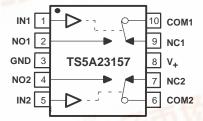


TS5A23157 10-Ω SPDT ANALOG SWITCH

SCDS165 - MAY 2004


DESCRIPTION

The TS5A23157 is a dual, single-pole, double-throw (SPDT) analog switch designed to operate from 1.65 V to 5.5 V. This device can handle both digital and analog signals. Signals up to 5.5 V (peak) can be transmitted in either direction.

APPLICATIONS

- Sample-and-Hold Circuit
- Battery-Powered Equipments
- Audio and Video Signal Routing
- Communication Circuits

DGS PACKAGE (TOP VIEW)

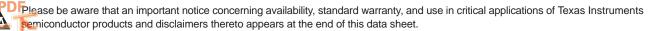
FUNCTION TABLE

INPUT IN	NC TO COM COM TO NC	NO TO COM COM TO NO
L	ON	OFF
Н	OFF	ON

FEATURES

- Specified Break-Before-Make Switching
- Low ON-State Resistance (10 Ω)
- Control Inputs Are 5-V Tolerant
- Low Charge Injection
- Excellent ON-Resistance Matching
- Low Total Harmonic Distortion
- 1.8-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

SUMMARY OF CHARACTERISTICS


 $(V_{+} = 5 \text{ V}; T_{A} = 25^{\circ}\text{C})$

CONFIGURATION	2:1 MULTIPLEXER/ DEMULTIPLEXER (2 × SPDT)
Number of channels	2
ron	10 Ω
Δr_{ON}	0.15 Ω
ron(flat)	4 Ω
tON/tOFF	5.7 ns/3.8 ns
^t BBM	0.5 ns
Charge injection	7 pC
Bandwidth	220 MHz
OFF isolation	-65 dB at 10 MHz
Crosstalk	-66 dB at 10 MHz
Total harmonic distortion	0.01%
ICOM(OFF)/INC(OFF)	±1 μA
Package option	10-pin DGS

ORDERING INFORMATION

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	VSSOP (MSOP-10) - DGS	Tape and reel	TS5A23157DGSR	JBR

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

TS5A23157 10-Ω SPDT ANALOG SWITCH

SCDS165 - MAY 2004

ABSOLUTE MAXIMUM RATINGS

(over operating free air temperature range unless otherwise noted)†

On-state switch current, I_{NC} , I_{NO} , I_{COM} (I_{NO} , I_{NO} , I_{COM} (I_{NO} , I_{NO} , I_{NO} , I_{NO}) I_{COM} (I_{NO} , I_{NO} Storage temperature range, T_{sta} –65°C to 150°C

ELECTRICAL CHARACTERISTICS FOR 5-V SUPPLY

 $(V_{+} = 4.5 \text{ V to } 5.5 \text{ V}; T_{A} = -40^{\circ}\text{C to } 85^{\circ}\text{C})$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST COND	TIONS	TA	٧+	MIN	TYP [†]	MAX	UNIT
ANALOG SWITCH						1			
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		٧+	٧
ON resistance	r _{on}	$I_{COM} = -30 \text{ mA},$	Switch ON, see Figure 10	Full	4.5 V			10	Ω
ON resistance match between channels	Δr_{on}	V_{NO} or $V_{NC} = 3.15 \text{ V}$, $I_{COM} = -30 \text{ mA}$,	Switch ON, see Figure 10	25°C	4.5 V		0.15		Ω
ON resistance flatness	ron(flat)	$0 \le V_{NO}$ or $V_{NC} \le V_+$, $COM = -30$ mA,	Switch ON, see Figure 10	25°C	4.5 V		4		Ω
NC, NO,	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch OFF,	25°C	5.5.7	-1	0.05	1	
OFF leakage current	INO(OFF)	$V_{COM} = 0$ to V_+ ,	see Figure 11	Full	5.5 V	-1		1	μА
NC, NO,	INC(ON),	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch ON,	25°C	V	-0.1		0.1	
ON leakage current	INO(ON)	V _{COM} = Open,	see Figure 11	Full	5.5 V	-1		1	μΑ
COM ON		V _{NC} or V _{NO} = Open,	Switch ON,	25°C	· ·	-0.1		0.1	
leakage current	ICOM(ON)	$V_{COM} = 0$ to V_+ ,	see Figure 11	Full	5.5 V	-1		1	μΑ
DIGITAL INPUTS (IN1, I	N2) (see Note	e 1)							
Input logic high	VIH			Full		V ₊ × 0.7			V
Input logic low	VIL			Full			V.	+×0.3	V
leaved bedresses as an			25°C	5.5.7	-1	0.05	1		
Input leakage current	I_{IH} , I_{IL} $V_{IN} = 5.5 \text{ V or } 0$			Full	5.5 V	-1		1	μΑ

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽¹⁾ All voltages are with respect to ground, unless otherwise specified.

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ This value is limited to 5.5 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

T_{TA} = 25°C (1) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications* of Slow or Floating CMOS Inputs, literature number SCBA004.

ELECTRICAL CHARACTERISTICS FOR 5-V SUPPLY (CONTINUED)

(V₊ = 4.5 V to 5.5 V; T_A = -40°C to 85°C) (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDIT	TIONS	T_A	٧+	MIN	TYP†	MAX	UNIT
DYNAMIC	1				1				
Turnon time	tON	V_{NC} = GND and V_{NO} = V_{+} or V_{NC} = V_{+} and V_{NO} = GND,	$C_L = 50 pF$,	Full	4.5 V to 5.5 V	1.7		5.7	ns
Turnoff time	tOFF	$V_{NC} = GND \text{ and } V_{NO} = V_{+}$ or $V_{NC} = V_{+} \text{ and } V_{NO} = GND,$	$C_{L} = 50 \text{ pF},$	Full	4.5 V to 5.5 V	0.8		3.8	ns
Break-before-make time	^t BBM	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \Omega,$	C _L = 35 pF, see Figure 14	Full	4.5 V to 5.5 V	0.5			ns
Charge injection	QC	$R_L = 1 \text{ M}\Omega,$ $C_L = 0.1 \text{ nF},$	see Figure 18	25°C	5 V		7		рС
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch OFF, see Figure 12	25°C	5 V		5.5		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch ON, see Figure 12	25°C	5 V		17.5		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_{+}$ or GND,	Switch ON, see Figure 12	25°C	5 V		17.5		pF
Digital input capacitance	C _{IN}	$V_{IN} = V_{+}$ or GND,	see Figure 12	25°C	5 V		2.8		pF
Bandwidth	BW	$R_L = 50 \Omega$,	Switch ON, see Figure 15	25°C	4.5 V		220		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, $f = 10 MHz$,	Switch OFF, see Figure 16	25°C	4.5 V		-65		dB
Crosstalk	XTALK	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, see Figure 17	25°C	4.5 V		-66		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 600 Hz to 20 kHz, see Figure 19	25°C	4.5 V		0.01		%
SUPPLY		,							
Positive supply current	1+	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	25°C Full	5.5 V			1 10	μА
Change in supply current	ΔΙ+	$V_{IN} = V_{+} - 0.6 V$		Full	5.5 V			500	μΑ

[†] T_A = 25°C

TS5A23157 10- Ω SPDT ANALOG SWITCH

INSTRUMENTS www.ti.com

SCDS165 - MAY 2004

ELECTRICAL CHARACTERISTICS FOR 3.3-V SUPPLY

 $(V_{+} = 3 \text{ V to } 3.6 \text{ V}; T_{\Delta} = -40 ^{\circ}\text{C to } 85 ^{\circ}\text{C})$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST COND	ITIONS	T_A	٧+	MIN	TYP [†]	MAX	UNIT
ANALOG SWITCH	II.				1				
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		٧+	V
ON resistance	ron	$0 \le V_{NO}$ or $V_{NC} \le V_+$, $I_{COM} = -24$ mA,	Switch ON, see Figure 10	Full	3 V			18	Ω
ON-resistance match between channels	Δr _{on}	V _{NO} or V _{NC} = 2.1 V, I _{COM} = -24 mA,	Switch ON, see Figure 10	25°C	3 V		0.2		Ω
ON-resistance flatness	ron(flat)	$0 \le V_{NO}$ or $V_{NC} \le V_+$, $I_{COM} = -24$ mA,	Switch ON, see Figure 12	25°C	3 V		9		Ω
NC, NO OFF leakage current	INC(OFF), INO(OFF)	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = 0$ to V_+ ,	Switch OFF, see Figure 11	25°C Full	3.6 V	-1 -1	0.05	1	μΑ
NC, NO ON leakage current	INC(ON), INO(ON)	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = Open$,	Switch ON, see Figure 11	25°C Full	3.6 V	-0.1 -1		0.1	μΑ
COM ON leakage current	ICOM(ON)	V_{NC} or V_{NO} = Open, V_{COM} = 0 to V_{+} ,	Switch ON, see Figure 11	25°C Full	3.6 V	-0.1 -1		0.1	μΑ
DIGITAL INPUTS (IN	1, IN2) (see I	Note 1)							
Input logic high	VIH			Full		$V_{+} \times 0.7$	7		V
Input logic low	VIL			Full			V	+×0.3	V
Input leakage current	I _{IH} , I _{IL}	V _{IN} = 5.5 V or 0		25°C Full	3.6 V	-1 -1	0.05	1	μΑ
DYNAMIC									
Turnon time	tON	V_{NC} = GND and V_{NO} = V_{+} or V_{NC} = V_{+} and V_{NO} = GND,	$C_L = 50 pF$,	Full	3 V to 3.6 V	2.5		7.6	ns
Turnoff time	tOFF	V_{NC} = GND and V_{NO} = V_{+} or V_{NC} = V_{+} and V_{NO} = GND,	$C_L = 50 \text{ pF},$	Full	3 V to 3.6 V	1.5		5.3	ns
Break-before-make time	^t BBM	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \Omega,$	C _L = 35 pF, see Figure 14	Full	3 V to 3.6 V	0.5			ns
Charge injection	QC	$R_L = 1 M\Omega$, $C_L = 0.1 nF$,	see Figure 18	25°C	3.3 V		3		рС
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	see Figure 15	25°C	3 V		220		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, see Figure 16	25°C	3 V		-65		dB
Crosstalk	XTALK	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, see Figure 17	25°C	3 V		-66		dB
Total harmonic distortion	THD	$R_L = 600 \Omega$, $C_L = 50 pF$,	f = 600 Hz to 20 kHz, see Figure 19	25°C	3 V		0.015		%
SUPPLY	11	ı			1	1			
Positive supply current	I ₊	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	25°C Full	3.6 V			1	μΑ
Change in supply current	ΔΙ+	V _{IN} = V ₊ - 0.6 V		Full	3.6 V			500	μА
,	1	1		1	L	1			

[†] T_A = 25°C (1) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications* of Slow or Floating CMOS Inputs, literature number SCBA004.

ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY

 $(V_{\perp} = 2.3 \text{ V to } 2.7 \text{ V}; T_{\Delta} = -40^{\circ}\text{C to } 85^{\circ}\text{C})$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDIT	TIONS	TA	٧+	MIN	TYP [†]	MAX	UNIT
ANALOG SWITCH	1			1	l	1			
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		٧+	V
ON resistance	ron	$0 \le V_{NO}$ or $V_{NC} \le V_+$, $I_{COM} = -8 \text{ mA}$,	Switch ON, see Figure 10	Full	2.3 V			45	Ω
ON-resistance match between channels	Δr_{on}	V_{NO} or $V_{NC} = 1.6 \text{ V}$, $I_{COM} = -8 \text{ mA}$,	Switch ON, see Figure 10	25°C	2.3 V		0.5		Ω
ON-resistance flatness	ron(flat)	$0 \le V_{NO}$ or $V_{NC} \le V_+$, $I_{COM} = -8$ mA,	Switch ON, see Figure 10	25°C	2.3 V		27		Ω
NC, NO OFF leakage current	INC(OFF), INO(OFF)	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = 0$ to V_+ ,	Switch OFF, see Figure 11	25°C Full	2.7 V	-1 -1	0.05	1	μΑ
NC, NO ON leakage current	INC(ON), INO(ON)	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = Open$,	Switch ON, see Figure 11	25°C Full	2.7 V	-0.1 -1		0.1	μА
COM ON leakage current	ICOM(ON)	V_{NC} or V_{NO} = Open, V_{COM} = 0 to V_{+} ,	Switch ON, see Figure 11	25°C Full	2.7 V	-0.1 -1		0.1	μА
DIGITAL INPUTS (IN	1, IN2) (see I	Note 1)			II.				
Input logic high	V_{IH}			Full		V ₊ × 0.7			V
Input logic low	V _{IL}			Full			V	+×0.3	V
Input leakage current	I _{IH} , I _{IL}	V _{IN} = 5.5 V or 0		25°C Full	2.7 V	-1 -1	0.05	1	μΑ
DYNAMIC	1			1					
Turnon time	ton	V_{NC} = GND and V_{NO} = V_{+} or V_{NC} = V_{+} and V_{NO} = GND,	$C_L = 50 pF$,	Full	2.3 V to 2.7 V	3.5		14	ns
Turnoff time	^t OFF	V_{NC} = GND and V_{NO} = V_{+} or V_{NC} = V_{+} and V_{NO} = GND,	$C_L = 50 pF$,	Full	2.3 V to 2.7 V	2		7.5	ns
Break-before- make time	^t BBM	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \Omega,$	C _L = 35 pF, see Figure 14	Full	2.3 V to 2.7 V	0.5			ns
Bandwidth	BW	R _L = 50 Ω,	Switch ON, see Figure 15	25°C	2.3 V		220		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, see Figure 16	25°C	2.3 V		-65		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, see Figure 17	25°C	2.3 V		-66		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 600 Hz to 20 kHz, see Figure 19	25°C	2.3 V		0.025		%
SUPPLY									
Positive supply current	I ₊	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	25°C Full	2.7 V			10	μΑ
Change in supply current	Δl_{+}	V _{IN} = V ₊ - 0.6 V		Full	2.7 V			500	μА

[†] TA = 25°C (1) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications* of Slow or Floating CMOS Inputs, literature number SCBA004.

TS5A23157 10- Ω SPDT ANALOG SWITCH

TEXAS INSTRUMENTS www.ti.com

SCDS165 - MAY 2004

ELECTRICAL CHARACTERISTICS FOR 1.8-V SUPPLY

(V₊ = 1.65 V to 1.95 V; T_A = -40°C to 85 °C) (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITI	ONS	T_A	٧+	MIN	TYP†	MAX	UNIT
ANALOG SWITCH	1			"	1.	1			
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		V+	V
ON resistance	r _{on}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -4 \text{ mA},$	Switch ON, see Figure 10	Full	1.65 V			140	Ω
ON-resistance match between channels	Δr_{on}	V_{NO} or $V_{NC} = 1.15 V$, $I_{COM} = -4 \text{ mA}$,	Switch ON, see Figure 10	25°C	1.65 V		1		Ω
ON-resistance flatness	ron(flat)	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -4 \text{ mA},$	Switch ON, see Figure 10	25°C	1.65 V		110		Ω
NC, NO OFF leakage current	INC(OFF), INO(OFF)	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = 0$ to V_+ ,	Switch OFF, see Figure 11	25°C Full	1.95 V	-1 -1	0.05	1	μА
NC, NO ON leakage current	INC(ON), INO(ON)	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = Open$,	Switch ON, see Figure 11	25°C Full	1.95 V	-0.1 -1		0.1	μА
COM ON leakage current	I _{COM(ON)}	VNC or VNO = Open.	Switch ON, see Figure 11	25°C Full	1.95 V	-0.1 -1		0.1	μΑ
DIGITAL INPUTS (IN1, IN	I2) (see Note			1					
Input logic high	VIH	-,		Full		V ₊ × 0.7	'5		V
Input logic low	V _{IL}			Full				× 0.25	V
Input leakage current	I _{IH} , I _{IL}	V _{IN} = 5.5 V or 0		25°C Full	1.95 V	-1 -1	0.05	1	μА
DYNAMIC									
Turnon time	tON	V_{NC} = GND and V_{NO} = V_{+} or V_{NC} = V_{+} and V_{NO} = GND,	$C_L = 50 pF$,	Full	1.65 V to 1.95 V	7		24	ns
Turnoff time	tOFF	V_{NC} = GND and V_{NO} = V_{+} or V_{NC} = V_{+} and V_{NO} = GND,	$C_{L} = 50 \text{ pF},$	Full	1.65 V to 1.95 V	3		13	ns
Break-before- make time	tBBM	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \Omega,$	C _L = 35 pF, see Figure 14	Full	1.65 V to 1.95 V	0.5			ns
Bandwidth	BW	R _L = 50 Ω,	Switch ON, see Figure 15	25°C	1.8 V		220		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, see Figure 16	25°C	1.8 V		-60		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, see Figure 17	25°C	1.8 V		-66		dB
Total harmonic distortion	THD	$R_L = 600 \text{ k}\Omega,$ $C_L = 50 \text{ pF},$	f = 600 Hz to 20 kHz, see Figure 19	25°C	1.8 V		0.015		%
SUPPLY									
Positive supply current	1+	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	25°C Full	1.95 V			1 10	μА
Change in supply current	Δl_{+}	V _{IN} = V ₊ - 0.6 V		Full	1.95 V			500	μΑ

 $^{^{\}dagger}T_{A} = 25^{\circ}C$

⁽¹⁾ All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

TYPICAL PERFORMANCE

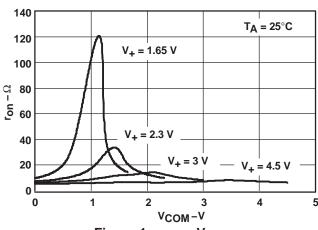


Figure 1. ron vs V_{COM}

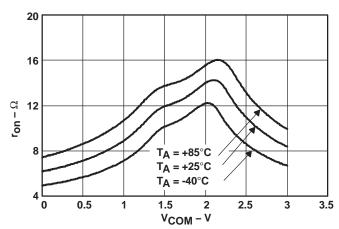


Figure 2. r_{on} vs V_{COM} ($V_{+} = 3 V$)

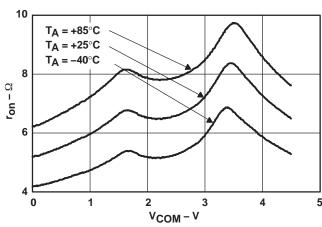


Figure 3. r_{on} vs V_{COM} ($V_{+} = 5 V$)

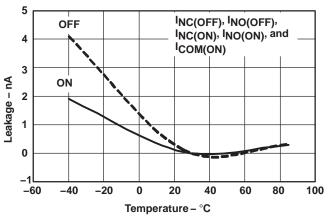


Figure 4. Leakage Current vs Temperature $(V_+ = 5.5 \text{ V})$

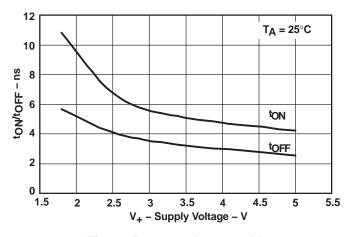


Figure 5. toN and toFF vs V+

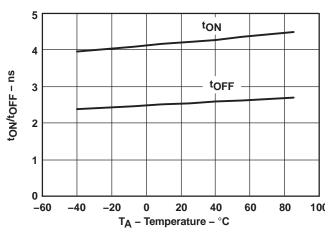


Figure 6. t_{ON} and t_{OFF} vs Temperature (V₊ = 5 V)

TYPICAL PERFORMANCE (continued)

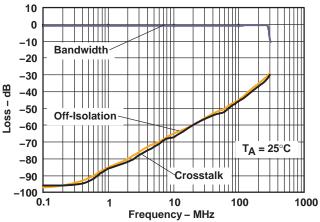


Figure 7. Frequency Response $(V_+ = 3 V)$

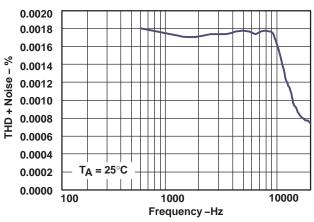


Figure 8. Total Harmonic Distortion (THD) vs Frequency (V₊ = 3 V)

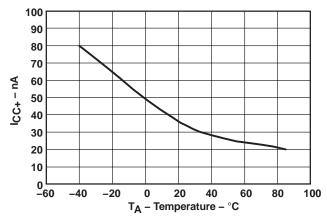


Figure 9. Power-Supply Current vs Temperature $(V_+ = 5 V)$

PIN DESCRIPTION

PIN NUMBER	NAME	DESCRIPTION
1	IN1	Digital control pin to connect the COM terminal to the NO or NC terminals
2	NO1	Normally-open terminal
3	GND	Digital ground
4	NO2	Normally-open terminal
5	IN2	Digital control pin to connect the COM terminal to the NO or NC terminals
6	COM2	Common terminal
7	NC2	Normally-closed terminal
8	V ₊	Power supply
9	NC1	Normally-closed terminal
10	COM1	Common terminal

PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION
Vсом	Voltage at the COM pin
VNC	Voltage at the NC pin
V _{NO}	Voltage at the NO pin
r _{on}	Resistance between COM and NC or COM and NO ports when the channel is ON
$\Delta r_{\sf ON}$	Difference of ron between channels
ron(flat)	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
INC(OFF)	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions.
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions
INC(ON)	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) being open
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) being open
ICOM(ON)	Leakage current measured at the COM port, with the corresponding channel (NO to COM or NC to COM) in the ON state and the output (NC or NO) being open
VIH	Minimum input voltage for logic high for the control input (IN)
V _{IL}	Minimum input voltage for logic low for the control input (IN)
VIN	Voltage at the IN pin
I _{IH} , I _{IL}	Leakage current measured at the IN pin
tON	Turnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM/NC/NO) signal when the switch is turning ON.
^t OFF	Turnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM/NC/NO) signal when the switch is turning OFF.
^t BBM	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.
QC	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulombs (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_O$, C_L is the load capacitance and ΔV_O is the change in analog output voltage.

TS5A23157 $10-\Omega$ SPDT ANALOG SWITCH

TEXAS INSTRUMENTS www.ti.com

SCDS165 - MAY 2004

PARAMETER DESCRIPTION (continued)

SYMBOL	DESCRIPTION
C _{NC} (OFF)	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{NC} (ON)	Capacitance at the NC port when the corresponding channel (NC to COM) is ON
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _{COM} (ON)	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON
C _{IN}	Capacitance of the IN input
O _{ISO}	OFF isolation of the switch is a measurement of off-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. OFF isolation, O _{ISO} = 20 LOG (V _{NC} /V _{COM}) dB, V _{COM} is the input and V _{NC} is the output.
XTALK	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured at a specific frequency and in dB. Crosstalk, X _{TALK} = 20 log (V _{NC1} /V _{NO1}), V _{NO1} is the input and V _{NC1} is the output.
BW	Bandwidth of the switch. This is the frequency where the gain of an ON channel is -3 dB below the dc gain. Gain is measured from the equation, 20 log (V_{NC}/V_{COM}) dB, where V_{NC} is the output and V_{COM} is the input.
I ₊	Static power-supply current with the control (IN) pin at V ₊ or GND
Δl_{+}	This is the increase in I ₊ for each control (IN) input that is at the specified voltage rather than at V ₊ or GND.

PARAMETER MEASUREMENT INFORMATION

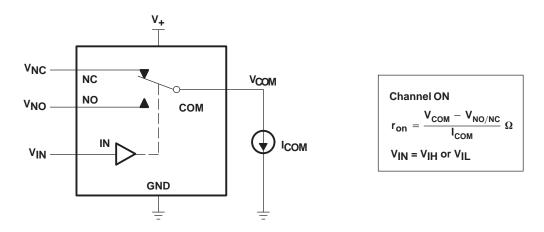


Figure 10. ON-State Resistance (ron)

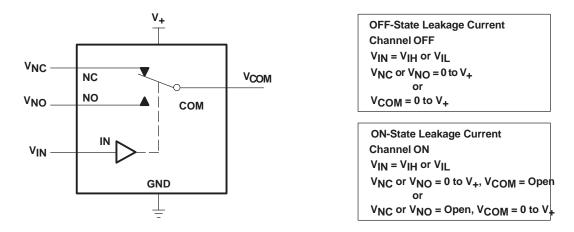


Figure 11. ON- and OFF-State Leakage Current ($I_{COM(ON)}$, $I_{NC(OFF)}$, $I_{NO(OFF)}$, $I_{NO(ON)}$)

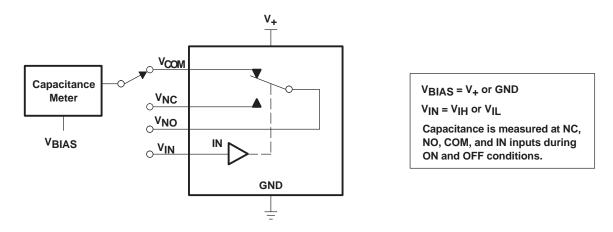


Figure 12. Capacitance (C_{IN}, C_{COM(ON)}, C_{NC(OFF)}, C_{NO(OFF)}, C_{NC(ON)}, C_{NO(ON)})

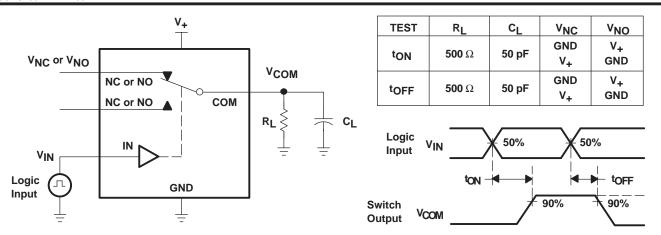


Figure 13. Turnon (ton) and Turnoff(toff) Time

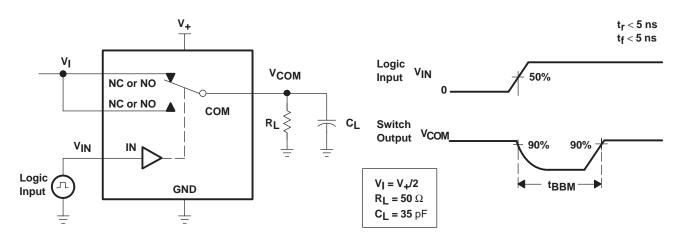


Figure 14. Break-Before-Make (t_{BBM}) Time

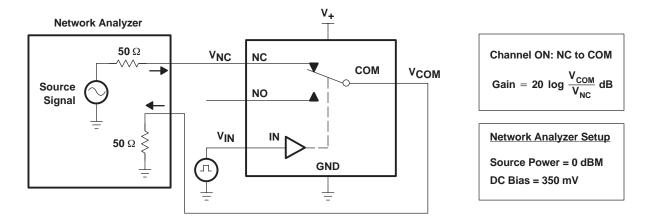


Figure 15. Frequency Response (BW)

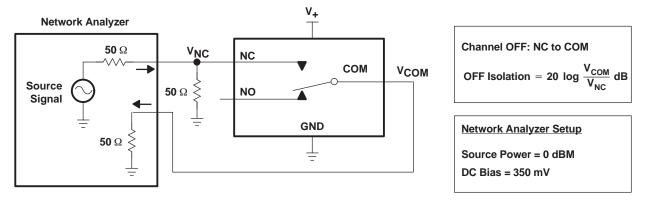


Figure 16. OFF Isolation (O_{ISO})

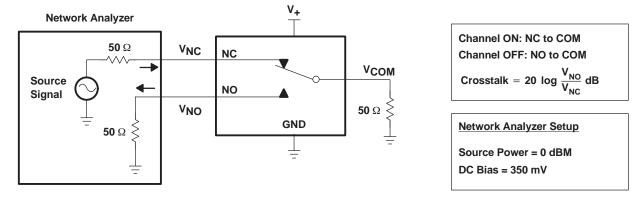


Figure 17. Crosstalk (X_{TALK})

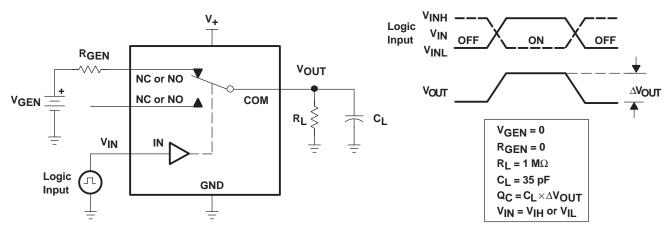


Figure 18. Charge Injection (Q_C)

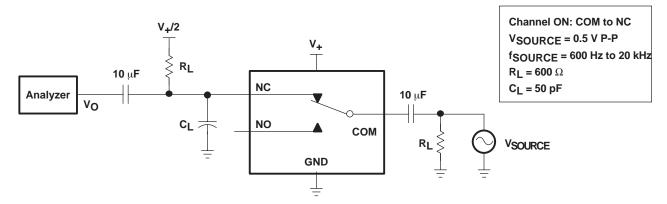
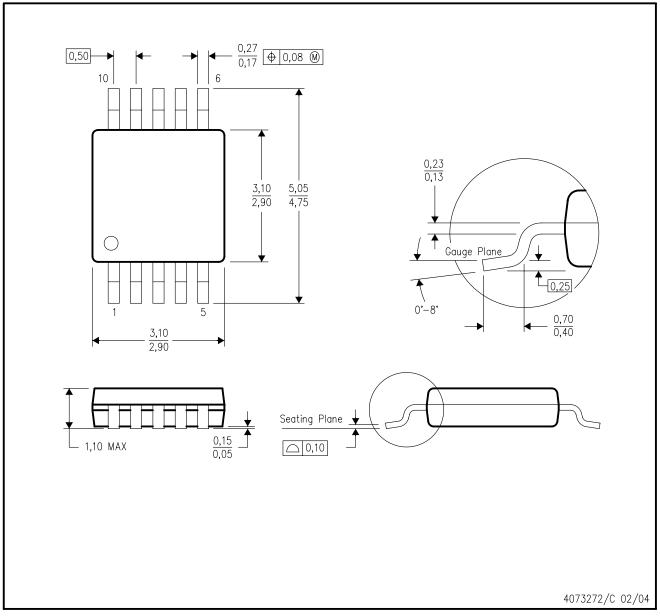



Figure 19. Total Harmonic Distortion (THD)

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation BA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265