General Description
The Fairchild Switch FSTU16245 provides 16－bits of high－
speed CMOS TTL－compatible bus switching．The low On
Resistance of the switch allows inputs to be connected to
outputs without adding propagation delay or generating
additional ground bounce noise．
The device is organized as a 16－bit switch．There are two
8－bit switches with separate output enable inputs．When
OE is LOW，the switch is ON and Port a is connected to
Port B．When OE is HIGH，the switch is OFF and a high
impedance state exists between the A and B Ports．The A
and B Ports are protected against undershoot to support
an extended range to 2．OV below ground．Fairchild＇s inte－
grated Undershoot Hardened Circuit（UHCTM）senses
undershoot at the I／O and responds by preventing voltage
differentials from developing and turning the switch on．
When OE is HIGH，the switch is OPEN and a high－imped－
ance state exists between the two ports．

Connection Diagram

Features

■ Undershoot hardened to－ 2 V （A and B Ports）
－ 4Ω switch connection between two ports．
－Minimal propagation delay through the switch．
－Low I_{Cc} ．
－Zero bounce in flow－through mode．
－Control inputs compatible with TTL level．
－See Application Note AN－5008 for details

Ordering Code：

Order Number	Package Number	Package Description
FSTU16245MTD	MTD48	48－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，6．1mm Wide
Devices also available in Tape and Reel．Specify by appending the suffix letter＂ X ＂to the ordering code．		

Devices also available in Tape and Reel．Specify by appending the suffix letter＂X＂to the ordering code．

Pin Descriptions

Pin Name	Description
$\overline{O E}_{n}$	Output Enable Input（Active LOW）
$1 A_{n}, 2 A_{n}, 3 A_{n}, 4 A_{n}$	Bus A
$1 B_{n}, 2 B_{n}, 3 B_{n}, 4 B_{n}$	Bus B
$N C$	No Internal Connection

[^0]

Absolute Maximum Ratings(Note 1)		Recommended Operating Conditions (Note 4)
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	
DC Switch Voltage (V_{S}) (Note 2)	-2.0 V to +7.0 V	Power Supply Operating (V_{CC}) 4.0 V to 5.5 V
DC Input Voltage (V_{IN}) (Note 3)	-0.5 V to +7.0 V	Input Voltage (V_{IN}) 0 V to 5.5 V
DC Input Diode Current (I_{IK}) $\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$	Output Voltage (V $\mathrm{V}_{\text {OUT }}$) OV to 5.5 V
DC Output Current (lout)	128 mA	Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ($\mathrm{I}_{\text {CC }} / \mathrm{l}_{\text {GND }}$)	$\pm 100 \mathrm{~mA}$	Switch Control Input OnS/V to 5nS/V
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Switch I/O OnS/V to DC
		Free Air Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
		Note 2: V_{S} is the voltage observed/applied at either the A or B Ports across the switch.
		Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
		Note 4: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	Min	Typ (Note 5)	Max	Units	Conditions
V_{IK}	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
V_{IL}	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZ }}$	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 6)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	14	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at V_{CC} or GND
$\mathrm{V}_{\mathrm{IKU}}$	Voltage Undershoot	5.5			-2.0	V	$\begin{aligned} & 0.0 \mathrm{~mA} \geq \mathrm{I}_{\mathrm{IN}} \geq-50 \mathrm{~mA} \\ & \overline{\mathrm{OE}}=5.5 \mathrm{~V} \end{aligned}$
Note 5: Ty Note 6: voltages	cal values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and T sured by the voltage drop between the two (A or B) pins.	$25^{\circ} \mathrm{C}$ B pins at	dicate	ent through	witch.	istanc	determined by the lower of the

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure Number
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{tPLH}$	Prop Delay Bus-to-Bus (Note 7)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	$\begin{gathered} \hline \text { Figures } \\ 2,3 \end{gathered}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.0	6.5		6.9	ns	$\begin{aligned} & V_{1}=7 \mathrm{~V} \text { for } t_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	$\begin{gathered} \text { Figures } \\ 2,3 \end{gathered}$
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.0	6.1		6.5	ns	$\begin{aligned} & V_{1}=7 \mathrm{~V} \text { for } t_{P L Z} \\ & V_{1}=\text { OPEN for } t_{\text {PHZ }} \end{aligned}$	$\begin{gathered} \text { Figures } \\ 2,3 \end{gathered}$

Capacitance (Note 8)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{C}_{1 / \mathrm{O}}$	Input/Output Capacitance "OFF State"	6		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$
Note 8: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not t Undershoot Characteristic (Note 9)					
Symbol	Parameter	Min	Typ	Max	Units \quad Conditions
$\mathrm{V}_{\text {OUTU }}$	Output Voltage During Undershoot	2.5	$\mathrm{V}_{\mathrm{OH}}-0.3$		V \quad Figure 1

undershoot event.

FIGURE 1.

Device Test Conditions

Parameter	Value	Units
V_{IN}	see Waveform	V
$\mathrm{R}_{1}=\mathrm{R}_{2}$	100 K	Ω
$\mathrm{~V}_{\mathrm{TRI}}$	11.0	V
$\mathrm{~V}_{\mathrm{CC}}$	5.5	V

Transient
Input Voltage ($\mathrm{V}_{\text {IN }}$) Waveform

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 2. AC Test Circuit

FIGURE 3. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

DIMENSIONS ARE IN MILLIMETERS

NOTES
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILLIMETERS
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTD48RevB1

DETAIL A
48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1 mm Wide Package Number MTD48

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384(FST3384) bus switch product.
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Copyright © Each Manufacturing Company.
All Datasheets cannot be modified without permission.

This datasheet has been download from : www.AllDataSheet.com

100\% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

[^0]: UHC ${ }^{\text {™ }}$ is a trademark of Fairchild Semiconductor Corporation．

