查询TS5V330DR供应商

捷多邦,专业PCB打样工厂,24小时加急出货 TS5V330 QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON-STATE RESISTANCE SCDS164A - MAY 2004 - REVISED MAY 2004

Low Differential Gain and Phase D, DBQ, OR PW PACKAGE (TOP VIEW) $(D_{G} = 0.64\%, D_{P} = 0.1 \text{ Degrees Typ})$ Wide Bandwidth (BW = 300 MHz Min) I Vcc IN Low Crosstalk (X_{TALK} = -63 dB Typ) S1AL 15 EN Low Power Consumption S2A 14 S1D 3 $(I_{CC} = 3 \mu A Max)$ DAL 13 S2D **Bidirectional Data Flow, With Near-Zero** S1_B 5 12 DD S2_B [**Propagation Delay** 6 11 S1_C DBL 10 S2_C 7 Low ON-State Resistance ($r_{on} = 3 \Omega$ Typ) 9 🛛 D_C GND 8 V_{CC} Operating Range From 4.5 V to 5.5 V Ioff Supports Partial-Power-Down Mode Operation **RGY PACKAGE** (TOP VIEW) **Data and Control Inputs Provide** VCC Undershoot Clamp Diode Control Inputs Can Be Driven by TTL or 16 5-V/3.3-V CMOS Outputs S1_A EN 15 2 Latch-Up Performance Exceeds 100 mA Per S2_A 3 14 S2_D JESD 78, Class II D_A S2_D 13 4 ESD Performance Tested Per JESD 22 S1_B 5 12 DD – 2000-V Human-Body Model S2_B 6 11 S1_C (A114-B, Class II) D_B S2_C 10

- 1000-V Charged-Device Model (C101)
- Suitable for Both RGB and Composite-Video Switching

description/ordering information

The TI TS5V330 video switch is a 4-bit 1-of-2 multiplexer/demultiplexer with a single switch-enable (EN) input. When EN is low, the switch is enabled and the D port is connected to the S port. When EN is high, the switch is disabled and the high-impedance state exists between the D and S ports. The select (IN) input controls the data path of the multiplexer/demultiplexer.

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING		
–40°C to 85°C	QFN – RGY	Tape and reel	TS5V330RGYR	TE330		
		Tube	TS5V330D	TS5V330		
	SOIC – D	Tape and reel	TS5V330DR			
	SSOP (QSOP) – DBQ	Tape and reel	TS5V330DBQR	TE330		
	TOOOD	Tube	TS5V330PW	TEOOO		
	TSSOP – PW	Tape and reel	TS5V330PWR	TE330		

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

9 00

GND

description/ordering information (continued)

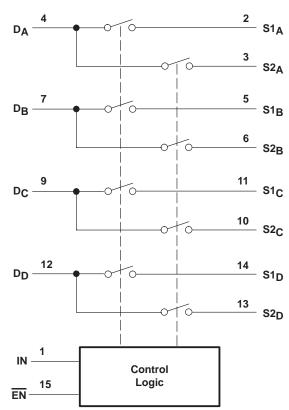
Low differential gain and phase make this switch ideal for composite and RGB video applications. This device has wide bandwidth and low crosstalk, making it suitable for high-frequency applications as well.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} feature ensures that damaging current will not backflow through the device when it is powered down. This switch maintains isolation during power off.

To ensure the high-impedance state during power up or power down, \overline{EN} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

INPUTS		INPUT/OUTPUT	FUNCTION			
EN	IN	D	FUNCTION			
L	L	S1	D port = S1 port			
L	Н	S2	D port = S2 port			
Н	Х	Z	Disconnect			

FUNCTION TABLE


PIN DESCRIPTIONS

PIN NAME	DESCRIPTION	
S1, S2	Analog video I/Os	
D	Analog video I/Os	
IN	Select input	
EN	Switch-enable input	

	PARAMETER DEFINITIONS
PARAMETER	DESCRIPTION
ron	Resistance between the D and S ports, with the switch in the ON state
I _{OZ}	Output leakage current measured at the D and S ports, with the switch in the OFF state
los	Short-circuit current measured at the I/O pins
VIN	Voltage at the IN pin
V _{EN}	Voltage at the EN pin
C _{IN}	Capacitance at the control (EN, IN) inputs
COFF	Capacitance at the analog I/O port when the switch is OFF
CON	Capacitance at the analog I/O port when the switch is ON
VIH	Minimum input voltage for logic high for the control (EN, IN) inputs
VIL	Minimum input voltage for logic low for the control (EN, IN) inputs
V _{hys}	Hysteresis voltage at the control (EN, IN) inputs
VIK	I/O and control (EN, IN) inputs diode clamp voltage
VI	Voltage applied to the D or S pins when D or S is the switch input
VO	Voltage applied to the D or S pins when D or S is the switch output
IIН	Input high leakage current of the control (EN, IN) inputs
١ _{١L}	Input low leakage current of the control (EN, IN) inputs
Ц	Current into the D or S pins when D or S is the switch input
ΙO	Current into the D or S pins when D or S is the switch output
l _{off}	Output leakage current measured at the D or S ports, with $V_{CC} = 0$
^t ON	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON
^t OFF	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF
BW	Frequency response of the switch in the ON state measured at -3 dB
X _{TALK}	Unwanted signal coupled from channel to channel. Measured in –dB. X _{TALK} = 20 log V _O /V _{I.} This is a nonadjacent crosstalk.
O _{IRR}	Off isolation is the resistance (measured in –dB) between the input and output with the switch OFF.
D _G	Magnitude variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58 MHz, and dc offset is from 0 to 0.714 V.
DP	Phase variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58 MHz, and dc offset is from 0 to 0.714 V.
ICC	Static power-supply current
ICCD	Variation of I _{CC} for a change in frequency in the control (EN, IN) inputs
ΔICC	This is the increase in supply current for each control input that is at the specified voltage level, rather than V _{CC} or GND.

functional diagram (positive logic)

TS5V330 **QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH** WITH LOW ON-STATE RESISTANCE

SCDS164A - MAY 2004 - REVISED MAY 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	5 V to 7 V
Control input voltage range, VIN (see Notes 1 and 2)	
Switch I/O voltage range, V _{I/O} (see Notes 1, 2, and 3)	5 V to 7 V
Control input clamp current, I _{IK} (V _{IN} < 0)	. –50 mA
I/O port clamp current, I _{I/OK} (V _{I/O} < 0)	. –50 mA
ON-state switch current, I _{I/O} (see Note 4)	±128 mA
Continuous current through V _{CC} or GND terminals	±100 mA
Package thermal impedance, θ_{JA} (see Note 5): D package	. 73°C/W
(see Note 5): DBQ package	. 90°C/W
(see Note 5): PW package	108°C/W
(see Note 6): RGY package	. 39°C/W
Storage temperature range, T _{stg} –65°C	to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltages are with respect to ground, unless otherwise specified.
 - 2. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 3. VI and VO are used to denote specific conditions for $V_{I/O}$.
 - 4. II and IO are used to denote specific conditions for $I_{I/O}$.
 - 5. The package thermal impedance is calculated in accordance with JESD 51-7.
 - 6. The package thermal impedance is calculated in accordance with JESD 51-5.

recommended operating conditions (see Note 7)

		MIN	MAX	UNIT
VCC	Supply voltage	4	5.5	V
VIH	High-level control input voltage (EN, IN)	2	5.5	V
VIL	Low-level control input voltage (EN, IN)	0	0.8	V
VANALOG	Analog I/O voltage	0	2	V
Т _А	Operating free-air temperature	-40	85	°C

NOTE 7: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

TS5V330 **QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH** WITH LOW ON-STATE RESISTANCE

SCDS164A - MAY 2004 - REVISED MAY 2004

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 5 V ±10% (unless otherwise noted)

PARA	METER		TEST CONDI	TIONS	MIN	TYP†	MAX	UNIT
VIK	EN, IN	$V_{CC} = 4.5 V,$	I _{IN} = -18 mA				-1.8	V
V _{hys}	EN, IN					150		mV
Ι _{ΙΗ}	EN, IN	V _{CC} = 5.5 V,	V_{IN} and $V_{EN} = V_{CC}$				±1	μΑ
١ _{IL}	EN, IN	V _{CC} = 5.5 V,	V_{IN} and $V_{EN} = GND$				±1	μΑ
Ioz‡		V _{CC} = 5.5 V,	$V_{O} = 0$ to 5.5 V, $V_{I} = 0$,	Switch OFF			±1	μΑ
IOS§		V _{CC} = 5.5 V,	$V_{O} = 0.5 V_{CC},$ $V_{I} = 0,$	Switch ON	50			mA
loff		$V_{CC} = 0,$	$V_{O} = 0$ to 5.5 V,	$V_{\parallel} = 0$			1	μΑ
ICC		V _{CC} = 5.5 V,	$I_{I/O} = 0,$	Switch ON or OFF			3	μA
∆ICC	EN, IN	V _{CC} = 5.5 V,	One input at 3.4 V,	Other inputs at V_{CC} or GND			2.5	mA
ICCD		V _{CC} = 5.5 V, V _{EN} = GND,	D and S ports open,	$V_{\mbox{IN}}$ input switching 50% duty cycle			0.25	mA/ MHz
C _{IN}	EN, IN	V_{IN} or $V_{EN} = 0$,	f = 1 MHz			3.5		pF
C	D port	N/- 0	f = 1 MHz,	Switch OFF		6		" Г
COFF	S port	V _I = 0,	Outputs open	Switch OFF		4		pF
CON	-	$V_{I} = 0,$	f = 1 MHz, Outputs open	Switch ON		14		pF
. ¶			V _I = 1 V,	$I_{O} = 13 \text{ mA}, \qquad R_{L} = 75 \Omega$		3	7	Ω
ron¶		V _{CC} = 4.5 V	V _I = 2 V,	$I_{O} = 26 \text{ mA}, \qquad R_{L} = 75 \Omega$		7	10	52

VI, VO, II, and IO refer to I/O pins.

[†] All typical values are at $V_{CC} = 5 V$ (unless otherwise noted), $T_A = 25^{\circ}C$.

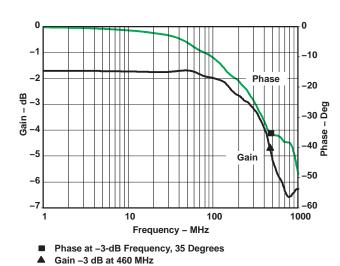
[‡] For I/O ports, IOZ includes the input leakage current.

The I_{OS} test is applicable to only one ON channel at a time. The duration of this test is less than one second.

¶ Measured by the voltage drop between the D and S terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (D or S) terminals.

switching characteristics over recommended operating free-air temperature range, $V_{CC} = 5 \text{ V} \pm 10\%$, $R_{L} = 75 \Omega$, $C_{L} = 20 \text{ pF}$ (unless otherwise noted) (see Figure 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	ТҮР	МАХ	UNIT
tON	S	D		2.5	6	ns
^t OFF	S	D		1.1	6	ns


dynamic characteristics over recommended operating free-air temperature range, V_{CC} = 5 V ±10% (unless otherwise noted)

PARAMETER	TEST CONDITIONS			MIN	TYP†	MAX	UNIT
D _G #	RL = 150 Ω,	f = 3.58 MHz, see Figure 6			0.64		%
DP#	R _L = 150 Ω,	f = 3.58 MHz, see Figure 6			0.1		Deg
BW	$R_L = 150 \Omega$, see Fig	jure 7		300			MHz
X _{TALK}	RL = 150 Ω,	f = 10 MHz,	R_{IN} = 10 Ω , see Figure 8		-63		dB
O _{IRR}	RL = 150 Ω,	f = 10 MHz, see Figure 9			-60		dB

[†] All typical values are at V_{CC} = 5 V (unless otherwise noted), T_A = 25°C.

 $^{\#}$ D_G and D_P are expressed in absolute magnitude.

OPERATING CHARACTERISTICS

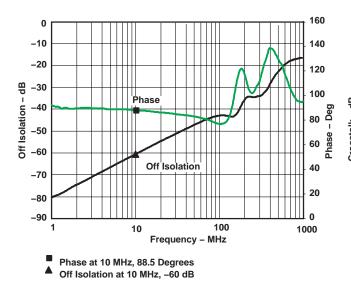
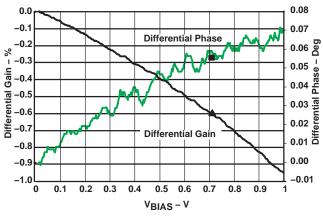
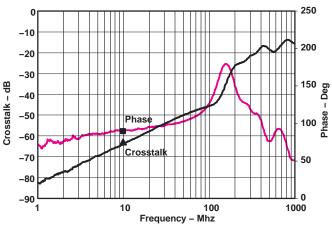
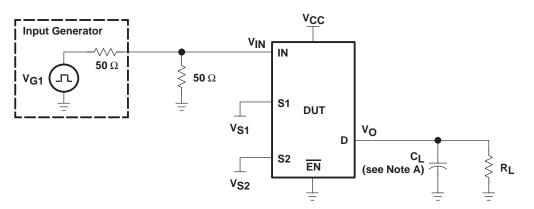




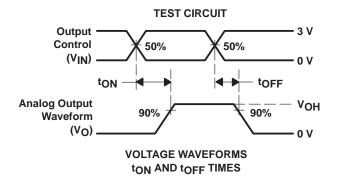
Figure 3. Off Isolation vs Frequency

Differential Phase at 0.714, 0.056 Degree ▲ Differential Gain at 0.714, -0.63%

Figure 2. Differential Gain/Phase vs VBIAS



Phase at 10 MHz, -90.4 Degrees Ā Crosstalk at 10 MHz, -63.9 dB


Figure 4. Crosstalk vs Frequency

PARAMETER MEASUREMENT INFORMATION

TEST	Vcc	RL	CL	V _{S1}	V _{S2}
tON	5 V \pm 0.5 V 5 V \pm 0.5 V	75 75	20 20	GND 3 V	3 V GND
tOFF	$\begin{array}{c} \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \\ \end{array}$	75 75	20 20	GND 3 V	3 V GND

NOTES: A. CL includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

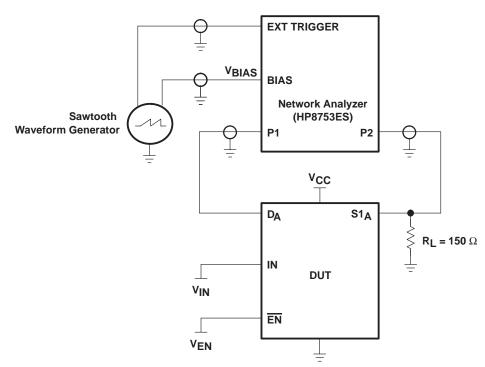

C. The outputs are measured one at a time, with one transition per measurement.

Figure 5. Test Circuit and Voltage Waveforms

TS5V330 **QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH** WITH LOW ON-STATE RESIST/

SCDS164A - MAY 2004 - REVISED MAY 2004

PARAMETER MEASUREMENT INFORMATION

NOTE A: For additional information on measurement method, refer to the TI application report, Measuring Differential Gain and Phase, literature number SLOA040.

Figure 6. Test Circuit for Differential Gain/Phase Measurement

Differential gain and phase are measured at the output of the ON channel. For example, when VIN = 0, VEN = 0, and D_A is the input, the output is measured at S1_A.

HP8753ES setup

Average = 20 RBW = 300 Hz ST = 1.381 s P1 = -7 dBMCW frequency = 3.58 MHz

sawtooth waveform generator setup

 $V_{BIAS} = 0$ to 1 V Frequency = 0.905 Hz

PARAMETER MEASUREMENT INFORMATION

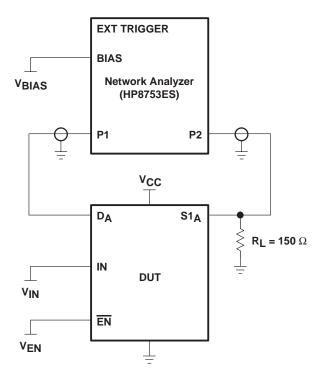
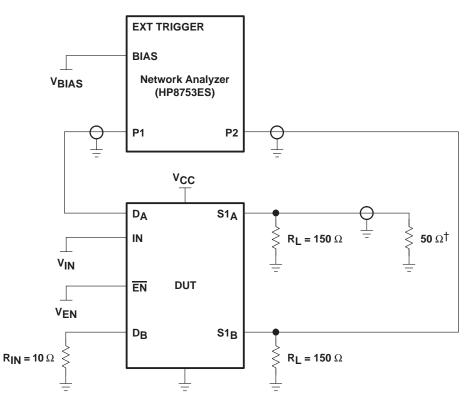


Figure 7. Test Circuit for Frequency Response (BW)


Frequency response is measured at the output of the ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and D_A is the input, the output is measured at S1_A. All unused analog I/O ports are left open.

HP8753ES setup


Average = 4RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 sP1 = 0 dBM

TS5V330 QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON-STATE RESISTA

SCDS164A - MAY 2004 - REVISED MAY 2004

PARAMETER MEASUREMENT INFORMATION


Figure 8. Test Circuit for Crosstalk (XTALK)

Crosstalk is measured at the output of the nonadjacent ON channel. For example, when VIN = 0, VEN = 0, and DA is the input, the output is measured at S1B. All unused analog input (D) ports and output (S) ports are connected to GND through $10-\Omega$ and $50-\Omega$ pulldown resistors, respectively.

HP8753ES setup

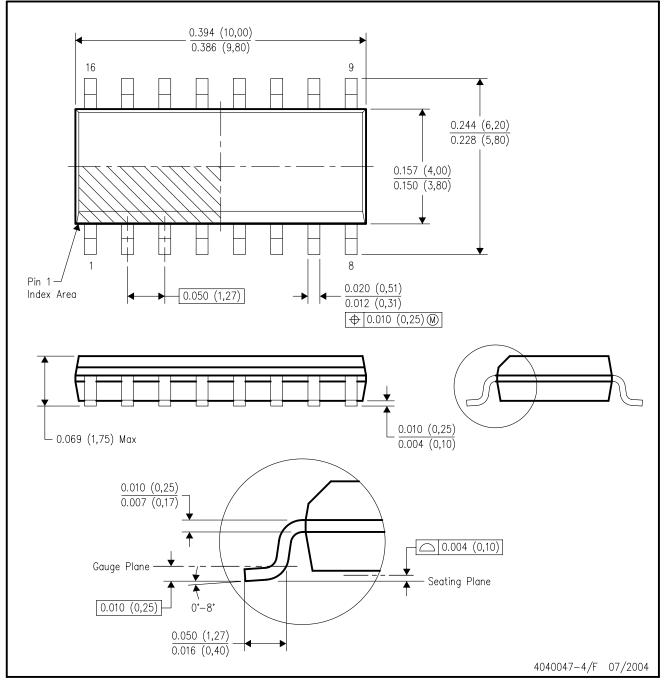
Average = 4RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 sP1 = 0 dBM

PARAMETER MEASUREMENT INFORMATION

[†]A 50- Ω termination resistor is needed for the network analyzer.

Figure 9. Test Circuit for Off Isolation (OIRR)

Off-isolation is measured at the output of the OFF channel. For example, when $V_{IN} = V_{CC}$, $V_{EN} = 0$, and D_A is the input, the output is measured at S1_A. All unused analog input (D) ports are left open, and output (S) ports are connected to GND through 50- Ω pulldown resistors.

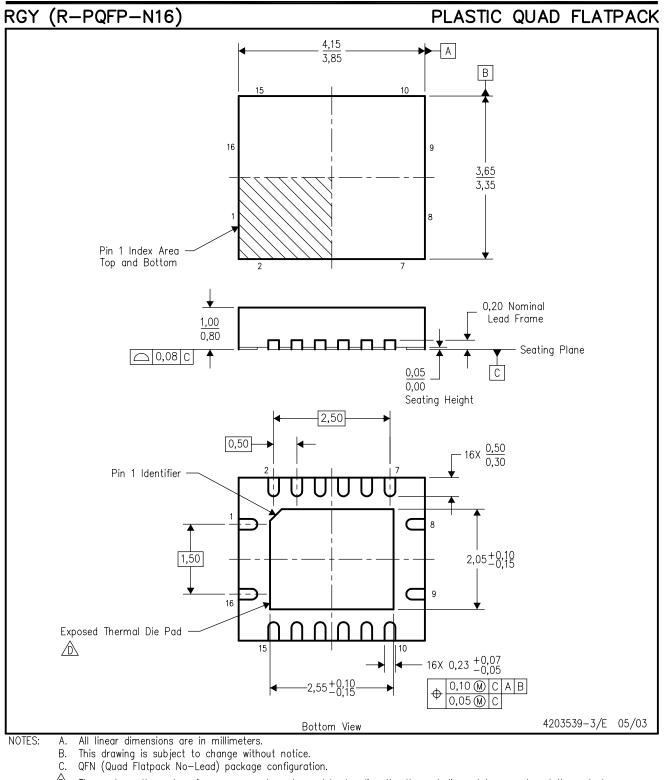

HP8753ES setup

Average = 4RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 sP1 = 0 dBM

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

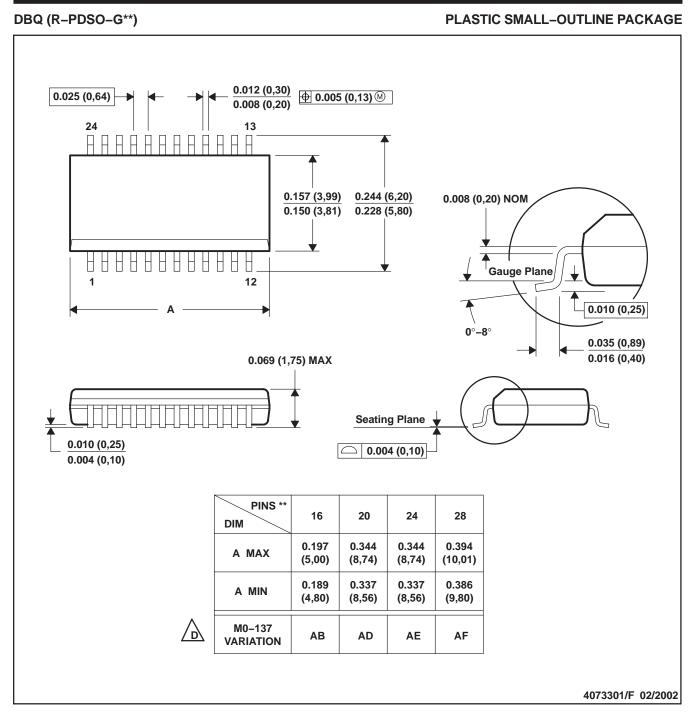
NOTES: A. All linear dimensions are in inches (millimeters).


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AC.

MECHANICAL DATA

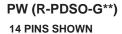


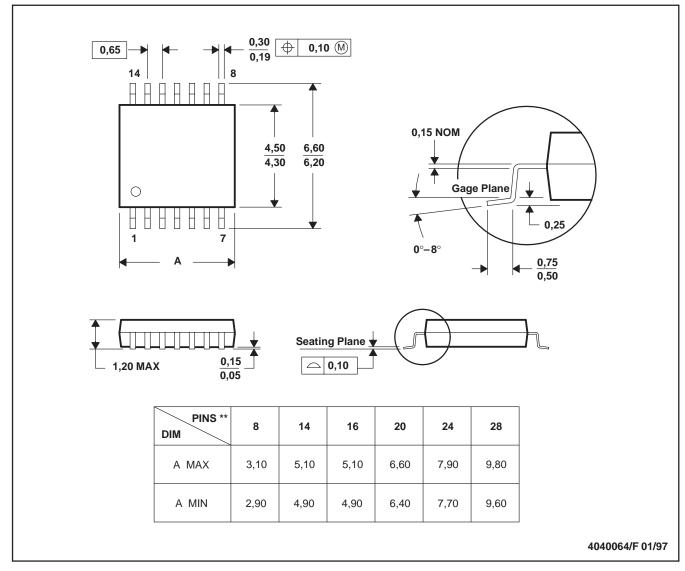
The package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected ground leads.
E. Package complies to JEDEC MO-241 variation BB.

MECHANICAL DATA

MSOI004E JANUARY 1995 - REVISED MAY 2002

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-137.



MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265