FEATURES

- Specified Break-Before-Make Switching
- Low ON-State Resistance (10 W)
- Control Inputs Are 5-V Tolerant
- Low Charge Injection
- Excellent ON-Resistance Matching
- Low Total Harmonic Distortion
- $1.8-\mathrm{V}$ to $5.5-\mathrm{V}$ Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2000-V Human-Body Model (A114-B, Class II)
- 1000-V Charged-Device Model (C101)

APPLICATIONS

- Sample-and-Hold Circuit
- Battery-Powered Equipments
- Audio and Video Signal Routing
- Communication Circuits

DESCRIPTION

The TS5A23157 is a dual, single-pole, double-throw (SPDT) analog switch designed to operate from 1.65 V to 5.5 V . This device can handle both digital and analog signals. Signals up to 5.5 V (peak) can be transmitted in either direction.

ORDERING INFORMATION

$\mathbf{T}_{\mathbf{A}}$	PACKAGE		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	VSSOP (MSOP-10) - DGS	Tape and reel	TS5A23157DGSR	JBR
	QFN - RSE	Tape and reel	TS5A23157RSER	JBR

FUNCTION TABLE

INPUT IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
H	OFF	ON

SCDS165B-MAY 2004-REVISED SEPTEMBER 2006

SUMMARY OF CHARACTERISTICS

Configuration	2:1 Multiplexer/ Demultiplexer $(2 \times$ SPDT $)$
Number of channels	2
$\mathrm{r}_{\text {on }}$	10Ω
$\Delta \mathrm{r}_{\text {on }}$	0.15Ω
$\mathrm{r}_{\text {onf(lat) }}$	4Ω
$\mathrm{t}_{\mathrm{ON}} / \mathrm{toFF}$	$5.7 \mathrm{~ns} / 3.8 \mathrm{~ns}$
$\mathrm{t}_{\text {BBM }}$	0.5 ns
Charge injection	7 pC
Bandwidth	220 MHz
OFF isolation	-65 dB at 10 MHz
Crosstalk	-66 dB at 10 MHz
Total harmonic distortion	0.01%
$I_{\text {Com(off) }} / l_{\text {NC(OFF) }}$	$\pm 1 \mu \mathrm{~A}$
Package option	$10-\mathrm{pin} \mathrm{DGS}$

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
	Supply voltage range ${ }^{(2)}$		-0.5	6.5	V
V_{NC} V_{NO} $\mathrm{V}_{\mathrm{COM}}$	Analog voltage range ${ }^{(2)(3)(4)}$		-0.5	$\mathrm{V}_{+}+0.5$	V
$\mathrm{I}_{\text {I/OK }}$	Analog port diode current	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{COM}}<0 \text { or } \mathrm{V}_{\mathrm{NC}}, \mathrm{~V}_{\mathrm{NO}}, \\ & \mathrm{~V}_{\mathrm{COM}}>\mathrm{V}_{+} \end{aligned}$		± 50	mA
$\begin{array}{\|l\|} \hline I_{\mathrm{NC}} \\ I_{\mathrm{NO}} \\ I_{\mathrm{COM}} \end{array}$	On-state switch current	$\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}=0$ to V_{+}		± 50	mA
V_{IN}	Digital input voltage range ${ }^{(2)(3)}$		-0.5	6.5	V
I_{IK}	Digital input clamp current	$\mathrm{V}_{\text {IN }}<0$		-50	mA
Continuous current through V_{+}or GND				± 100	mA
$\theta_{\text {JA }}$	Package thermal impedance ${ }^{(5)}$	DGS package			${ }^{\circ} \mathrm{C} / \mathrm{W}$
		RSE package		TBD	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to ground, unless otherwise specified.
(3) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(4) This value is limited to 5.5 V maximum.
(5) The package thermal impedance is calculated in accordance with JESD 51-7.

Electrical Characteristics for 5-V Supply

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP(1)	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0		V_{+}	V
ON-state resistance	$r_{\text {on }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \hline \end{aligned}$	Switch ON, See Figure 10	Full	4.5 V	10			Ω
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.15 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 10	$25^{\circ} \mathrm{C}$	4.5 V	0.15			Ω
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 10	$25^{\circ} \mathrm{C}$	4.5 V		4		Ω
NC, NO OFF leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch OFF, See Figure 11	$25^{\circ} \mathrm{C}$	5.5 V	-1	0.05	1	$\mu \mathrm{A}$
				Full		-1		1	
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 11	$25^{\circ} \mathrm{C}$	5.5 V	-0.1		0.1	$\mu \mathrm{A}$
				Full		-1		1	
COM ON leakage current	$\mathrm{I}_{\text {COM(ON) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch ON, See Figure 11	$25^{\circ} \mathrm{C}$	5.5 V	-0.1		0.1	$\mu \mathrm{A}$
				Full		-1		1	
Digital Inputs (IN12, IN2) ${ }^{(2)}$									
Input logic high	V_{IH}			Full		$\begin{array}{r} V_{+} \\ \times 0.7 \end{array}$			V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full				V_{+} $\times 0.3$	V
Input leakage current	$\mathrm{I}_{\text {IH }}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	5.5 V	-1	0.05	1	$\mu \mathrm{A}$
				Full		-1		1	

(1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(2) All unused digital inputs of the device must be held at $\mathrm{V}+$ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics for 5-V Supply (continued)

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP(1)	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \\ & \mathrm{or} \\ & \mathrm{~V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 13 \end{aligned}$	Full	$\begin{aligned} & 4.5 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	1.7		5.7	ns
Turn-off time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \\ & \mathrm{or} \\ & \mathrm{~V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 13 \end{aligned}$	Full	$\begin{aligned} & 4.5 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	0.8		3.8	ns
Break-before-make time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\begin{aligned} & C_{L}=35 \mathrm{pF}, \\ & \text { See Figure } 14 \end{aligned}$	Full	$\begin{gathered} 4.5 \mathrm{~V} \text { to } \\ 5.5 \mathrm{~V} \end{gathered}$	0.5			ns
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	See Figure 18	$25^{\circ} \mathrm{C}$	5 V		7		pC
NC, NO OFF capacitance	$\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$, $\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch OFF, See Figure 12	$25^{\circ} \mathrm{C}$	5 V		5.5		pF
NC, NO ON capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch ON, See Figure 12	$25^{\circ} \mathrm{C}$	5 V		17.5		pF
COM ON capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{+}$or GND,	Switch ON, See Figure 12	$25^{\circ} \mathrm{C}$	5 V		17.5		pF
Digital input capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{+}$or GND,	See Figure 12	$25^{\circ} \mathrm{C}$	5 V		2.8		pF
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	4.5 V		220		MHz
OFF isolation	OIso	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 16	$25^{\circ} \mathrm{C}$	4.5 V		-65		dB
Crosstalk	$\mathrm{X}_{\text {talk }}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 17	$25^{\circ} \mathrm{C}$	4.5 V		-66		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & f=600 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \\ & \text { See Figure } 19 \end{aligned}$	$25^{\circ} \mathrm{C}$	4.5 V		0.01		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	5.5 V			1	$\mu \mathrm{A}$
				Full				10	
Change in supply current	Δl_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}-0.6 \mathrm{~V}$		Full	5.5 V			500	$\mu \mathrm{A}$

TS5A23157

Electrical Characteristics for 3.3-V Supply

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP(1)	MAX	UNIT
Analog Switch									
Analog signal range	$\mathrm{V}_{\text {COM }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$					0		V_{+}	V
ON-state resistance	$r_{\text {on }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-24 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 10	Full	3 V			18	Ω
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2.1 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-24 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 10	$25^{\circ} \mathrm{C}$	3 V		0.2		Ω
ON-state resistance flatness	$\mathrm{r}_{\text {on(lat) }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-24 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 12	$25^{\circ} \mathrm{C}$	3 V		9		Ω
NC, NO OFF leakage current	$\mathrm{I}_{\mathrm{NC} \text { (OFF) }}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch OFF, See Figure 11	$25^{\circ} \mathrm{C}$	3.6 V	-1	0.05	1	$\mu \mathrm{A}$
				Full		-1		1	
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 11	$25^{\circ} \mathrm{C}$	3.6 V	-0.1		0.1	$\mu \mathrm{A}$
				Full		-1		1	
COM ON leakage current	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch ON, See Figure 11	$25^{\circ} \mathrm{C}$	3.6 V	-0.1		0.1	$\mu \mathrm{A}$
				Full		-1		1	
Digital Inputs (IN12, IN2) ${ }^{(2)}$									
Input logic high	V_{IH}			Full		$\begin{array}{r} V_{+} \\ \times 0.7 \end{array}$			V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full				$\begin{array}{r} \mathrm{V}_{+} \\ \times 0.3 \end{array}$	V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	3.6 V	-1	0.05	1	$\mu \mathrm{A}$
				Full		-1		1	
Dynamic									
Turn-on time	t_{on}	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \\ & \text {or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 13 \end{aligned}$	Full	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	2.5		7.6	ns
Turn-off time	$\mathrm{t}_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \\ & \text {or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 13 \end{aligned}$	Full	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	1.5		5.3	ns
Break-before-make time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 14 \end{aligned}$	Full	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	0.5			ns
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{CL}=0.1 \mathrm{nF}, \end{aligned}$	See Figure 18	$25^{\circ} \mathrm{C}$	3.3 V		3		pC
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega,$ Switch ON,	See Figure 15	$25^{\circ} \mathrm{C}$	3 V		220		MHz
OFF isolation	$\mathrm{O}_{\text {ISo }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \\ & \hline \end{aligned}$	Switch OFF, See Figure 16	$25^{\circ} \mathrm{C}$	3 V		-65		dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 17	$25^{\circ} \mathrm{C}$	3 V		-66		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & f=600 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \\ & \text { See Figure } 19 \end{aligned}$	$25^{\circ} \mathrm{C}$	3 V		0.015		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	3.6 V			1	$\mu \mathrm{A}$
				Full				10	
Change in supply current	Δ_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}-0.6 \mathrm{~V}$		Full	3.6 V			500	$\mu \mathrm{A}$

(1) $T_{A}=25^{\circ} \mathrm{C}$
(2) All unused digital inputs of the device must be held at $\mathrm{V}+$ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

DUAL $10-\Omega$ SPDT ANALOG SWITCH

Electrical Characteristics for 2.5-V Supply

$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP ${ }^{(1)}$	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0		V_{+}	V
ON-state resistance	$r_{\text {on }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 10	Full	2.3 V			45	Ω
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.6 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 10	$25^{\circ} \mathrm{C}$	2.3 V		0.5		Ω
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 10	$25^{\circ} \mathrm{C}$	2.3 V		27		Ω
NC, NO OFF leakage current	$\mathrm{I}_{\mathrm{NC} \text { (OFF), }}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch OFF, See Figure 11	$25^{\circ} \mathrm{C}$	2.7 V	-1	0.05	1	$\mu \mathrm{A}$
				Full		-1		1	
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0$ to V_{+}, $\mathrm{V}_{\text {COM }}=$ Open,	Switch ON, See Figure 11	$25^{\circ} \mathrm{C}$	2.7 V	-0.1		0.1	$\mu \mathrm{A}$
				Full		-1		1	
COM ON leakage current	$\mathrm{I}_{\text {Com(ON) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch ON, See Figure 11	$25^{\circ} \mathrm{C}$	2.7 V	-0.1		0.1	$\mu \mathrm{A}$
				Full		-1		1	
Digital Inputs (IN12, IN2) ${ }^{(2)}$									
Input logic high	V_{IH}			Full		$\begin{array}{r} V_{+} \\ \times 0.7 \end{array}$			V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full				$\begin{array}{r} V_{+} \\ \times 0.3 \end{array}$	V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	2.7 V	-1	0.05	1	$\mu \mathrm{A}$
				Full		-1		1	
Dynamic									
Turn-on time	t_{on}	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}} \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 13 \end{aligned}$	Full	$\begin{gathered} 2.3 \mathrm{~V} \text { to } \\ 2.7 \mathrm{~V} \end{gathered}$	3.5		14	ns
Turn-off time	$t_{\text {OFF }}$	$\begin{aligned} & V_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}= \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 13 \end{aligned}$	Full	$\begin{aligned} & 2.3 \mathrm{~V} \text { to } \\ & 2.7 \mathrm{~V} \end{aligned}$	2		7.5	ns
Break-before-make time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 14 \end{aligned}$	Full	$\begin{gathered} 2.3 \mathrm{~V} \text { to } \\ 2.7 \mathrm{~V} \end{gathered}$	0.5			ns
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	2.3 V		220		MHz
OFF isolation	$\mathrm{O}_{\text {ISO }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 16	$25^{\circ} \mathrm{C}$	2.3 V		-65		dB
Crosstalk	$\mathrm{X}_{\text {taLK }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 17	$25^{\circ} \mathrm{C}$	2.3 V		-66		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & \mathrm{f}=600 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \\ & \text { See Figure } 19 \end{aligned}$	$25^{\circ} \mathrm{C}$	2.3 V		0.025		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	2.7 V			1	$\mu \mathrm{A}$
				Full				10	
Change in supply current	ΔI_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}-0.6 \mathrm{~V}$		Full	2.7 V			500	$\mu \mathrm{A}$

(1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(2) All unused digital inputs of the device must be held at $\mathrm{V}+$ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

TS5A23157

Electrical Characteristics for 1.8-V Supply

$\mathrm{V}_{+}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP ${ }^{(1)}$	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{gathered} \mathrm{v}_{\mathrm{COM}}, \\ \mathrm{v}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0		V_{+}	V
ON-state resistance	$r_{\text {on }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 10	Full	1.65 V	140			Ω
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.15 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 10	$25^{\circ} \mathrm{C}$	1.65 V	1			Ω
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 10	$25^{\circ} \mathrm{C}$	1.65 V		110		Ω
NC, NO OFF leakage current	$I_{\text {NC(OFF) }}$, $\mathrm{I}_{\text {NO(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch OFF, See Figure 11	$25^{\circ} \mathrm{C}$	1.95 V	-1	0.05	1	$\mu \mathrm{A}$
				Full		-1		1	
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 11	$25^{\circ} \mathrm{C}$	1.95 V	-0.1		0.1	$\mu \mathrm{A}$
				Full		-1		1	
COM ON leakage current	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch ON, See Figure 11	$25^{\circ} \mathrm{C}$	1.95 V	-0.1		0.1	$\mu \mathrm{A}$
				Full		-1		1	
Digital Inputs (IN12, IN2) ${ }^{(2)}$									
Input logic high	V_{IH}			Full		$\begin{array}{r} V_{+} \\ \times 0.75 \end{array}$			V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full				$\begin{array}{r}V_{+} \\ \times 0.25 \\ \hline\end{array}$	V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	1.95 V	-1	0.05	1	$\mu \mathrm{A}$
				Full		-1		1	
Dynamic									
Turn-on time	t_{on}	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}= \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 13 \end{aligned}$	Full	$\begin{gathered} \hline 1.65 \mathrm{~V} \\ \text { to } \\ 1.95 \mathrm{~V} \end{gathered}$	7		24	ns
Turn-off time	$\mathrm{t}_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}= \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 13 \end{aligned}$	Full	$\begin{aligned} & 1.65 \mathrm{~V} \\ & \text { to } \\ & 1.95 \mathrm{~V} \\ & \hline \end{aligned}$	3		13	ns
Break-before-make time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\begin{aligned} & C_{L}=35 \mathrm{pF}, \\ & \text { See Figure } 14 \end{aligned}$	Full	$\begin{aligned} & 1.65 \mathrm{~V} \\ & \text { to } \\ & 1.95 \mathrm{~V} \end{aligned}$	0.5			ns
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	1.8 V		220		MHz
OFF isolation	$\mathrm{O}_{\text {ISO }}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		-60		dB
Crosstalk	$\mathrm{X}_{\text {taLK }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 17	$25^{\circ} \mathrm{C}$	1.8 V		-66		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & f=600 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \\ & \text { See Figure } 19 \end{aligned}$	$25^{\circ} \mathrm{C}$	1.8 V		0.015		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	1.95 V			1	$\mu \mathrm{A}$
				Full				10	
Change in supply current	ΔI_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}-0.6 \mathrm{~V}$		Full	1.95 V			500	$\mu \mathrm{A}$

(1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(2) All unused digital inputs of the device must be held at $\mathrm{V}+$ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

TYPICAL CHARACTERISTICS

Figure 1. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {com }}$

Figure 3. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {сом }}\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

Figure 5. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs $\mathrm{V}_{\boldsymbol{+}}$

Figure 2. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {com }}\left(\mathrm{V}_{+}=3 \mathrm{~V}\right)$

Figure 4. Leakage Current vs Temperature $\left(\mathrm{V}_{+}=5.5 \mathrm{~V}\right)$

Figure 6. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs Temperature $\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

TYPICAL CHARACTERISTICS (continued)

Figure 7. Frequency Response $\left(\mathrm{V}_{+}=3 \mathrm{~V}\right)$

Figure 8. Total Harmonic Distortion (THD) vs Frequency ($\mathrm{V}_{+}=3 \mathrm{~V}$)

Figure 9. Power-Supply Current vs Temperature $\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

DUAL $10-\Omega$ SPDT ANALOG SWITCH

PIN DESCRIPTION

PIN NO.	NAME	DESCRIPTION
1	IN1	Digital control to connect COM to NO or NC
2	NO1	Normally open
3	GND	Digital ground
4	NO2	Normally open
5	IN2	Digital control to connect COM to NO or NC
6	COM2	Common
7	NC2	Normally closed
8	V $_{+}$	Power supply
9	NC1	Normally closed
10	COM1	Common

PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION
$\mathrm{V}_{\text {COM }}$	Voltage at COM
V_{NC}	Voltage at NC
V_{NO}	Voltage at NO
$\mathrm{r}_{\text {on }}$	Resistance between COM and NC or COM and NO ports when the channel is ON
$\Delta r_{\text {on }}$	Difference of $r_{\text {on }}$ between channels
$\mathrm{r}_{\text {on(flat) }}$	Difference between the maximum and minimum value of r_{on} in a channel over the specified range of conditions
$\mathrm{I}_{\text {NC(OFF) }}$	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions
$\mathrm{I}_{\text {NO(OFF) }}$	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions
$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) being open
$\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) being open
$\mathrm{I}_{\text {COM(ON }}$	Leakage current measured at the COM port, with the corresponding channel (NO to COM or NC to COM) in the ON state and the output (NC or NO) being open
V_{IH}	Minimum input voltage for logic high for the control input (IN)
$\mathrm{V}_{\text {IL }}$	Minimum input voltage for logic low for the control input (IN)
$\mathrm{V}_{\text {IN }}$	Voltage at IN
$\mathrm{I}_{\mathrm{H},}, \mathrm{I}_{\text {IL }}$	Leakage current measured at IN
ton	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control ($(\mathrm{N}$) signal and analog outputs (COM/NC/NO) signal when the switch is turning ON.
toff	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM/NC/NO) signal when the switch is turning OFF.
$\mathrm{t}_{\text {BBM }}$	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.
Q_{C}	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulombs ©() and measured by the total charge induced due to switching of the control input. Charge injection, $Q_{C}=C_{L} \times \Delta V_{O}, C_{L}$ is the load capacitance and ΔV_{O} is the change in analog output voltage.
$\mathrm{C}_{\text {NC(OFF) }}$	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF
$\mathrm{C}_{\text {NO(OFF) }}$	Capacitance at the NO port when the corresponding channel (NC to COM) is OFF
$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$	Capacitance at the NC port when the corresponding channel (NC to COM) is ON
$\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	Capacitance at the NO port when the corresponding channel (NC to COM) is ON
$\mathrm{C}_{\text {COM(ON) }}$	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON
$\mathrm{C}_{\text {IN }}$	Capacitance of IN

PARAMETER DESCRIPTION (continued)

SYMBOL	DESCRIPTION
$\mathrm{O}_{\text {ISO }}$	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. OFF isolation, $\mathrm{O}_{\text {ISO }}=20 \mathrm{LOG}$ $\left(\mathrm{V}_{\mathrm{NC}} / \mathrm{V}_{\mathrm{COM}}\right) \mathrm{dB}, \mathrm{V}_{\mathrm{COM}}$ is the input and V_{NC} is the output.
$\mathrm{X}_{\text {TALK }}$	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to $N C)$. This is measured at a specific frequency and in dB. Crosstalk, $\mathrm{X}_{\mathrm{TALK}}=20 \log \left(\mathrm{~V}_{\mathrm{NC} 1} 1 \mathrm{~V}_{\mathrm{NO} 1}\right), \mathrm{V}_{\mathrm{NO} 1}$ is the input and $\mathrm{V}_{\mathrm{NC} 1}$ is the output.
BW	Bandwidth of the switch. This is the frequency where the gain of an ON channel is -3 dB below the dc gain. Gain is measured from the equation, $20 \log \left(V_{N C} / V_{C O M}\right) d B$, where $V_{N C}$ is the output and $\mathrm{V}_{\mathrm{COM}}$ is the input.
I_{+}	Static power-supply current with the control (IN) pin at V_{+}or GND
$\Delta \mathrm{I}_{+}$	This is the increase in I_{+}for each control (IN) input that is at the specified voltage, rather than at V_{+}or GND.

PARAMETER MEASUREMENT INFORMATION

Figure 10. ON-State Resistance $\circledR_{\text {on }}$)

Figure 11. ON- and OFF-State Leakage Current ($\left.\mathrm{I}_{\mathrm{COM}(\mathrm{ON})}, \mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{I}_{\mathrm{NC}(\mathrm{ON})}, \mathrm{I}_{\mathrm{NO}(\mathrm{ON})}\right)$

Figure 12. Capacitance $\left.\bigodot_{\mathrm{IN}}, \mathrm{C}_{\mathrm{COM(ON)},}, \mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NC}(\mathrm{ON})}, \mathrm{C}_{\mathrm{NO}(\mathrm{ON})}\right)$

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 13. Turn-On (t_{ON}) and Turn-Off ($\mathrm{t}_{\text {OFF }}$) Time

Figure 14. Break-Before-Make ($\mathrm{t}_{\text {BBM }}$) Time

Figure 15. Frequency Response (BW)

PARAMETER MEASUREMENT INFORMATION (continued)

Channel OFF: NC to COM
OFF Isolation $=20 \log \frac{V_{\text {COM }}}{V_{N C}} d B$

Network Analyzer Setup
Source Power $=0 \mathrm{dBM}$
DC Bias $=350 \mathrm{mV}$

Figure 16. OFF Isolation ($\mathrm{O}_{\mathrm{ISO}}$)

Channel ON: NC to COM Channel OFF: NO to COM Crosstalk $=20 \log \frac{V_{N O}}{V_{\mathrm{NC}}} d B$

> Network Analyzer Setup
> Source Power $=0 \mathrm{dBM}$
> DC Bias $=350 \mathrm{mV}$

Figure 17. Crosstalk ($\mathrm{X}_{\text {TALK }}$

Figure 18. Charge Injection $\left(Q_{C}\right)$

TS5A23157
INSTRUMENTS
www.ti.com

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 19. Total Harmonic Distortion (THD)

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TS5A23157DGSR | ACTIVE | MSOP | DGS | 10 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TS5A23157DGSRE4 | ACTIVE | MSOP | DGS | 10 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TS5A23157DGSRG4 | ACTIVE | MSOP | DGS | 10 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TS5A23157DGST | ACTIVE | MSOP | DGS | 10 | 250 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TS5A23157DGSTE4 | ACTIVE | MSOP | DGS | 10 | 250 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TS5A23157DGSTG4 | ACTIVE | MSOP | DGS | 10 | 250 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TS5A23157RSER | ACTIVE | QFN | RSE | 10 | 3000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TS5A23157RSERG4 | ACTIVE | QFN | RSE | 10 | 3000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb -Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb - Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	Pin1 Quadrant
TS5A23157DGSR	MSOP	DGS	10	2500	330.0	13.0	5.3	3.4	1.4	8.0	12.0	Q1
TS5A23157RSER	QFN	RSE	10	3000	179.0	8.4	1.75	2.25	0.65	4.0	8.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A23157DGSR	MSOP	DGS	10	2500	358.0	335.0	35.0
TS5A23157RSER	QFN	RSE	10	3000	220.0	205.0	50.0

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO-187 variation BA.

RSE (R-PQFP-N10)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
E. Maximum stencil thickness $0,127 \mathrm{~mm}$ (5 mils). All linear dimensions are in millimeters.
F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
G. Side aperture dimensions over-print land for acceptable area ratio >0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

