

TS258

Dual Operating Amplifier

SAD 8

DIP-8

W.F

Pin assignment: 1. Output 2. Input A (-) 3. Input A (+)

- 4. Gnd 5. Input B (+)
- 6. Input B (-)
- 7. Output B

Supply Voltage Range 3 V to 32V

Dual Channel Amplifier

General Description

Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, these dual operational amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 Volts or as high as 32 Volts with quiescent currents about one fifth of those associated with the LM741 (on a pet amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications.

The TS258 is equivalent to one half of TS224, and output voltage range also includes the negative supply voltage. The TS258 is offered in 8 pin SOP-8 and DIP-8 package.

Features

- Short circuit protected outputs
- True differential input stage
- ♦ Single supply operation: 3V to 32V
- Low input bias currents
- Internally compensated
- ♦ Common mode range extends to negative supply
- ♦ Single and split supply operation
- ♦ Similar performance to the popular MC1558

Block Diagram

Pin 4 = Gnd Pin 8 = Vcc

Ordering Information

Part No.	Operating Temp.	Package
TS258CD	40 .05 00	DIP-8
TS258CS	-40 ∼ +85 °C	SOP-8

Absolute Maximum Rating

Supply Voltage	Vcc, Vcc/Vee	+32 or ±16	Vdc
Differential Input Voltage (note 1)	V_{IDR}	32	Vdc
Input Common Mode Voltage Range (note 2)	V _{ICR}	-0.3 to 32	Vdc
Input Forward Current (note 3)	lif	50	mA
Output Short Circuit Duration	Isc	Continuous	mA
Power Dissipation @ Ta=25 °C	100	570	mW
Derate above 25 °C	1/Rθja	5.7	mW/°C
Operating Junction Temperature Range	T _J	0 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

NOTE:

- 1. Split Power Supplies.
- 2. For supply. Voltages less than 32V for the PJ358 the absolute maximum input voltage is equal to the supply voltage.
- 3. This input current will only exist when the voltage is negative at any of the input leads. Normal output states will reestablish when the input voltage returns to a voltage greater than -0.3V.

Electrical Characteristics

(V_{CC} = 5V, Ta=25 °C; unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Unit	
Input Offset Voltage						
V_{CC} = 5.0V to 30V, V_{IC} = 0V to Vcc -1.7 V, Vo= 1.4V, R_S = 0 Ω	Vio		2.0	5.0	mV	
$T_{LOW} \le Ta \le T_{HIGH}$				7.0		
Average Temperature Coefficient of Input Offset Voltage	△lio/△T		7.0		uV/°C	
Input Offset Current	lio		5.0	50		
$T_{LOW} \le Ta \le T_{HIGH}$				150	nA	
Average Temperature Coefficient of input Offset Current	△lio/△T		10		pA/°C	
Input Bias Current	I _{IB}		45	-250		
$T_{LOW} \le Ta \le T_{HIGH}$			50	-500	uA	
Input Common-Mode Voltage Range (Note1)	V _{ICR}					
V _{CC} = 30 V		0		28.3	V	
V _{CC} = 30 V, T _{LOW} ≤ Ta ≤T _{HIGH}		0		28		
Differential Input Voltage Range	V_{IDR}			V _{cc}	V	
Large Signal Open-Loop Voltage Gain	A _{VOL}					
$R_L = 2.0K$, $V_{CC} = 15V$, For Large V_O Swing,		25	100		V/mV	
$T_{LOW} \le Ta \le T_{HIGH}$		15				
Channel Separation			-120			
1.0 KHz to 20KHz					dB	
Common Mode Rejection Ratio	CMRR	65	70		i.D.	
$R_S \le 10 \text{ k}\Omega$					dB	
Power Supply Rejection Ratio	PSRR	65	100		dB	
Output Voltage Range, RL = $2K\Omega$	V _{OR}	0		3.3	V	
Output Voltage High Limit	V _{OH}					
V_{CC} = 30 V, R_L = 2 k Ω		26			V	
V_{CC} = 30 V, R_L = 10 k Ω		27	28			
Output Voltage Low Limit	V _{OL}		5.0	20	.,	
V_{CC} = 5.0 V, R_L = 10 k Ω					mV	
Output Source Current V _{ID} =+1.0V,V _{CC} =15V	I _{O+}	20	40		mA	
Output Sink Current	I _{O-}					
V _{ID} = -1.0 V, V _{CC} = 15 V		10	20		mA	
V _{ID} = -1.0 V, V _O = 200 mV		12	50		uA	
Output Short Circuit to Ground (Note 2)	I _{os}		40	60	mA	
Power Supply Current ,	I _{CC}					
$V_{CC} = 30 \text{ VV}_{O} = 0 \text{ V}, R_{L} = \infty$			1.5	3.0	mA	
$V_{CC} = 5.0 \text{ V}, V_{O} = 0 \text{ V}, R_{L} = \infty$			0.7	1.2		

Notes:

- 1. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is Vcc 17V, but either or both inputs can go to +32V.
- 2. Short circuits from the output to Vcc can cause excessive heating and eventual destruction. Destructive dissipation can recruit from simultaneous shorts on all amplifiers.

Circuit Description

The TS258 made using two internally compensated, two-stage operational amplifiers. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0pF) can be employed, thus saving chip area. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regulator, and which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

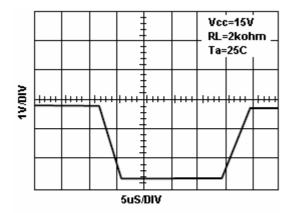


Figure 1. large signal voltage follower response

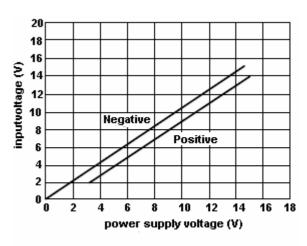


Figure 2. input voltage range

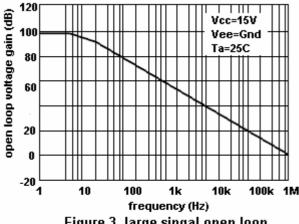


Figure 3. large singal open loop voltage gain

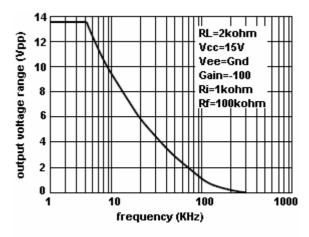


Figure 4. larger signal frequency response

Circuit Description

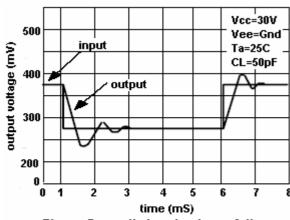


Figure 5. small signal voltage follower pulse response (noninverting)

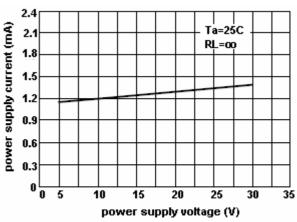


Figure 6. power supply current vs supply voltage

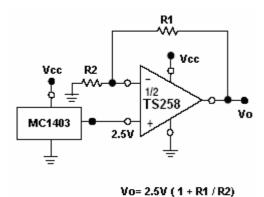


Figure 7. voltage reference

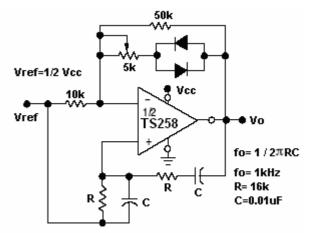
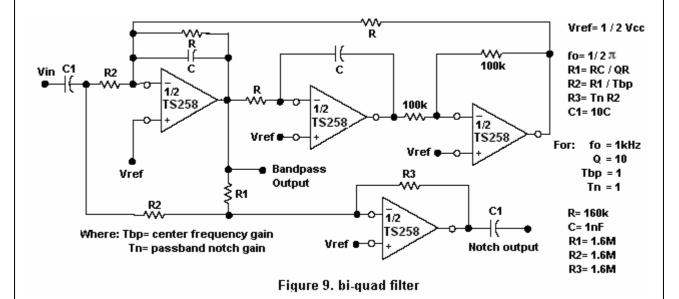



Figure 8. wien bridge oscillator

Electrical Characteristics Curve

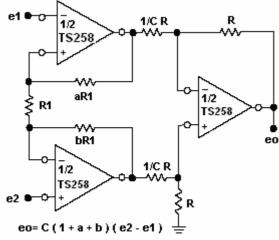
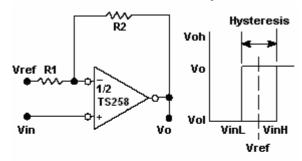



Figure 10. high impedance differential amplifier

VinL= R1 / (R1 + R2) * (Vol - Vref) + Vref VinH= R1 / (R1 + R2) * (Voh - Vref) + Vref H= R1 / (R1 + R2) * (Voh - Vol)

Figure 11. comparator with hysteresis

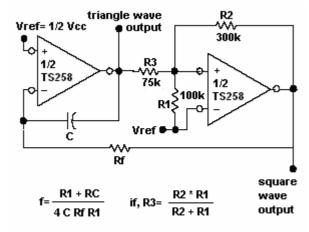
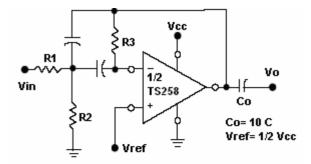
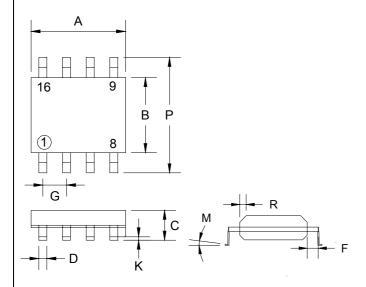



Figure 12. function generator

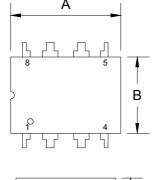
Given: fo= center frequency A(fo)= gain at center frequency

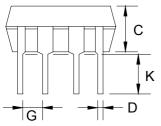
Choose value fo, C Then: R3= Q / π fo C R1= R3 / 2A(fo) R2= R1 * R2 / 4Q2 *R1 - R3

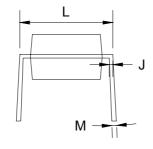

For less than 10% error from operational amplifier, Qo fo /BW < 0.1 Where fo and BW are expressed in Hz

If source impendance varies, filter may be preceded with Voltage follower buffer stabilize filter parameters

Figure 13. multiple feedback bandpass filter




SOP-8 Mechanical Drawing



	SOP-8 DIMENSION				
DIM	MILLIMETERS		INCHES		
DIIVI	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.196	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27 (typ)		0.05 (typ)		
K	0.10	0.25	0.004	0.009	
М	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

DIP-8 Mechanical Drawing

SOP-8 DIMENSION					
DIM	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
Α	9.07	9.32	0.357	0.367	
В	6.22	6.48	0.245	0.255	
С	3.18	4.45	0.125	0.135	
D	0.35	0.55	0.019	0.020	
G	2.54 (typ)		0.10	(typ)	
٦	0.29	0.31	0.011	0.012	
K	3.25	3.35	0.128	0.132	
L	7.75	8.00	0.305	0.315	
М	-	10°	-	10°	