRGD1 is pulled low. Similarly, a voltage less than 1.23 V on VSENSE2 causes PWRGD2 to be pulled low.

#### **ABSOLUTE MAXIMUM RATINGS**

over operating free-air temperature range (unless otherwise noted) (1)(2)

|                                                              |                                                                                                                                                                           | VALUE      | UNIT |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| Input voltage renge                                          | V <sub>I(IN1)</sub> , V <sub>I(ISENSE1)</sub> , V <sub>I(VSENSE1)</sub> , V <sub>I(VSENSE2)</sub> , V <sub>I(ISET1)</sub> , V <sub>I(ENABLE)</sub> , V <sub>I(VREG)</sub> | -0.3 to 15 | V    |
| Input voltage range                                          | V <sub>I(IN2)</sub> , V <sub>I(ISENSE2)</sub> , V <sub>I(ISET2)</sub>                                                                                                     | -0.3 to 7  | V    |
|                                                              | V <sub>O(GATE1)</sub>                                                                                                                                                     | -0.3 to 30 | V    |
| Output voltage range                                         | V <sub>O(GATE2)</sub>                                                                                                                                                     | -0.3 to 22 | V    |
|                                                              | $V_{O(DISCH1)}, V_{O(PWRGD1)}, V_{O(PWRGD2)}, V_{O(\overline{FAULT})}, V_{O(DISCH2)}, V_{O(TIMER)}$                                                                       | -0.3 to 15 | V    |
| Sink current range                                           | I <sub>(GATE1)</sub> , I <sub>(GATE2)</sub> , I <sub>(DISCH1)</sub> , I <sub>(DISCH2)</sub>                                                                               | 0 to 100   | mA   |
| Silik current range                                          | I <sub>(PWRGD1)</sub> , I <sub>(PWRGD2)</sub> , I <sub>(TIMER)</sub> , I <sub>(FAULT)</sub>                                                                               | 0 to 10    | mA   |
| Operating virtual juncti                                     | on temperature range, T <sub>J</sub>                                                                                                                                      | -40 to 100 | °C   |
| Storage temperature range, T <sub>stg</sub>                  |                                                                                                                                                                           | -55 to 150 | °C   |
| Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds |                                                                                                                                                                           |            | °C   |

<sup>(1)</sup> Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### **DISSIPATION RATING TABLE**

| PACKAGE | T <sub>A</sub> ≤ 25°C | DERATING FACTOR             | T <sub>A</sub> = 70°C | T <sub>A</sub> = 85°C |
|---------|-----------------------|-----------------------------|-----------------------|-----------------------|
|         | POWER RATING          | ABOVE T <sub>A</sub> = 25°C | POWER RATING          | POWER RATING          |
| PW-20   | 1015 mW               | 13.55 mW/°C                 | 406 mW                | 203 mW                |

<sup>(2)</sup> All voltages are respect to DGND.



## **RECOMMENDED OPERATING CONDITIONS**

|       |                                        |                                                                                                                           | MIN | NOM MAX | UNIT |
|-------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|---------|------|
| Vı    | Input voltage                          | V <sub>I(IN1)</sub> , V <sub>I(ISENSE1)</sub> , V <sub>I(VSENSE1)</sub> , V <sub>I(VSENSE2)</sub> , V <sub>I(ISET1)</sub> | 3   | 13      | \/   |
| ٧١    | input voitage                          | V <sub>I(IN2)</sub> , V <sub>I(ISENSE2)</sub> , V <sub>I(ISET2)</sub> , V <sub>I(VREG)</sub>                              | 3   | 5.5     | V    |
| $T_J$ | Operating virtual junction temperature |                                                                                                                           | 40  | 100     | °C   |

## **ELECTRICAL CHARACTERISTICS**

over recommended operating temperature range (-40°C <  $T_A$  < 85°C), 3 V  $\leq$  V $_{I(IN1)} \leq$  13 V, 3 V  $\leq$  V $_{I(IN2)} \leq$  5.5 V (unless otherwise noted)

| F                           | PARAMETER                                                                                    | TEST                                                                                                                                       | CONDITIONS                                                                                                                                   |                               | MIN  | TYP  | MAX | UNIT |
|-----------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------|------|-----|------|
| GENERAL                     |                                                                                              |                                                                                                                                            |                                                                                                                                              | ,                             |      |      | •   |      |
| I <sub>I(IN1)</sub>         | Input current, IN1                                                                           | V <sub>I(ENABLE)</sub> = 5 V (TPS23                                                                                                        | $V_{I(\overline{ENABLE})} = 5 \text{ V (TPS2301)},$                                                                                          |                               |      | 0.5  | 1   | mA   |
| I <sub>I(IN2)</sub>         | Input current, IN2                                                                           | V <sub>I(ENABLE)</sub> = 0 V (TPS2300)                                                                                                     |                                                                                                                                              |                               | 75   | 200  | μA  |      |
| I <sub>I(stby)</sub>        | Standby current (sum of<br>currents into IN1, IN2,<br>ISENSE1, ISENSE2,<br>ISET1, and ISET2) | V <sub>I(ENABLE)</sub> = 0 V (TPS2;<br>V <sub>I(ENABLE)</sub> = 5 V (TPS2;                                                                 | V <sub>I(ENABLE)</sub> = 0 V (TPS2301),<br>V <sub>I(ENABLE)</sub> = 5 V (TPS2300)                                                            |                               |      |      | 5   | μA   |
| GATE1                       |                                                                                              |                                                                                                                                            |                                                                                                                                              |                               |      |      |     |      |
| V <sub>G(GATE1_3V)</sub>    |                                                                                              |                                                                                                                                            |                                                                                                                                              | V <sub>I(IN1)</sub> = 3 V     | 9    | 11.5 |     |      |
| V <sub>G(GATE1_4.5V)</sub>  | Gate voltage                                                                                 | $I_{I(GATE1)} = 500 \text{ nA},$                                                                                                           | GATE1) = 500 nA,<br>ISCH1 open                                                                                                               |                               | 10.5 | 14.5 |     | V    |
| V <sub>G(GATE1_10.8V)</sub> |                                                                                              |                                                                                                                                            |                                                                                                                                              | V <sub>I(IN1)</sub> = 10.8 V  | 16.8 | 21   |     |      |
| V <sub>C(GATE1)</sub>       | Clamping voltage, GATE1 to DISCH1                                                            |                                                                                                                                            |                                                                                                                                              |                               | 9    | 10   | 12  | V    |
| I <sub>S(GATE1)</sub>       | Source current, GATE1                                                                        | $3 \text{ V} \le V_{I(IN1)} \le 13.2 \text{ V}, 3$<br>$V_{I(GATE1)} = V_{I(IN1)} + 6 \text{ V}$                                            | $3 \text{ V} \le V_{I(IN1)} \le 13.2 \text{ V}, 3 \text{ V} \le V_{O(VREG)} \le 5.5 \text{ V},$<br>$V_{I(GATE1)} = V_{I(IN1)} + 6 \text{ V}$ |                               |      | 14   | 20  | μΑ   |
|                             | Sink current, GATE1                                                                          | $3 \text{ V} \le V_{I(IN1)} \le 13.2 \text{ V}, 3 \text{ V} \le V_{O(VREG)} \le 5.5 \text{ V},$ $V_{I(GATE1)} = V_{I(IN1)}$                |                                                                                                                                              |                               | 50   | 75   | 100 | μA   |
|                             |                                                                                              |                                                                                                                                            |                                                                                                                                              | V <sub>I(IN1)</sub> = 3 V     |      | 0.5  |     | ms   |
| t <sub>r(GATE1)</sub>       | Rise time, GATE1                                                                             |                                                                                                                                            |                                                                                                                                              | V <sub>I(IN1)</sub> = 4.5 V   |      | 0.6  |     |      |
|                             |                                                                                              |                                                                                                                                            |                                                                                                                                              | $V_{I(IN1)} = 10.8 \text{ V}$ |      | 1    |     |      |
|                             |                                                                                              |                                                                                                                                            |                                                                                                                                              | V <sub>I(IN1)</sub> = 3 V     |      | 0.1  |     |      |
| t <sub>f(GATE1)</sub>       | Fall time, GATE1                                                                             | $C_g$ to GND = 1 nF <sup>(1)</sup>                                                                                                         |                                                                                                                                              | $V_{I(IN1)} = 4.5 \text{ V}$  |      | 0.12 |     | ms   |
|                             |                                                                                              |                                                                                                                                            |                                                                                                                                              | $V_{I(IN1)} = 10.8 \text{ V}$ |      | 0.2  |     |      |
| GATE2                       |                                                                                              |                                                                                                                                            |                                                                                                                                              |                               |      |      |     |      |
| $V_{G(GATE2\_3V)}$          | Gate voltage                                                                                 | I <sub>I(GATE2)</sub> = 500 nA,<br>DISCH2 open                                                                                             |                                                                                                                                              | $V_{I(IN2)} = 3 V$            | 9    | 11.7 |     | V    |
| $V_{G(GATE2\_4.5V)}$        | Gale voltage                                                                                 | DISCH2 open                                                                                                                                |                                                                                                                                              | $V_{I(IN2)} = 4.5 \text{ V}$  | 10.5 | 14.7 |     | V    |
| V <sub>C(GATE2)</sub>       | Clamping voltage, GATE2 to DISCH2                                                            |                                                                                                                                            |                                                                                                                                              |                               | 9    | 10   | 12  | V    |
| I <sub>S(GATE2)</sub>       | Source current, GATE2                                                                        | $3 \text{ V} \le V_{I(IN2)} \le 5.5 \text{ V}, \ 3 \text{ V} \le V_{O(VREG)} \le 5.5 \text{ V}, \ V_{I(GATE2)} = V_{I(IN2)} + 6 \text{ V}$ |                                                                                                                                              | 10                            | 14   | 20   | μΑ  |      |
|                             | Sink current, GATE2                                                                          | $3 \text{ V} \le V_{I(IN2)} \le 5.5 \text{ V}, 3 \text{ V} \le V_{O(VREG)} \le 5.5 \text{ V}, \ V_{I(GATE2)} = V_{I(IN2)}$                 |                                                                                                                                              | 50                            | 75   | 100  | μΑ  |      |
|                             | Pigg time CATES                                                                              | C to CND 4 x (1)                                                                                                                           | V <sub>I(IN2)</sub> = 3 V                                                                                                                    |                               |      | 0.5  |     | ma   |
| t <sub>r(GATE2)</sub>       | Rise time, GATE2                                                                             | $C_g$ to GND = 1 nF <sup>(1)</sup>                                                                                                         | V <sub>I(IN2)</sub> = 4.5 V                                                                                                                  | \                             |      | 0.6  |     | ms   |
|                             | Fall time CATE2                                                                              | $C_a$ to GND = 1 nF <sup>(1)</sup>                                                                                                         | V <sub>I(IN2)</sub> = 3 V                                                                                                                    | $V_{O(VREG)} = 3 V$           |      | 0.1  |     | me   |
| $t_{f(GATE2)}$              | Fall time, GATE2                                                                             | Og to GND = 1 HF(1)                                                                                                                        | V <sub>I(IN2)</sub> = 4.5 V                                                                                                                  |                               |      | 0.12 |     | ms   |

<sup>(1)</sup> Specified, but not production tested.



## **ELECTRICAL CHARACTERISTICS (Continued)**

 $over \ recommended \ operating \ temperature \ range \ (-40^{\circ}C < T_{A} < 85^{\circ}C), \ 3V \leq V_{I(IN1)} \leq 13V, \ 3V \leq V_{I(IN2)} \leq 5.5V \ (unless \ otherwise \ o$ noted)

| PARAMETER                       |                                                            | TEST CONDITIONS                                                                                                                         | MIN | TYP | MAX | UNIT |
|---------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| TIMER                           |                                                            |                                                                                                                                         |     |     | ·   |      |
| V <sub>(TO_TIMER)</sub>         | Threshold voltage, TIMER                                   |                                                                                                                                         | 0.4 | 0.5 | 0.6 | V    |
|                                 | Charge current, TIMER                                      | $V_{I(TIMER)} = 0 V$                                                                                                                    | 35  | 50  | 65  | μΑ   |
|                                 | Discharge current, TIMER                                   | $V_{I(TIMER)} = 1 V$                                                                                                                    | 1   | 2.5 |     | mA   |
| CIRCUIT BREA                    | KER                                                        |                                                                                                                                         |     |     |     |      |
|                                 |                                                            | $R_{ISETx} = 1 k\Omega$                                                                                                                 | 40  | 50  | 60  |      |
| V                               | Threshold voltage, circuit                                 | $R_{ISETx} = 400 \Omega$ , $T_A = 25$ °C                                                                                                | 14  | 19  | 24  | mV   |
| $V_{IT(CB)}$                    | breaker                                                    | $R_{ISETx} = 1 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$                                                                               | 44  | 50  | 53  | IIIV |
|                                 |                                                            | $R_{ISETx} = 1.5 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$                                                                             | 68  | 73  | 78  |      |
| I <sub>(IB_ISENSEx)</sub>       | Input bias current, I <sub>SENSEx</sub>                    |                                                                                                                                         |     | 0.1 | 5   | μΑ   |
|                                 | Discharge current,                                         | $V_{O(GATEx)} = 4 V$                                                                                                                    | 400 | 800 |     | mA   |
|                                 | GATEx                                                      | $V_{O(GATEx)} = 1 V$                                                                                                                    | 25  | 150 |     | ША   |
| t <sub>pd(CB)</sub>             | Propagation (delay) time, comparator inputs to gate output | $\begin{array}{ll} C_g = 50 \text{ pF}, & 10 \text{ mV overdrive}, \\ (50\% \text{ to } 10\%), & C_{TIMER} = 50 \text{ pF} \end{array}$ |     | 1.3 |     | μs   |
| ENABLE, ACTI                    | VE LOW (TPS2300)                                           |                                                                                                                                         |     |     | ·   |      |
| V <sub>IH(ENABLE)</sub>         | High-level input voltage, ENABLE                           |                                                                                                                                         | 2   |     |     | V    |
| V <sub>IL(ENABLE)</sub>         | Low-level input voltage, ENABLE                            |                                                                                                                                         |     |     | 0.8 | V    |
| R <sub>I(ENABLE)</sub>          | Input pullup resistance, ENABLE                            | See <sup>(1)</sup>                                                                                                                      | 100 | 200 | 300 | kΩ   |
| $t_{d(off\_\overline{ENABLE})}$ | Turnoff delay time, ENABLE                                 | $V_{l(\overline{ENABLE})}$ increasing above stop threshold; 100 ns rise time, 20 mV overdrive $^{(2)}$                                  |     | 60  |     | μs   |
| t <sub>d(on_ENABLE)</sub>       | Turnon delay time, ENABLE                                  | $V_{l(\overline{\text{ENABLE}})}$ decreasing below start threshold; 100 ns fall time, 20 mV overdrive $^{(2)}$                          |     | 125 |     | μs   |
| ENABLE, ACTI                    | VE HIGH (TPS2301)                                          |                                                                                                                                         |     |     |     |      |
| V <sub>IH(ENABLE)</sub>         | High-level input voltage, ENABLE                           |                                                                                                                                         | 2   |     |     | V    |
| $V_{IL(\overline{ENABLE})}$     | Low-level input voltage, ENABLE                            |                                                                                                                                         |     |     | 0.7 | V    |
| $R_{I(\overline{ENABLE})}$      | Input pulldown resistance, ENABLE                          |                                                                                                                                         | 100 | 150 | 300 | kΩ   |
| $t_{d(on\_\overline{ENABLE})}$  | Turnon delay time,<br>ENABLE                               | $V_{l(ENABLE)}$ increasing above start threshold; 100 ns rise time, 20 mV overdrive $^{(2)}$                                            |     | 85  |     | μs   |
| $t_{\text{d(off\_ENABLE)}}$     | Turnoff delay time,<br>ENABLE                              | $V_{l(\text{ENABLE})}$ decreasing below stop threshold; 100 ns fall time, 20 mV overdrive $^{(2)}$                                      |     | 100 |     | μs   |
| PREREG                          |                                                            | -                                                                                                                                       |     |     |     |      |
| $V_{(VREG)}$                    | PREREG output voltage                                      | $4.5 \leq V_{I(IN1)} \leq 13 \text{ V}$                                                                                                 | 3.5 | 4.1 | 5.5 | V    |
| $V_{(drop\_PREREG)}$            | PREREG dropout voltage                                     | $V_{I(IN1)} = 3 V$                                                                                                                      |     |     | 0.1 | V    |

<sup>(1)</sup> Test  $I_O$  of ENABLE at  $V_{I(ENABLE)} = 1$  V and 0 V, then  $R_{I(ENABLE)} = \frac{1 \text{ V}}{I_{O_OV} - I_{O_1V}}$  (2) Specified, but not production tested.



## **ELECTRICAL CHARACTERISTICS (Continued)**

over recommended operating temperature range ( $-40^{\circ}C < T_A < 85^{\circ}C$ ),  $3V \le V_{I(IN1)} \le 13V$ ,  $3V \le V_{I(IN2)} \le 5.5V$  (unless otherwise noted)

| F                           | PARAMETER                                         | TEST CONDITIONS                                                              | MIN      | TYP   | MAX  | UNIT |
|-----------------------------|---------------------------------------------------|------------------------------------------------------------------------------|----------|-------|------|------|
| VREG UVLO                   |                                                   |                                                                              |          |       |      |      |
| V <sub>(TO_UVLOstart)</sub> | Output threshold voltage, start                   |                                                                              | 2.75     | 2.85  | 2.95 | V    |
| V <sub>(TO_UVLOstop)</sub>  | Output threshold voltage, stop                    |                                                                              | 2.65     | 2.78  |      | V    |
| V <sub>hys(UVLO)</sub>      | Hysteresis                                        |                                                                              | 50       | 75    |      | mV   |
|                             | UVLO sink current,<br>GATEx                       | $V_{I(GATEx)} = 2 V$                                                         | 10       |       |      | mA   |
| PWRGD1 and I                | PWRGD2                                            |                                                                              |          |       |      |      |
| V <sub>IT(ISENSEx)</sub>    | Trip threshold, VSENSEx                           | V <sub>I(VSENSEx)</sub> decreasing                                           | 1.2      | 1.225 | 1.25 | V    |
| $V_{hys}$                   | Hysteresis voltage, power-good comparator         |                                                                              | 20       | 30    | 40   | mV   |
| V <sub>O(sat_PWRGDx)</sub>  | Output saturation voltage, PWRGDx                 | I <sub>O</sub> = 2 mA                                                        |          | 0.2   | 0.4  | V    |
| V <sub>O(VREG_min)</sub>    | Minimum V <sub>O(VREG)</sub> for valid power-good | $I_O = 100 \mu A$ , $V_{O(PWRGDx)} = 1 V$                                    |          |       | 1    | V    |
|                             | Input bias current, power-good comparator         | V <sub>I(VSENSEx)</sub> = 5.5 V                                              |          |       | 1    | μΑ   |
| I <sub>Ikg(PWRGDx)</sub>    | Leakage current,<br>PWRGDx                        | V <sub>O(PWRGDx)</sub> = 13 V                                                |          |       | 1    | μΑ   |
| t <sub>dr</sub>             | Delay time, rising edge, PWRGDx                   | $V_{I(VSENSEx)}$ increasing, overdrive = 20 mV, $t_r = 100 \text{ ns}^{(1)}$ |          | 25    |      | μs   |
| t <sub>df</sub>             | Delay time, falling edge, PWRGDx                  | $V_{I(VSENSEx)}$ decreasing, overdrive = 20 mV, $t_r = 100 \text{ ns}^{(1)}$ |          | 2     |      | μs   |
| FAULT OUTPU                 | Т                                                 |                                                                              | T.       |       |      |      |
| V <sub>O(sat_FAULT)</sub>   | Output saturation voltage, FAULT                  | $I_0 = 2 \text{ mA}$                                                         |          |       | 0.4  | V    |
| I <sub>Ikg(FAULT)</sub>     | Leakage current, FAULT                            | V <sub>O(FAULT)</sub> = 13 V                                                 |          |       | 1    | μA   |
| DISCH1 AND D                | ISCH2                                             |                                                                              | <u>.</u> |       |      |      |
| I <sub>(DISCH)</sub>        | Discharge current,<br>DISCHx                      | $V_{I(DISCHx)} = 1.5 \text{ V}, V_{I(VIN1)} = 5 \text{ V}$                   | 5        | 10    |      | mA   |
| V <sub>IH(DISCH)</sub>      | Discharge on high-level input voltage             |                                                                              | 2        |       |      | V    |
| V <sub>IL(DISCH)</sub>      | Discharge on low-level input voltage              |                                                                              |          |       | 1    | V    |

<sup>(1)</sup> Specified, but not production tested.



## PARAMETER MEASUREMENT INFORMATION

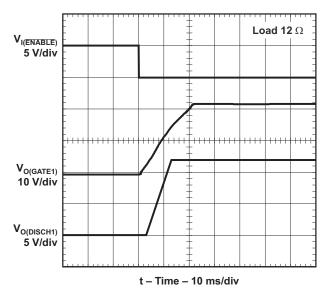



Figure 1. Turnon Voltage Transition of Channel 1

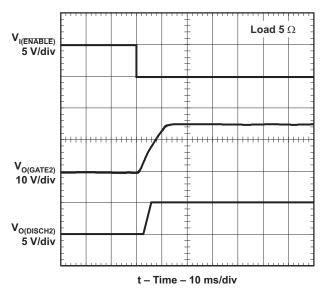



Figure 3. Turnon Voltage Transitioin of Channel 2

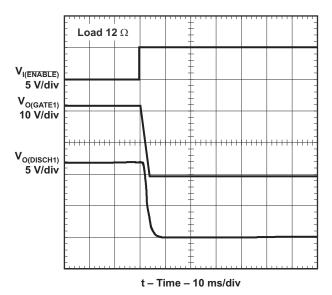



Figure 2. Turnoff Voltage Transition of Channel 1

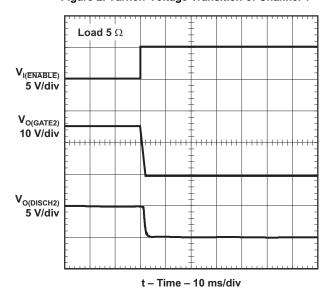



Figure 4. Turnoff Voltage Transition of Channel 2



## PARAMETER MEASUREMENT INFORMATION (continued)

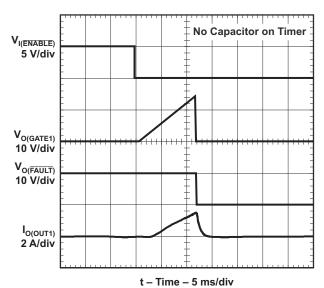



Figure 5. Channel 1 Overcurrent Response: Enabled Into Overcurrent Load

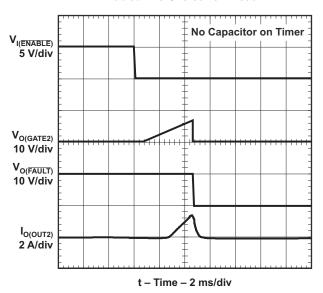



Figure 7. Channel 2 Overcurrent Response: Enabled Into Overcurrent Load

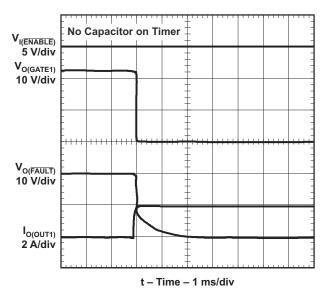



Figure 6. Channel 1 Overcurrent Response: an Overcurrent Load Plugged Into the Enabled Board

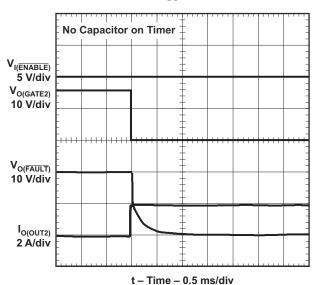



Figure 8. Channel 2 Overcurrent Response: an Overcurrent Load Plugged Into the Enabled Board



## PARAMETER MEASUREMENT INFORMATION (continued)

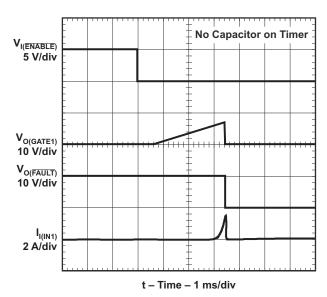



Figure 9. Channel 1 - Enabled Into Short Circuit

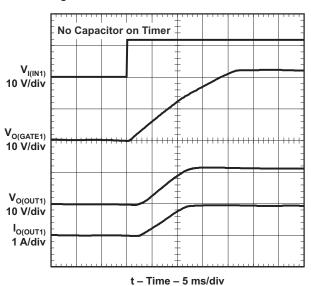



Figure 11. Channel 1 - Hot Plug

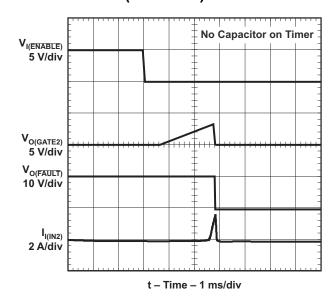



Figure 10. Channel 1 - Enabled Into Short Circuit

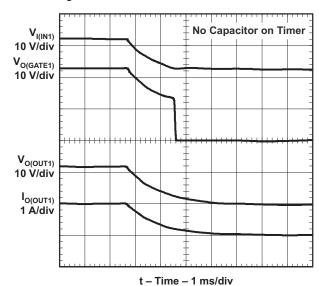



Figure 12. Channel 1 - Hot Removal



## PARAMETER MEASUREMENT INFORMATION (continued)

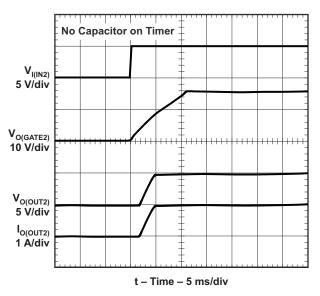
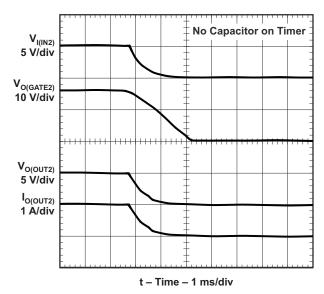
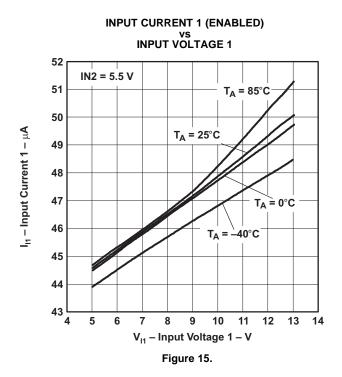
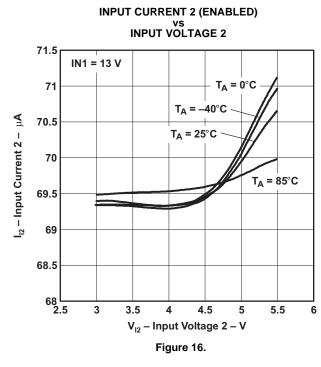
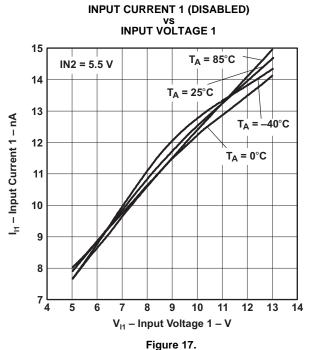
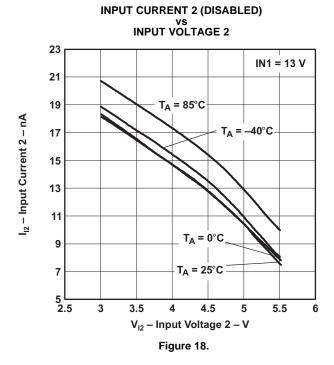



Figure 13. Channel 2 - Hot Plug

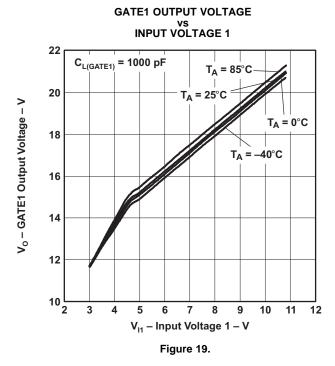


Figure 14. Channel 2 - Hot Removal




## **TYPICAL CHARACTERISTICS**










GATE1 VOLTAGE RISE TIME VS GATE1 LOAD CAPACITANCE



## **TYPICAL CHARACTERISTICS (continued)**



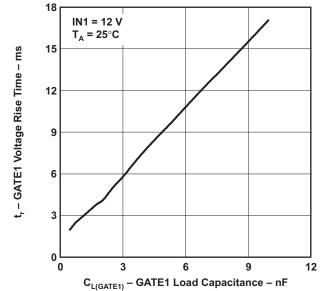
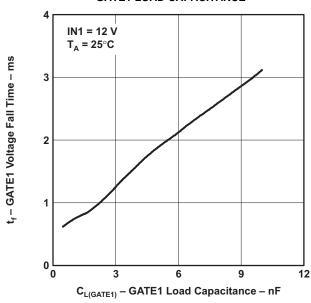




Figure 20.





**GATE1 OUTPUT CURRENT** vs GATE1 VOLTAGE 15 14.5  $I_{o}$  – GATE1 Output Current –  $\mu$ A 14  $T_A = -40^{\circ}C$  $T_A = 85^{\circ}C$ 13.5  $T_A = 25^{\circ}C$  $T_A = 0^{\circ}C$ 13 12.5 12 11.5 IN1 = 13 V 15 16 17 18 19 20 21 V - GATE1 Voltage - V

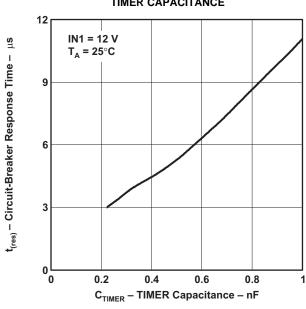
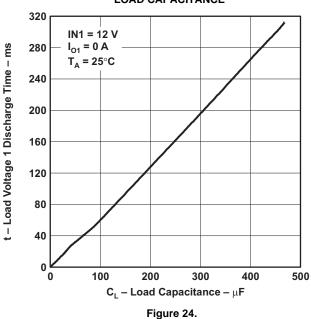

Figure 21.

Figure 22.




## **TYPICAL CHARACTERISTICS (continued)**





## LOAD VOLTAGE 1 DISCHARGE TIME VS LOAD CAPACITANCE



#### Figure 23.

UVLO START AND STOP THRESHOLDS
vs
TEMPERATURE

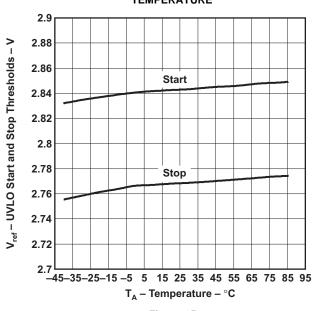



Figure 25.

PWRGDx INPUT THRESHOLD vs TEMPERATURE

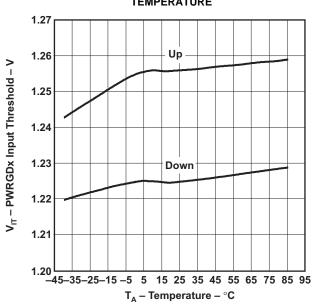



Figure 26.



#### **APPLICATION INFORMATION**

#### TYPICAL APPLICATION DIAGRAM

This diagram shows a typical dual hot-swap application. The pullup resistors at PWRGD1, PWRGD2 and  $\overline{\text{FAULT}}$  should be relatively large (e.g., 100 k $\Omega$ ) to reduce power loss unless they are required to drive a large load.

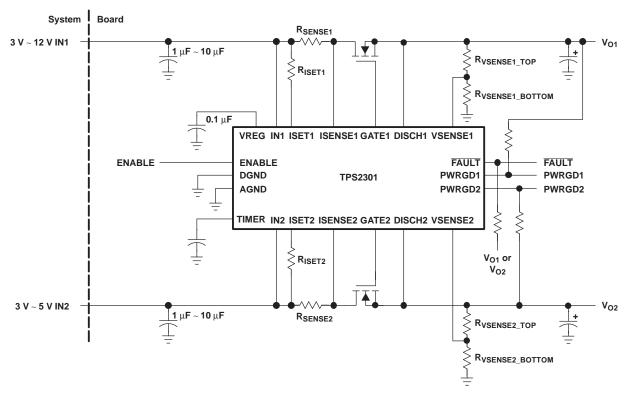



Figure 27. Typical Dual Hot-Swap Application

### **INPUT CAPACITOR**

A  $0.1-\mu F$  ceramic capacitor in parallel with a  $1-\mu F$  ceramic capacitor should be placed on the input power terminals near the connector on the hot-plug board to help stabilize the voltage rails on the cards. The TPS2300/01 does not need to be mounted near the connector or these input capacitors. For applications with more severe power environments, a  $2.2-\mu F$  or higher ceramic capacitor is recommended near the input terminals of the hot-plug board. A bypass capacitor for IN1 and for IN2 should be placed close to the device.

#### **OUTPUT CAPACITOR**

A 0.1- $\mu$ F ceramic capacitor is recommended per load on the TPS2300/01; these capacitors should be placed close to the external FETs and to TPS2300/01. A larger bulk capacitor is also recommended on the load. The value of the bulk capacitor should be selected based on the power requirements and the transients generated by the application.

#### **EXTERNAL FET**

To deliver power from the input sources to the loads, each channel needs an external N-channel MOSFET. A few widely used MOSFETs are shown in Table 3. But many other MOSFETs in the market can also be used with TPS23xx in hot-swap systems.



## **APPLICATION INFORMATION (continued)**

#### Table 3. Some Available N-Channel MOSFETs

| CURRENT RANGE (A) | PART NUMBER  | DESCRIPTION                                               | MANUFACTURER            |
|-------------------|--------------|-----------------------------------------------------------|-------------------------|
|                   | IRF7601      | N-channel, $r_{DS(on)} = 0.035 \Omega$ , 4.6 A, Micro-8   | International Rectifier |
| 0 to 2            | MTSF3N03HDR2 | N-channel, $r_{DS(on)} = 0.040 \Omega$ , 4.6 A, Micro-8   | ON Semiconductor        |
| 0 10 2            | IRF7101      | Dual N-channel, $r_{DS(on)} = 0.1 \Omega$ , 2.3 A, SO-8   | International Rectifier |
|                   | MMSF5N02HDR2 | Dual N-channel, $r_{DS(on)} = 0.04 \Omega$ , 5 A, SO-8    | ON Semiconductor        |
|                   | IRF7401      | N-channel, $r_{DS(on)} = 0.022 \Omega$ , 7 A, SO-8        | International Rectifier |
| 2 to 5            | MMSF5N02HDR2 | N-channel, $r_{DS(on)} = 0.025 \Omega$ , 5 A, SO-8        | ON Semiconductor        |
| 2 10 5            | IRF7313      | Dual N-channel, $r_{DS(on)} = 0.029 \Omega$ , 5.2 A, SO-8 | International Rectifier |
|                   | SI4410       | N-channel, $r_{DS(on)} = 0.020 \Omega$ , 8 A, SO-8        | Vishay Dale             |
| 5 to 10           | IRLR3103     | N-channel, r <sub>DS(on)</sub> = 0.019 Ω, 29 A, d-Pak     | International Rectifier |
| 5 10 10           | IRLR2703     | N-channel, $r_{DS(on)} = 0.045 \Omega$ , 14 A, d-Pak      | International Rectifier |

#### **TIMER**

For most applications, a minimum capacitance of 50 pF is recommended to prevent false triggering. This capacitor should be connected between TIMER and ground. The presence of an overcurrent condition on either channel of the TPS2300/01 causes a 50-µA current source to begin charging this capacitor. If the overcurrent condition persists until the capacitor has been charged to approximately 0.5 V, the TPS2300/01 latches off the offending channels and pulls the FAULT pin low. The timer capacitor can be made as large as desired to provide additional time delay before registering a fault condition. The time delay is approximately:

$$dt(sec) = C_{TIMER}(F) \times 10,000(\Omega).$$

## **OUTPUT-VOLTAGE SLEW-RATE CONTROL**

When enabled, the TPS2300/01 controllers supply the gates of each external MOSFET transistor with a current of approximately 15  $\mu$ A. The slew rate of the MOSFET source voltage is thus limited by the gate-to-drain capacitance  $C_{ad}$  of the external MOSFET capacitor to a value approximating:

$$\frac{\text{dV}_{\text{S}}}{\text{dt}} = \frac{15 \,\mu\text{A}}{\text{C}_{\text{gd}}} \tag{1}$$

If a slower slew rate is desired, an additional capacitance can be connected between the gate of the external MOSFET and ground.

#### **VREG CAPACITOR**

The internal voltage regulator connected to VREG requires an external capacitor to ensure stability. A  $0.1-\mu F$  or  $0.22-\mu F$  ceramic capacitor is recommended.

#### **GATE DRIVE CIRCUITRY**

The TPS2300/01 includes four separate features associated with each gate-drive terminal:

- A charging current of approximately 15 μA is applied to enable the external MOSFET transistor. This current
  is generated by an internal charge pump that can develop a gate-to-source potential (referenced to DISCH1
  or DISCH2) of 9 V–12 V. DISCH1 and DISCH2 must be connected to the respective external MOSFET
  source terminals to ensure proper operation of this circuitry.
- A discharge current of approximately 75 μA is applied to disable the external MOSFET transistor. Once the transistor gate voltage has dropped below approximately 1.5 V, this current is disabled and the UVLO discharge driver is enabled instead. This feature allows the part to enter a low-current shutdown mode while ensuring that the gates of the external MOSFET transistors remain at a low voltage.
- During a UVLO condition, the gates of both MOSFET transistors are pulled down by internal PMOS transistors. These transistors continue to operate even if IN1 and IN2 are both at 0 V. This circuitry also helps hold the external MOSFET transistors off when power is suddenly applied to the system.



• During an overcurrent fault condition, the external MOSFET transistor that exhibited an overcurrent condition is rapidly turned off by an internal pulldown circuit capable of pulling in excess of 400 mA (at 4 V) from the pin. Once the gate has been pulled below approximately 1.5 V, this driver is disengaged and the UVLO driver is enabled instead. If one channel experiences an overcurrent condition and the other does not, then only the channel that is conducting excessive current is turned off rapidly. The other channel continues to operate normally.

#### SETTING THE CURRENT-LIMIT CIRCUIT-BREAKER THRESHOLD

Using channel 1 as an example, the current sensing resistor  $R_{ISENSE1}$  and the current limit setting resistor  $R_{ISET1}$  determine the current limit of the channel, and can be calculated by the following equation:

$$I_{LMT1} = \frac{R_{ISET1} \times 50 \times 10^{-6}}{R_{ISENSE1}}$$
(2)

Typically  $R_{ISENSE1}$  is usually very small (0.001 $\Omega$  to 0.1 $\Omega$ ). If the trace and solder-junction resistances between the junction of  $R_{ISENSE1}$  and ISENSE1 and the junction of  $R_{ISENSE1}$  are greater than 10% of the  $R_{ISENSE1}$  value, then these resistance values should be added to the  $R_{ISENSE1}$  value used in the calculation above.

The above information and calculation also apply to channel 2. Table 4 shows some of the current sense resistors available in the market.

| CURRENT RANGE<br>(A) | PART NUMBER        | DESCRIPTION                          | MANUFACTURER |
|----------------------|--------------------|--------------------------------------|--------------|
| 0 to 1               | WSL-1206, 0.05 1%  | 0.05 Ω, 0.25 W, 1% resistor          |              |
| 1 to 2               | WSL-1206, 0.025 1% | $0.025~\Omega,~0.25~W,~1\%~resistor$ |              |
| 2 to 4               | WSL-1206, 0.015 1% | 0.015 Ω, 0.25 W, 1% resistor         | Vieheu Dele  |
| 4 to 6               | WSL-2010, 0.010 1% | 0.010 Ω, 0.5 W, 1% resistor          | Vishay Dale  |
| 6 to 8               | WSL-2010, 0.007 1% | 0.007 Ω, 0.5 W, 1% resistor          |              |
| 8 to 10              | WSR-2, 0.005 1%    | 0.005 Ω, 0.5 W, 1% resistor          |              |

**Table 4. Some Current Sense Resistors** 

#### SETTING THE POWER-GOOD THRESHOLD VOLTAGE

The two feedback resistors  $R_{VSENSEx\_TOP}$  and  $R_{VSENSEx\_BOT}$  connected between  $V_{Ox}$  and ground form a resistor divider setting the voltage at the VSENSEx pins. VSENSE1 voltage equals:

$$V_{I(SENSE1)} = V_{O} \times R_{VSENSE1 BOT} / (R_{VSENSE1 TOP} + R_{VSENSE1 BOT})$$

This voltage is compared to an internal voltage reference (1.225 V  $\pm 2\%$ ) to determine whether the output voltage level is within a specified tolerance. For example, given a nominal output voltage at  $V_{O1}$ , and defining  $V_{O1\_min}$  as the minimum required output voltage, then the feedback resistors are defined by:

$$R_{VSENSE1\_TOP} = \frac{V_{O1\_min} - 1.225}{1.225} \times R_{VSENSE1\_BOT}$$
(3)

Start the process by selecting a large standard resistor value for  $R_{VSENSE1\_BOT}$  to reduce power loss. Then  $R_{VSENSE1\_TOP}$  can be calculated by inserting all of the known values into the equation above. When  $V_{O1}$  is lower than  $V_{O1\ min}$ , PWRGD1 is low as long as the controller is enabled.

## **UNDERVOLTAGE LOCKOUT (UVLO)**

The TPS2300/01 includes an undervoltage lockout (UVLO) feature that monitors the voltage present on the VREG pin. This feature disables both external MOSFETs if the voltage on VREG drops below 2.78 V (nominal) and re-enables normal operation when it rises above 2.85 V (nominal). Since VREG is fed from IN1 through a low-dropout voltage regulator, the voltage on VREG tracks the voltage on IN1 within 50 mV. While the undervoltage lockout is engaged, both GATE1 and GATE2 are held low by internal PMOS pulldown transistors, ensuring that the external MOSFET transistors remain off at all times, even if all power supplies have fallen to 0V.



#### SINGLE-CHANNEL OPERATION

Some applications may require only a single external MOS transistor. Such applications should use GATE1 and the associated circuitry (IN1, ISENSE1, ISET1, DISCH1). The IN2 pin should be grounded to disable the circuitry associated with the GATE2 pin. The VSENSE2 and PWRGD2 circuitry is unaffected by disabling GATE2, and may still be used if so desired.

#### POWER-UP CONTROL

The TPS2300/01 includes a 500 µs (nominal) start-up delay that ensures that internal circuitry has sufficient time to start before the device begins turning on the external MOSFETs. This delay is triggered only upon the rapid application of power to the circuit. If the power supply ramps up slowly, the undervoltage lockout circuitry provides adequate protection against undervoltage operation.

## **3-CHANNEL HOT-SWAP APPLICATION**

Some applications require hot-swap control of up to three voltage rails, but may not explicitly require the sensing of the status of the output power on all three of the voltage rails. One such application is device bay, where dv/dt control of 3.3 V, 5 V, and 12 V is required. By using channel 2 to drive both the 3.3-V and 5-V power rails and channel 1 to drive the 12-V power rail, as is shown below, TPS2300/01 can deliver three different voltages to three loads while monitoring the status of two of the loads.

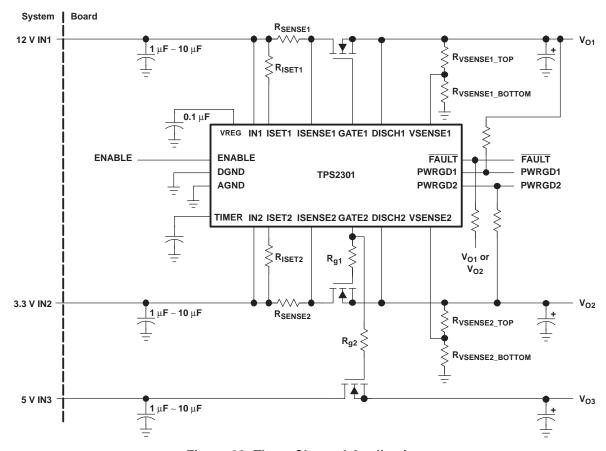



Figure 28. Three-Channel Application

Figure 29 shows ramp-up waveforms of the three output voltages.



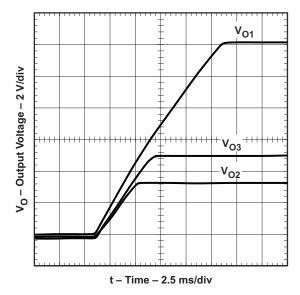



Figure 29.





.com 6-Dec-2006

#### PACKAGING INFORMATION

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------|
| TPS2300IPW       | ACTIVE                | TSSOP           | PW                 | 20   | 70             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TPS2300IPWG4     | ACTIVE                | TSSOP           | PW                 | 20   | 70             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TPS2300IPWR      | ACTIVE                | TSSOP           | PW                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TPS2300IPWRG4    | ACTIVE                | TSSOP           | PW                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TPS2301IPW       | ACTIVE                | TSSOP           | PW                 | 20   | 70             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TPS2301IPWG4     | ACTIVE                | TSSOP           | PW                 | 20   | 70             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TPS2301IPWR      | ACTIVE                | TSSOP           | PW                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TPS2301IPWRG4    | ACTIVE                | TSSOP           | PW                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

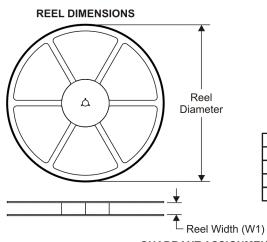
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

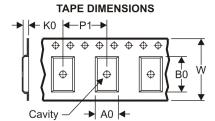
**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

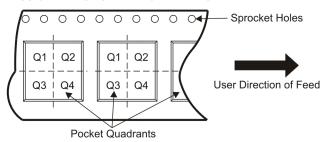
**Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

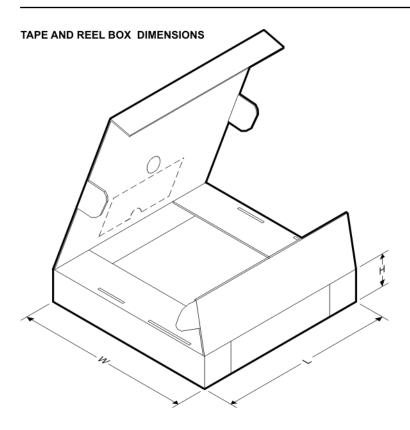



## TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |


## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

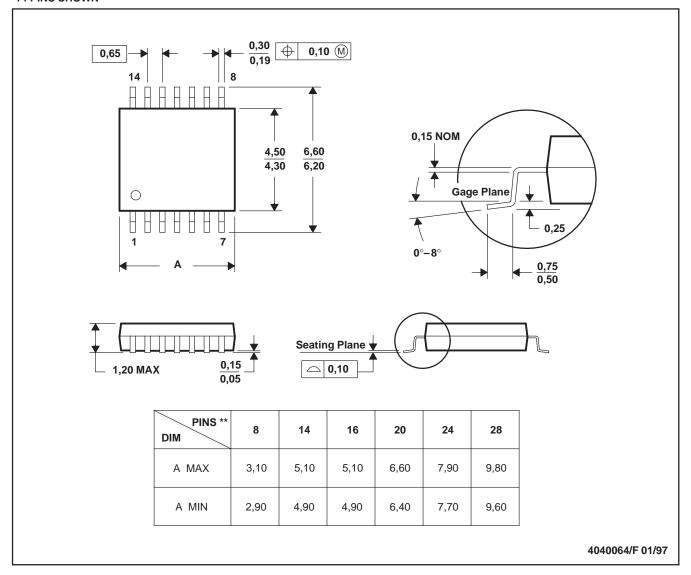


## \*All dimensions are nominal

| Device      | Package<br>Type | Package<br>Drawing |    |      | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------|-----------------|--------------------|----|------|--------------------------|--------------------------|---------|---------|---------|------------|-----------|------------------|
| TPS2300IPWR | TSSOP           | PW                 | 20 | 2000 | 330.0                    | 16.4                     | 6.95    | 7.1     | 1.6     | 8.0        | 16.0      | Q1               |
| TPS2301IPWR | TSSOP           | PW                 | 20 | 2000 | 330.0                    | 16.4                     | 6.95    | 7.1     | 1.6     | 8.0        | 16.0      | Q1               |






\*All dimensions are nominal

| Device      | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TPS2300IPWR | TSSOP        | PW              | 20   | 2000 | 346.0       | 346.0      | 33.0        |
| TPS2301IPWR | TSSOP        | PW              | 20   | 2000 | 346.0       | 346.0      | 33.0        |

## PW (R-PDSO-G\*\*)

### 14 PINS SHOWN

## PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

#### **Products Amplifiers** amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

| Applications       |                           |
|--------------------|---------------------------|
| Audio              | www.ti.com/audio          |
| Automotive         | www.ti.com/automotive     |
| Broadband          | www.ti.com/broadband      |
| Digital Control    | www.ti.com/digitalcontrol |
| Medical            | www.ti.com/medical        |
| Military           | www.ti.com/military       |
| Optical Networking | www.ti.com/opticalnetwork |
| Security           | www.ti.com/security       |
| Telephony          | www.ti.com/telephony      |
| Video & Imaging    | www.ti.com/video          |
| Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated