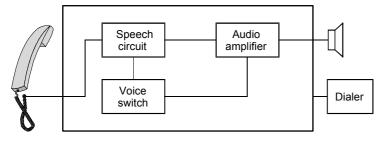
Features

- Adjustable DC Characteristics
- Adjustable Transmit and Receive Gain
- Symmetrical Input of Microphone Amplifier
- Anti-clipping in Transmit Direction
- Automatic Line-loss Compensation
- Built-in Ear Protection
- DTMF and MUTE Input
- Adjustable Side Tone Suppression Independent of Sending and Receiving Amplification
- Integrated Amplifier for Loud-hearing Operation
- Anti-clipping for Loudspeaker Amplifier
- Improved Acoustical Feedback Suppression
- Selectable Line Impedance
- Voice Switch
- Supply Voltages for All Functional Blocks of a Subscriber Set
- Operation Possible from 10-mA Line Current

Benefits

- Complete System Integration of Analog Signal Processing on One Chip
- Very Few External Components

Applications


- Feature Phones
- Answering Machines
- Fax Machines
- Speaker Phones

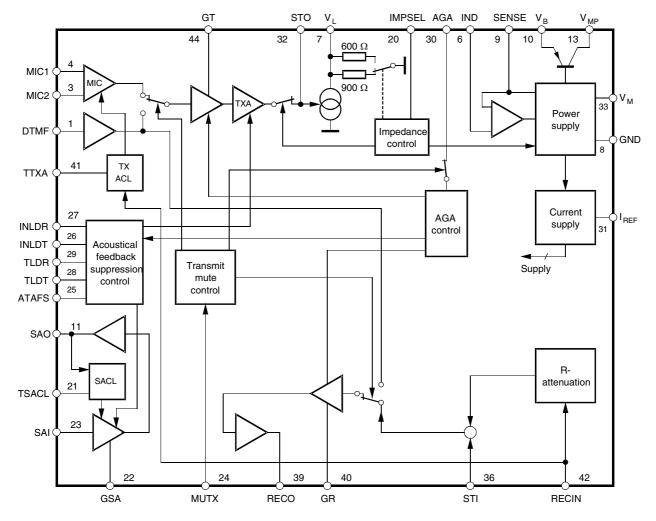
Description

The telephone circuit U4089B-M is a linear integrated circuit for use in feature phones, answering machines and fax machines. It contains the speech circuit, side tone equivalent and ear protection rectifiers. The circuit is line-powered and contains all components necessary for the amplification of signals and adaptation to the line.

An integrated voice switch with a loudspeaker amplifier enables loud-hearing or hands-free operation. With an anti-feedback function, acoustical feedback during loudhearing can be reduced significantly. The generated supply voltage is suitable for a wide range of peripheral circuits.

Figure 1. Simple Block Diagram

Monolithic Integrated Feature Phone Circuit


U4089B-M

Rev. 4570A-CORD-04/03

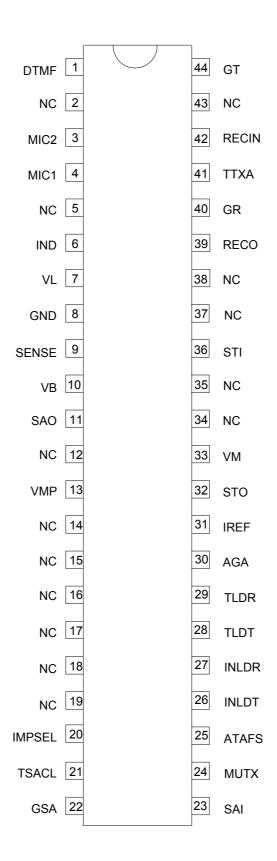
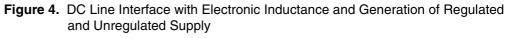


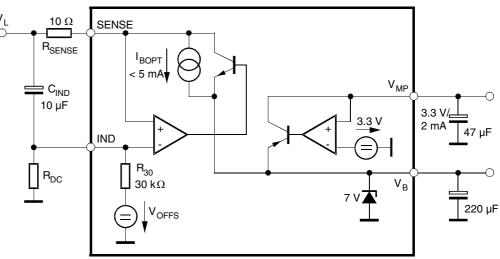
Figure 2. Block Diagram

Pin Configuration

Figure 3. Pinning SSO44

Pin Description

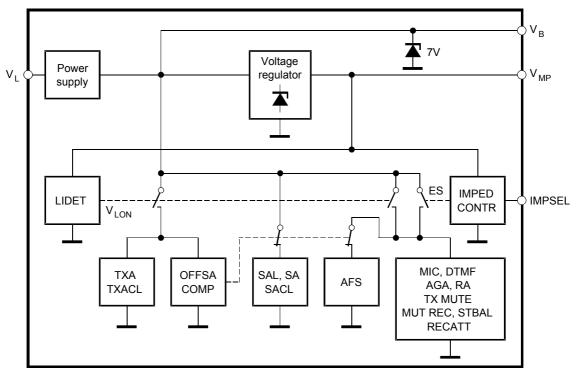

Pin	Symbol	Function
1	DTMF	Input for DTMF signals. Also used for the answering machine and hands-free input.
3	MIC 2	Non-inverting input of microphone amplifier
4	MIC 1	Inverting input of microphone amplifier
6	IND	The internal equivalent inductance of the circuit is proportional to the value of the capacitor at this pin. A resistor connected to ground may be used to reduce the DC line voltage.
7	VL	Line voltage
8	GND	Reference point for DC- and AC-output signals
9	SENSE	A small resistor (fixed) connected from this pin to V_L sets the slope of the DC characteristic and also affects the line- length equalization characteristics and the line current at which the loudspeaker amplifier is switched on.
10	V _B	Unregulated supply voltage for peripheral circuits (voice switch); limited to typically 7 V
11	SAO	Output of loudspeaker amplifier
13	V _{MP}	Regulated 3.3 V supply voltage for peripheral circuits. The maximum output current is 2 mA.
20	IMPSEL	 Control input for selection of line impedance 1) 600 Ω 2) 900 Ω 3) Mute of second transmit stage (TXA); also used for indication of external supply (answering machine); last chosen impedance is stored
21	TSACL	Time constant of anti-clipping of speaker amplifier
22	GSA	Current input for setting the gain of the speaker amplifier. Adjustment characteristic is logarithmical. For RGSA > 2 M Ω , the speaker amplifier is switched off.
23	SA I	Speaker amplifier input (for loudspeaker, tone ringer and hands-free use)
24	MUTX	 Three-state input of transmit mute: 1) Speech condition; inputs MIC1/MIC2 active 2) DTMF condition; input DTMF active. A part of the input signal is passed to the receiving amplifier as a confidence signal during dialing. 3) Input DTMF used for answering machine and hands-free use; receive branch is not affected.
25	ATAFS	Attenuation of acoustical feedback suppression. Maximum attenuation of the AFS circuit is set by a resistor at this pin. Without the resistor, AFS is switched off.
26	INLDT	Input of transmit level detector
27	INLDR	Input of receive level detector
28	TLDT	Time constant of transmit level detector
29	TLDR	Time constant of receive level detector
30	AGA	Automatic gain adjustment with line current. A resistor connected from this pin to GND sets the starting point. Max. gain change is 6 dB.
31	IREF	Internal reference current generation; RREF = 62 k Ω ; IREF = 20 μ A
32	STO	Side tone reduction output. Output resistance is approximately 300 Ω . Maximum load impedance is 10 k Ω .
33	V _M	Reference node for microphone, earphone and loudspeaker amplifier. Supply for electret microphone (IM \leq 300 μ A).
36	STI	Input for side-tone network
39	RECO	Output of receiving amplifier
40	G _R	A resistor connected from this pin to GND sets the receiving amplification of the circuit; amplifier RA1 can be muted by applying V_{MP} to G_R
41	TTXA	Time constant of anti-clipping in transmit path
42	RECIN	Input of receiving path; input impedance is typically 80 k Ω
44	G _T	A resistor from this pin to GND sets the amplification of the microphone and DTMF signals; the input amplifier can be muted by applying V_{MP} to G_T .


DC Line Interface and Supply-voltage Generation

The DC line interface consists of an electronic inductance and an output stage which charges the capacitor at V_B. The value of the equivalent inductance is given by: $L = R_{SENSE} \times C_{IND} \times (R_{DC} \times R_{30})/(R_{DC} + R_{30})$

In order to improve the supply during worst-case operating conditions, the PNP current source (I_{BOPT}) supplies an extra amount of current to the supply voltages when the NPN in parallel is unable to conduct current.

The U4089B-M contains a series regulator which provides a supply voltage $V_{\rm MP}$ of 3.3 V at the 2 mA suitable for a microprocessor.



<u>AÎMEL</u>

Figure 5. Functional Blocks for Power Supply

1. In speech condition, the system is supplied by the line current. If the LIDET-block detects a line voltage above the fixed threshold (1.9 V), the internal signal VLON is activated, thus switching on all blocks of the chip.

For line voltages below 1.9 V, the switches remain in their quiescent state as shown in Figure 5.

OFFSACOMP disables the group listening feature (SAI, SA, SACL, AFS) below line currents of approximately 10 mA.

2. Selecting IMPSEL = high impedance activates all switches at the ES line.

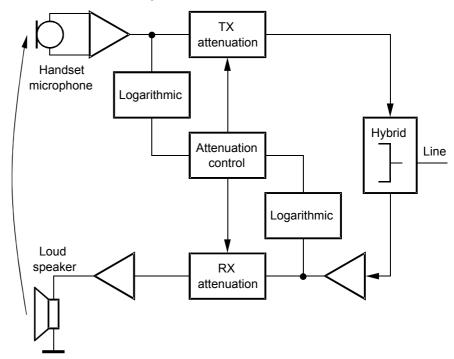
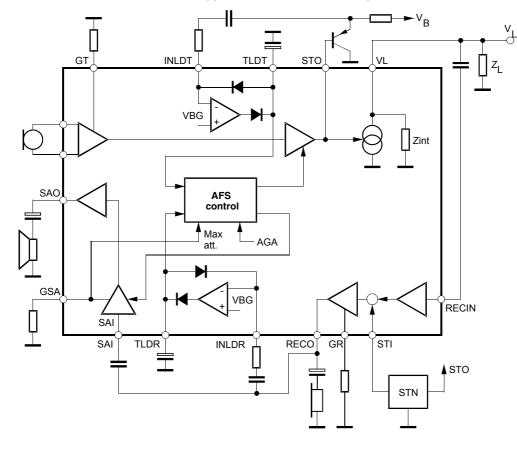
Acoustic Feedback Suppression

Acoustical feedback from the loudspeaker to the handset microphone may cause instability in the system. The U4089B-M offers a very efficient feedback suppression circuit which uses a modified voice switch topology. Figure 6 shows the basic system configuration.

Two attenuators (TX ATT and RX ATT) reduce the critical loop gain by introducing an externally adjustable amount of loss either in the transmit or in the receive path. The sliding control in block ATT CONTR determines whether the TX or the RX signal has to be attenuated. The overall loop gain remains constant under all operating conditions.

Selection of the active channel is made by comparison of the logarithmically compressed TX and RX envelope curves.

The system configuration for group listening, which is realized in the U4089B-M, is illustrated in Figure 7. TXA and SAI represent the two attenuators; the logarithmic envelope detectors are shown in a simplified way (operational amplifiers with two diodes).

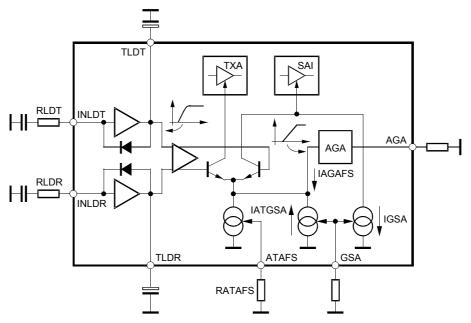

Figure 6. Basic Voice-switch System

Figure 7. Integration of the Acoustic Feedback-suppression Circuit Into the Speech Circuit Environment

A detailed diagram of the AFS (Acoustic Feedback Suppression) is given in Figure 8. Receive and transmit signals are first processed by logarithmic rectifiers in order to produce the speech envelopes at TLDT and RLDT. After amplification, a decision is made by the differential pair of which direction should be transmitted.

The attenuation of the controlled amplifiers TXA and SAI is determined by the emitter current IAT which is comprised of three parts:

I_{ATAFS} Sets maximum attenuation

I_{ATGSA} Decreases the attenuation when speaker amplifier gain is reduced

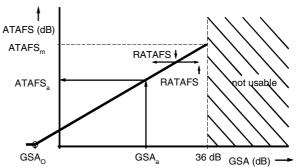
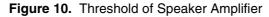
I_{AGAFS} Decreases the attenuation according to the loop-gain reduction caused by the AGA function

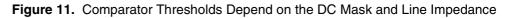
 $I_{AT} = I_{ATAFS} - I_{ATGSA} - I_{AGAFS}$

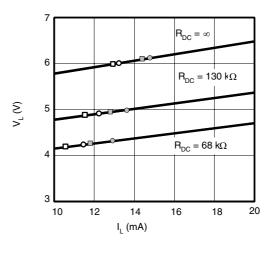
$$\Delta G = I_{AT} \times 0.67 \text{ dB}/\mu A$$

Figure 9 illustrates the principal relationship between the speaker amplifier gain (GSA) and attenuation of AFS (ATAFS). Both parameters can be adjusted independently, but the internal coupling between them has to be considered. The maximum GSA value to be used is 36 dB. The shape of the characteristic is moved in the x-direction by adjusting resistor RATAFS, thus changing ATAFS_m. The actual value of the attenuation (ATAFS_a), however, can be determined by reading the value which belongs to the actual gain GSA_a. If the speaker amplifier gain is reduced, the attenuation of AFS is automatically reduced by the same amount in order to achieve a constant loop gain. Zero attenuation is set for speaker gains GSA \geq GSA0 = 36 dB - ATAFS_m.

8



Figure 9. Reducing Speaker Amplifier Gain Results in an Equal Reduction of AFS Attenuation


Operating Range of Speaker Amplifier

The basic behavior is illustrated in Figure 10. Actual values of ILON/ILOFF vary slightly with the adjustment of the DC characteristics and the selection of the internal line impedance.

 $\label{eq:llon} \begin{array}{l} \blacksquare \mbox{ ILON at line impedance } = 600 \ \Omega \\ \blacksquare \mbox{ ILOFF at line impedance } = 600 \ \Omega \\ \circledcirc \mbox{ ILON at line impedance } = 900 \ \Omega \end{array}$

o ILOFF at line impedance = 900 Ω

AIMEL

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Line current	۱ _L	140	mA
DC line voltage	VL	12	V
Junction temperature	Тj	125	°C
Ambient temperature	T _{amb}	-25 to +75	°C
Storage temperature	T _{stg}	-55 to +150	°C
Total power dissipation, $T_{amb} = 60^{\circ}C$, SSO44	P _{tot}	0.9	W

Thermal Resistance

Parameters		Symbol	Value	Unit
Junction ambient	SSO44	R _{thJA}	70	K/W

Electrical Characteristics

 $f = 1 \text{ kHz}, 0 \text{ dBm} = 775 \text{ mV}_{rms}, I_M = 0.3 \text{ mA}, I_{MP} = 2 \text{ mA}, \text{RDC} = 130 \text{ k}\Omega, T_{amb} = 25^\circ\text{C}, \text{RGSA} = 560 \text{ k}\Omega, \\ Z_{ear} = 68 \text{ nF} + 100 \Omega, Z_M = 68 \text{ nF}, \text{Pin 20 open}, V_{MUTX} = \text{GND}, \text{unless otherwise specified}.$

Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit
DC Characteristics	+			+			ł
DC voltage drop over circuit	$I_{L} = 2 \text{ mA}$ $I_{L} = 14 \text{ mA}$ $I_{L} = 60 \text{ mA}$ $I_{L} = 100 \text{ mA}$		VL	4.6 8.8	2.4 5.0 7.5 9.4	5.4 10.0	V V V V
Transmission Amplifier, I _L =	14 mA, V _{MIC} = 2 mV, RGT = 2	27 kΩ, Unles	ss Otherwise S	Specified	4		
Adjustment range of transmit gain			G _T	40	45	50	dB
Transmitting amplification	RGT = 12 kΩ RGT = 27 kΩ		G _T	47 39.8	48	49 41.8	dB
Frequency response	$I_{L} \ge 14 \text{ mA},$ f = 300 to 3400 Hz		∆G _T			±0.5	dB
Gain change with current	Pin 20 open (AGA), I _L = 14 to 100 mA		ΔG _T			±0.5	dB
Gain deviation	$T_{amb} = -10 \text{ to } +60^{\circ}\text{C}$		ΔG_T			±0.5	dB
CMRR of microphone amplifier			CMRR	60	80		dB
Input resistance of MIC amplifier	RGT = 12 kΩ RGT = 27 kΩ		R _i	45	50 75	110	kΩ
Distortion at line	$I_L > 14 \text{ mA}$ $V_L = 700 \text{ mV}_{rms}$		dt			2	%
Maximum output voltage	$I_L > 19$ mA, d < 5% $V_{mic} = 25$ mV CTXA = 1 μ F		V _{Lmax}	1.8	3	4.2	dBm
Noise at line psopho- metrically weighted	$I_L > 14 \text{ mA}$ $G_T = 48 \text{ dB}$		n _o		-80	-72	dBmp

Electrical Characteristics (Continued) f = 1 kHz, 0 dBm = 775 mV_{rms}, I_M = 0.3 mA, I_{MP} = 2 mA, RDC = 130 k Ω , T_{amb} = 25°C, RGSA = 560 k Ω , Z_{ear} = 68 nF + 100 Ω , Z_M = 68 nF, Pin 20 open, V_{MUTX} = GND, unless otherwise specified.

Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit
Anti-clipping attack time release time	CTXA = 1 μF each 3 dB overdrive				0.5 9		ms ms
Gain at low operating current	$\begin{split} I_{L} &= 10 \text{ mA} \\ I_{MP} &= 1 \text{ mA} \\ \text{RDC} &= 68 \text{ k}\Omega \\ V_{mic} &= 1 \text{ mV} \\ I_{M} &= 300 \mu\text{A} \end{split}$		G _T	40		42.5	dB
Distortion at low operating current	$I_{L} = 10 \text{ mA}$ $I_{M} = 300 \text{ \muA}$ $I_{MP} = 1 \text{ mA}$ $RDC = 68 \text{ k}\Omega$ $V_{mic} = 10 \text{ mV}$		d _t			5	%
Line-loss compensation	l _L = 100 mA, RAGA = 20 kΩ		ΔG_{TI}	-6.4	-5.8	-5.2	dB
Mute suppression, MIC muted (microphone preamplifier)	I _L ≥ 14 mA Mutx = open		G _{TM}	60	80		dB
Receiving Amplifier, $I_L = 14$ r	mA, RGR = 62 kΩ, Unless O	therwise Sp	ecified, V _{GEN} =	300 mV		1	I.
Adjustment range of receiving gain	$I_L \ge 14 \text{ mA},$ single-ended		G _R	-8		+2	dB
Receiving amplification	RGR = 62 kΩ RGR = 22 kΩ		G _R	-7.75	-7 1.5	-6.25	dB
Amplification of DTMF signal from DTMF IN to RECO	$I_L \ge 14 \text{ mA}$ $V_{MUTX} = V_{MP}$		G _{RM}	1	4	7	dB
Frequency response	I _L > 14 mA, f = 300 Hz to 3400 Hz		ΔG_{RF}			±0.5	dB
Gain change with current	I _L = 14 to 100 mA		ΔG_R			±0.5	dB
Gain deviation	$T_{amb} = -10 \text{ to } +60^{\circ}\text{C}$		ΔG_R			±0.5	dB
Ear protection	$I_L \ge 14 \text{ mA}$ $V_{GEN} = 11 \text{ V}_{rms}$		EP			1.1	Vrms
MUTE suppression DTMF operation	$I_L \ge 14 \text{ mA}$ $V_{MUTX} = V_{MP}$		∆G _R	60			dB
Output voltage d ≤2%	I _L = 14 mA Z _{ear} = 68 nF			0.5			V _{rms}
Maximum output current $d \le 2\%$	$Z_{ear} = 100 \ \Omega$			4			mA (peak)
Receiving noise psophometrically weighted	$Z_{ear} = 68 \text{ nF} + 100 \Omega$ I _L ≥ 14 mA		n _i		-80	-77	dBmp
Output resistance	Output against GND		R _o			10	Ω
Line-loss compensation	RAGA = 20 kΩ I_L = 100 mA		∆G _{RI}	-7.0	-6.0	-5.0	dB
AC impedance			Z _{imp}	840	900	960	Ω

Electrical Characteristics (Continued)

f = 1 kHz, 0 dBm = 775 mV_{rms}, I_M = 0.3 mA, I_{MP} = 2 mA, RDC = 130 kΩ, T_{amb} = 25°C, RGSA = 560 kΩ, Z_{ear} = 68 nF + 100 Ω, Z_M = 68 nF, Pin 20 open, V_{MUTX} = GND, unless otherwise specified.

Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit
Gain at low operating current	$I_{L} = 10 \text{ mA} \\ I_{MP} = 1 \text{ mA} \\ I_{M} = 300 \mu\text{A} \\ V_{GEN} = 560 \text{ mV} \\ \text{RDC} = 68 k\Omega$		G _R	-8	-7	-6	dB
Distortion at low operating current	$I_{L} = 10 \text{ mA}$ $I_{MP} = 1 \text{ mA}$ $V_{GEN} = 560 \text{ mV}$ RDC = 68 k Ω		d _R			5	%
Speaker Amplifier			1				
Minimum line current for operation	No AC signal		I _{Lmin}			15	mA
Input resistance		24		14		22	kΩ
Gain from SAI to SAO	$V_{SAI} = 3 \text{ mV},$ $I_{L} = 15 \text{ mA},$ RGSA = 560 kΩ RGSA = 20 kΩ		G _{SA}	35.5	36.5 -3	37.5	dB dB
Output power	Load resistance $R_L = 50 \Omega, d < 5\%$ $V_{SAI} = 20 mV$ $I_L = 15 mA$ $I_L = 20 mA$		P _{SA} P _{SA}	3	7 20		mW mW
Output noise (input SAI open) psopho-metrically weighted	I _L > 15 mA		n _{sa}			200	μV _{psoph}
Gain deviation	$I_L = 15 \text{ mA}$ $T_{amb} = -10 \text{ to } +60^{\circ}\text{C}$		ΔG_{SA}			±1	dB
Mute suppression	$I_L = 15 \text{ mA},$ $V_L = 0 \text{ dBm},$ $V_{SAI} = 4 \text{ mV}$ Pin 23 open		V _{SAO}			-60	dBm
Gain change with current	I _L = 15 to 100 mA		ΔG_{SA}			±1	dB
Resistor for turning off speaker amplifier	I _L = 15 to 100 mA		RG _{SA}	0.8	1.3	2	MΩ
Gain change with frequency	I _L = 15 mA f = 300 to 3400 Hz		ΔG_{SA}			±0.5	dB
Attack time of anti-clipping	20 dB over drive		t _r		5		ms
Release time of anti-clipping			t _f		80		ms
DTMF Amplifier Test Condition	ions: IMP = 2 mA, IM = 0.3 m	A, V _{MUTX} = '	VMP				
Adjustment range of DTMF gain	I _L = 15 mA Mute active		G _D	40		50	dB
DTMF amplification	$I_L = 15 \text{ mA},$ VDTMF = 8 mV Mute active: MUTX = VMP		G _D	40.7	41.7	42.7	dB
Gain deviaton	$I_L = 15 \text{ mA}$ $T_{amb} = -10 \text{ to } +60^{\circ}\text{C}$		G _D			±0.5	dB

Electrical Characteristics (Continued)

f = 1 kHz, 0 dBm = 775 mV_{rms}, I_M = 0.3 mA, I_{MP} = 2 mA, RDC = 130 kΩ, T_{amb} = 25°C, RGSA = 560 kΩ, Z_{ear} = 68 nF + 100 Ω, Z_M = 68 nF, Pin 20 open, V_{MUTX} = GND, unless otherwise specified.

Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit
Input resistance	RGT = 27 kΩ, RGT = 15 kΩ		R _i	60 26	180 70	300 130	kΩ
Distortion of DTMF signal	$I_L \ge 15 \text{ mA}$ $V_L = 0 \text{ dBm}$		d _D			2	%
Gain deviation with current	I _L = 15 to 100 mA		∆GD			±0.5	dB
AFS Acousting Feedback S	uppression		L	1		L	1
Range of attenuation	$I_L \ge 15 \text{ mA}$			0		50	dB
Attenuation of transmit gain	$\begin{split} I_L &\geq 15 \text{ mA}, \\ I_{\text{INLDT}} &= 0 \ \mu\text{A} \\ R_{\text{ATAFS}} &= 30 \ \text{k}\Omega \\ I_{\text{INLDR}} &= 10 \ \mu\text{A} \end{split}$		ΔG_{T}		45		dB
Attenuation of speaker amplifier	$I_{L} \ge 15 \text{ mA}$ $I_{INLDP} = 0 \mu$ $R_{ATAFS} = 30 \text{ k}\Omega$ $I_{INLDR} = 10 \mu$		ΔG_SA		50		dB
AFS disable	$I_L \ge 15 \text{ mA}$		VATAFS	1.5			V
Supply Voltages, V _{mic} = 25 r	nV, T _{amb} = -10 to +60°C	ł	L	1		L	I.
V _{MP}	$I_L = 14 \text{ mA},$ RDC = 68 k Ω $I_{MP} = 2 \text{ mA}$		V _{MP}	3.1	3.3	3.5	V
V _M	$I_L \ge 14 \text{ mA},$ $I_M = 300 \mu\text{A}$ RDC = 130 k Ω		V _M	1.4		3.3	V
V _B	$I_B = +20 \text{ mA},$ $I_L = 0 \text{ mA}$		V _B		7	7.6	V
MUTX Input (see Figure 20)							
Input current	$V_{MUTX} = V_{MP}$ $V_{MUTX} = GND$		I _{MUTX} I _{MUTX}		+20 -20	+30 -30	μΑ μΑ
Input voltage	Input high		V _{MUTX}	V _{MP} - 0.3 V			V
-	Input low		V _{MUTX}			0.3	V

U4089B-M Control

	MUTX	MODE
0	MIC 1/2 transmit enabled receive enable AFS = on AGA = on TXACL = on	Speech
Z	DTMF transmit enabled receive enable AFS = on AGA = on TXACL = on	For answering machine
1	DTMF transmit enabled DTMF to receive enable AFS = off AGA = off TXACL = off	DTMF dialling

	IMPSEL	MODE
0	Line impedance = 600Ω TXA = on ES = off	Speech
0 to Z	Line impedance = 600Ω TXA = off ES = on	Transmit mute
1 to Z	Line impedance = 900Ω TXA = off ES = on	Transmit mute
1	Line impedance = 900Ω TXA = on ES = off	Speech

Logic Level	
0 = < (0.3 V)	
$Z = > (1 V) < (V_{MP} - 1 V)$ or (open input)	
$1 = > (V_{MP} - 0.3 \text{ V})$	

AFS = Acoustical feedback-suppression control AGA = Automatic gain adjustment TXACL = Transmit anti-clipping control ES = External supply

-

100

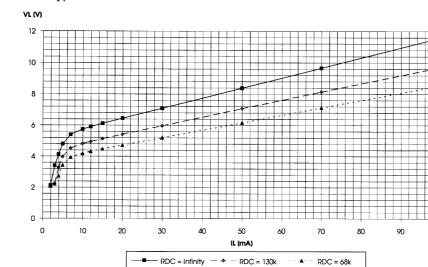
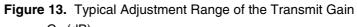



Figure 12. Typical DC Characteristic

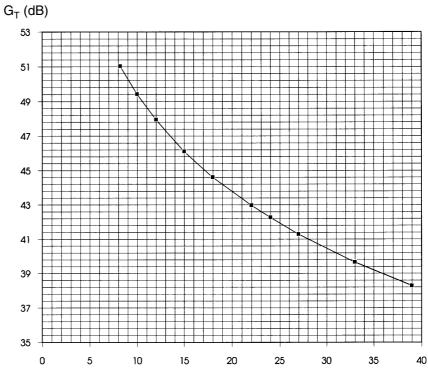
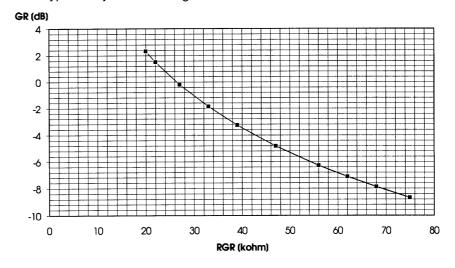
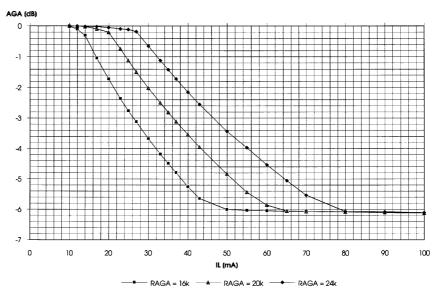
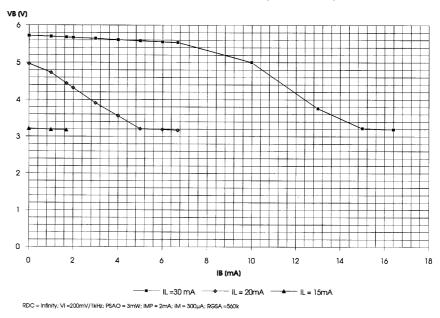


Figure 14. Typical Adjustment Range of the Receive Gain

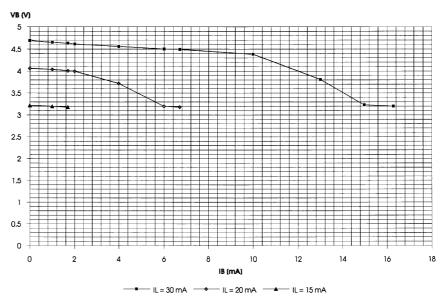

Figure 15. Typical AGA Characteristic

Figure 16. Typical Load Characteristic of V_B for a Maximum (RDC = infinity) DC Characteristic and a 3-mW Loudspeaker Output

Figure 17. Typical Load Characteristic of V_B for a Medium DC Characteristic (RDC = 130 k Ω) and a 3-mW Loudspeaker Output

RDC = 130k; VI = 200mV/1kHz; PSAO = 3mW; IMP = 2mA; IM = 300µA; RGSA = 560k



Figure 18. Typical Load Characteristic of V_B for a Minimum DC Characteristic (RDC = 68 k Ω) and a 3-mW Loudspeaker Output

Figure 19. DC Voltage Absolute

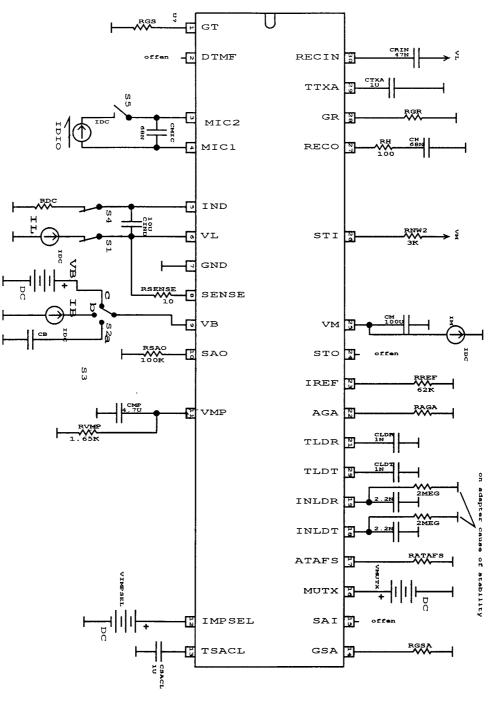


Figure 20. DC Voltage Current Test

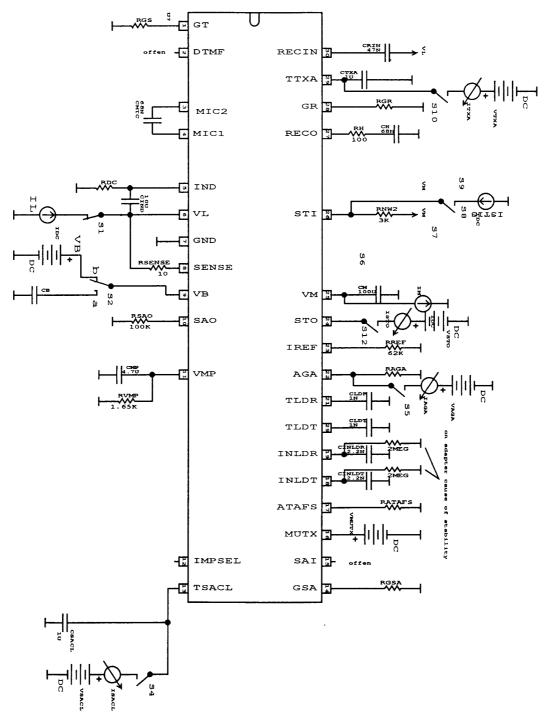


Figure 21. DC Ramps

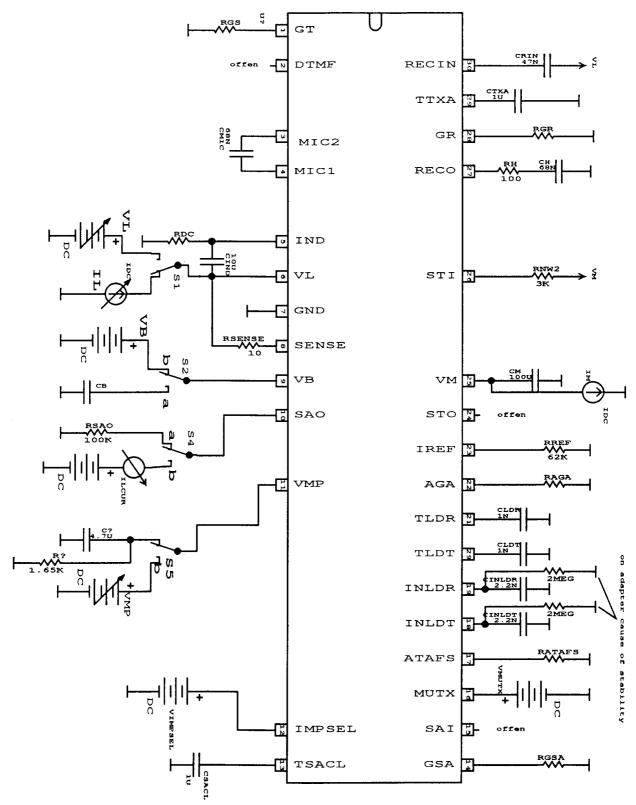


Figure 22. AC Tests

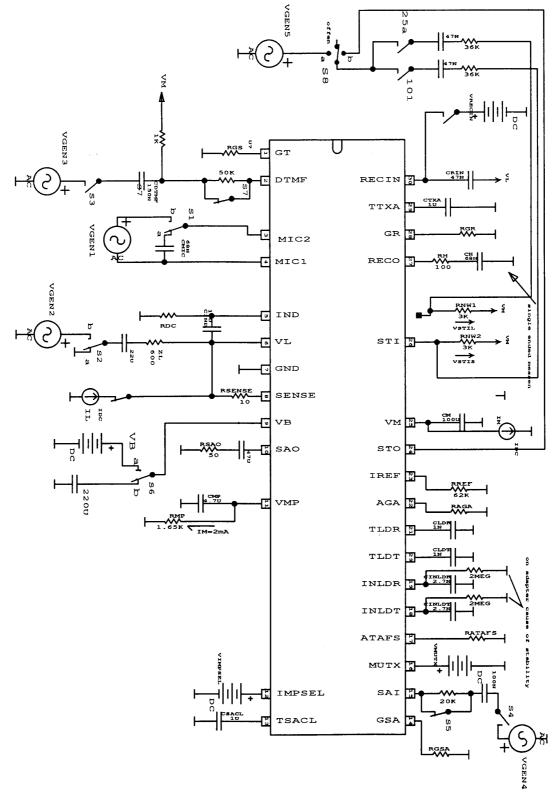
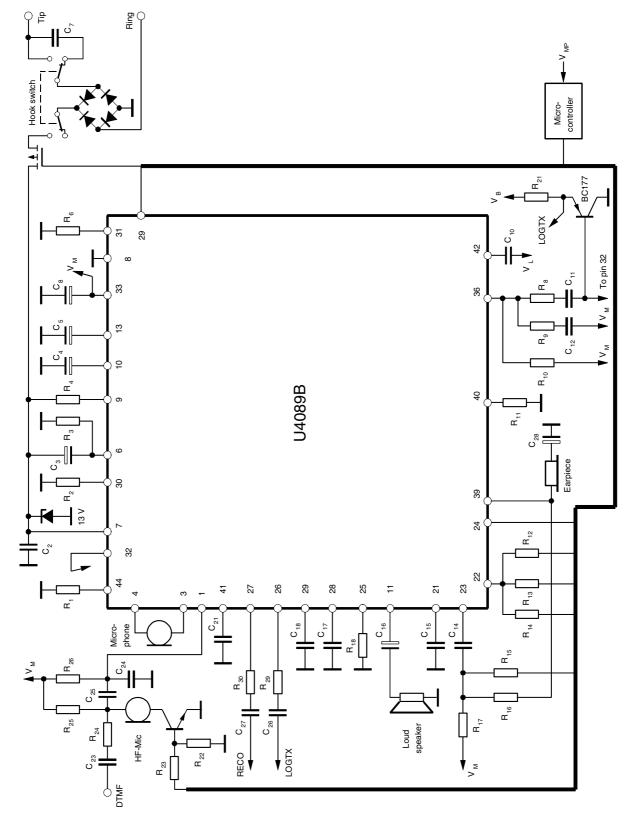
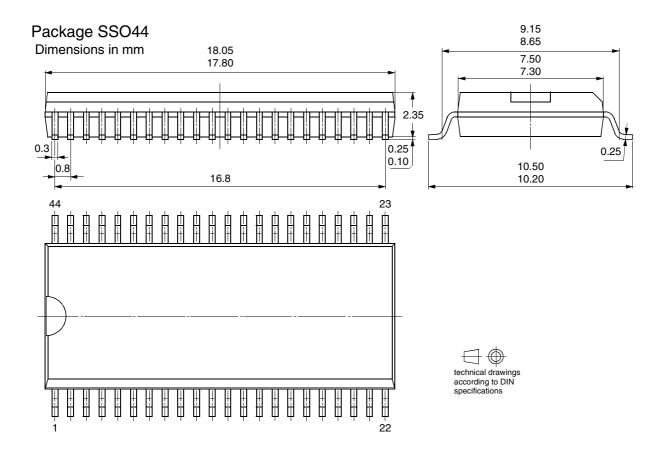



Figure 23. Application for Hands-free Operation


Table 1. Typical Values of External Comp	oonents (see Figure 23)
--	-------------------------

Name	Value	Name	Value	Name	Value	Name	Value
C ₂	4.7 nF	C ₁₆	47 µF	R ₃	>68 kΩ	R ₁₆	1 kΩ
C ₃	10 µF	C ₁₇	10 µF	R ₄	10 kΩ	R ₁₇	1.2 kΩ
C ₄	220 µF	C ₁₈	10 µF	R ₆	62 kΩ	R ₁₈	30 kΩ
C ₅	47 µF	C ₂₁	1 µF	R ₈	22 kΩ	R ₂₁	15 kΩ
C ₇	1 µF	C ₂₃	6.8 nF	R ₉	330 kΩ	R ₂₂	330 kΩ
C ₈	100 µF	C ₂₄	10 nF	R ₁₀	3 kΩ	R ₂₃	220 kΩ
C ₁₀	150 nF	C ₂₅	100 nF	R ₁₁	62 kΩ	R ₂₄	68 kΩ
C ₁₁	68 nF	C ₂₆	470 nF	R ₁₂	30 kΩ	R ₂₅	2 kΩ
C ₁₂	33 nF	C ₂₇	33 nF	R ₁₃	62 kΩ	R ₂₆	3.3 kΩ
C ₁₄	100 nF	C ₂₈	10 µF	R ₁₄	120 kΩ	R ₂₉	1 kΩ
C ₁₅	1 µF	R ₂	20 k Ω	R ₁₅	47 kΩ	R ₃₀	12 kΩ

Ordering Information

Extended Type Number	Package	Remarks
U4089B-MFN	SSO44	Tubes
U4089B-MFNG3	SSO44	Taped and reeled

Package Information

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel[®] is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

Printed on recycled paper.