查询UA3730供应商

UA3730

INC

Features

- Single-chip CMOS construction.
- WWW.DZSC.C Operating voltage range — 3 to 6 V.
- Low current: Operating 4 mA (max.) Standby $5 \mu A$ (typ.)
- 12-digit password providing 10¹² combinations.
- Pulse and level type output due to keying correct password.
- Alarm and 60-second-wide pulse output due to an incorrect password.

General Description

The UA3730 is a single-chip CMOS Electronic lock IC which can accept 12-digit passwords (ie. 10² combinations). If using the incorrect password, it will alarm and trigger an external burglar alarm system to

Pin and Keyboard Configuration

- Built-in ON/OFF sensor pin for using traditional key.
- Built-in key-in echo.
- inexpensive RC Built-in oscillator circuit using components.
- Password changeable by the user.
- Auto-time-out without any key input in 1 minute.
- Application fields

1

4

7

Μ

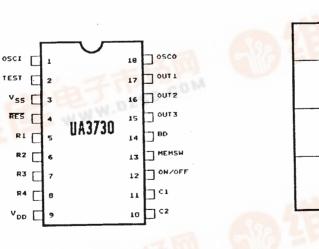
- Electronic door locks for homes, cars and others. Electronic locks for computers, burglar alarm systems and others.

alert the user or security system. UA3730 provides changing password functions for the user to change the password periodically to provide more security.

2

5

8


0

3

6

9

ĸ

Security Lock with Alarm

UA3730

Absolute Maximum Ratings*

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics (TOPG = 25°C, VDD = 5.0 V, VSS = 0.0 V)

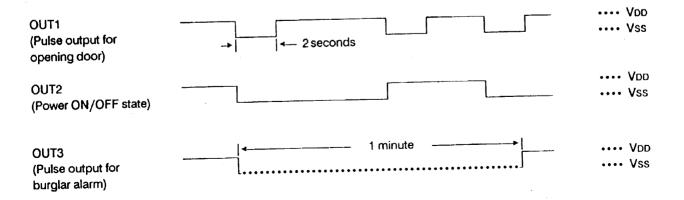
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Operating Voltage	VDD	3.0	5.0	6.0	v	
Current :						_
Stand-by	ISB		5	30	μA	FOPG = 400KHz
Operating	loo	1	-	4	mA	
Operating Frequency	Fopg	260	400	645	KHz	
Input Voltage — 'H'						
OUT1 to OUT3	VIH1	0.7Vod	-	13.5	V	
Others	VIH2	0.7VDD	-	Vod	V	
Input Voltage 'L'	ViL	Vss	-	0.3VDD	v	
Output current — 'L' OUT1 to OUT3	IOL1	_	-	15	mA	VIN = 0.0V
Output Voltage — 'H'	VOH1	Vpp - 1.2		_	v	Iон = -50 µА
$(V_{DD} = 4.5 \text{ to } 5.5 \text{V})$	VOH2	VDD - 0.5	-	-	v	$IOH = -10 \mu A$
Output Voltage — 'L'	Vol1	_		1.5	v	IOL = 10mA
$(V_{DD} = 4.5 \text{ to } 5.5\text{V})$	Vol2	-	-	0.4	V	IoL = 1.8mA

Pin Description

Pin No.	Designation	Description
1	OSCI	Oscillator input pin
2	TEST	Test pin; normally connected to Vss
3	Vss	Ground
4	RES	Reset pin; short to Vss when resetting
5	R1	Keyboard row line 1
6	R2	Keyboard row line 2
7	R3	Keyboard row line 3
8	R4	Keyboard row line 4
9	VDD	Positive voltage supply
10	C2	Keyboard column line 1
11	C1	Keyboard column line 2
12	ON/OFF	Input pin of ON/OFF sensor
13	MEMSW	Memory switch; short to Vss for enabling memory switch, floating for disabling the memory switch
14	BD	Alarm buzzer driver pin
15	OUT3*	Pulse output while 3 error keying
16	OUT2*	Power ON/OFF output for correct password
17	OUT1*	Pulse output for opening door while keying the correct password
18	OSCO	Oscillator output pin

.

* OUT1, OUT2 and OUT3 are all open drain output pins.

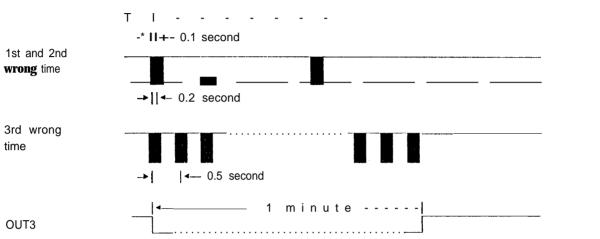


Function Description

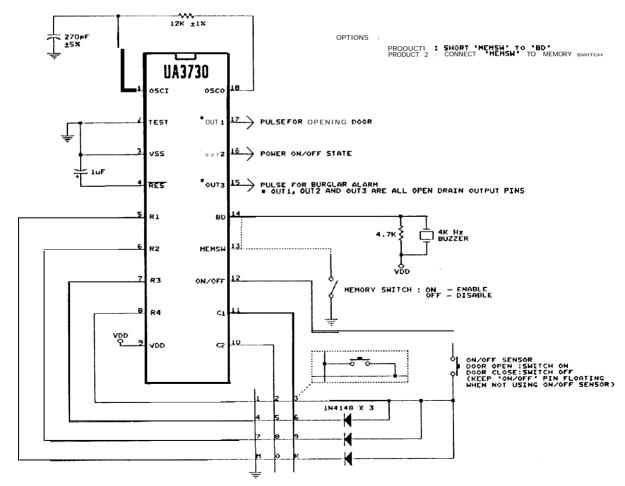
1. Input Mode

- (1) Input correct password then press the "K" key,
 - OUT1 outputs a 2-second-wide pulse to open the door.
 - OUT2 change state, HIGH < = = > LOW to turn ON (or OFF) the power.
- (2) Input incorrect password then press the "K" key,
 - 1st incorrect time Alarm buzzer sounds 0.2 second.
 - 2nd incorrect time Alarm buzzer sounds 0.2 second.
 - 3rd incorrect time Alarm buzzer sounds 60 seconds and OUT3 pin outputs one 60-second-wide pulse to trigger external burglar alarm system.
- (3) Disable alarm
 - Input the correct password, then press "K" key to disable OUT3 output.
- 2. Change Password Mode
- (1) Product1 (without memory switch) :
 - Key in old, but correct, password.
 - Press "M" key to input old password.
 - Key in the new password.
 - Press "M" key again to input the new password.

- UA3730
- (2) Product2 (with memory switch) :
 - Turn on the memory switch.
 - Key in the new password.
 - Press "M" key to input the new password.
- 3. Miscellaneous
- (1) Using with ON/OFF sensor :
 - While unlocking this electronic lock without keying the correct password, this ON/OFF pin will output a 60 second-wide pulse to trigger the external burglar alarm.
 - Keep ON/OFF pin floating if this ON/OFF sensor is unnecessary.
- (2) Auto-time-out :
 - UA3730 enters standby condition without any key input in 1 minute when the ON/OFF sensor is inactive.
 - If the ON/OFF sensor is active, UA3730 does not execute auto-time-out.
- (3) Key-in echo :
 - Pressing any key will make UA3730 sound a key-in echo to confirm this key-in.
- (4) Power-on-reset :
 - Password will reset to 0 and all output pins are HIGH after power-on-reset.

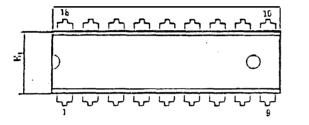


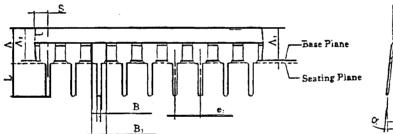
Function Waveform

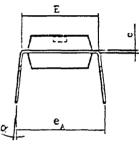

BD Output Waveform

1

Typical Application Circuits




NOTES : ALL OUTPUT PINS ARE NORMAL HIGH AND ACTIVE LOW



Package Information

P-DIP 18L Outline Dimension

Symbol	Dimensions in inch	Dimensions in mm		
A	0.175 Max.	4.45 Max.		
A۱	0.010 Min.	0.25 Min.		
A2	0.130±0.005	3.30±0.13		
В	0.018 _0002+0.004	0.46 - ⁺⁰¹⁰ NB		
Bı	0.060 -+0.0040.002	1.52 - ^{+0.10} 0.05		
с	0.010 + 0.004 - 0.002	0.25 +0.10 -0.05		
D	0.900TYP (0.910Max.)	22.86TYP (23.11Max.)		
E	0.300±0.010	7.62 ± 0.25		
E١	0.250 ± 0.005	6.35±0.13		
e,	0.100 ± 0.010	2.54 ± 0.25		
L	0.130±0.010	3.30 ± 0.25		
a	0°~15°	0°~15°		
e₄	c. 55 ± 0.020	9.02 ± 0.51		
S	0.055 Max.	1.40 Max.		

Note: 1. The max value of dimension D includes end fizsh. 2. The dimension E doesn't include resin fins.

3. The dimension S includes end fizsh.

4 All dimensions are based on British system.

UA3730

UA3730

Notice: The information appearing in this publication is believed to be accurate. Integrated circuits sold by UMC are covered by the warranty and patent indemnification provisions stipulated in the terms of sale only. UMC makes no warranty, express, statutory, implied or by description regarding the information in this publication or regarding the freedom of the described chip from patent infringement. Furthermore, UMC makes no warranty of mercharitability or fitness for any purpose. UMC reserves the right to halt production or alter specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other information in this publication are current before placing orders.

Products described herein are intended for use in normal commercial applications. Applications which require extended temperature range, unusual environmental requirements, or high reliability applications, e.g. military, medical life-support life sustaining equipment, are specifically not recommended without additional processing by UMC for such applications.