

INTEGRATED CIRCUITS

DATA SHEET

UAA3500HL Pager receiver

Preliminary specification
Supersedes data of 1999 Mar 30
File under Integrated Circuits, IC17

2000 Jan 18

Pager receiver**UAA3500HL****FEATURES**

- Double frequency conversion, zero-IF receiver with:
 - Configurable in all paging bands (130 to 930 MHz)
 - Low noise amplifier featured with four step Automatic Gain Control (AGC)
 - Down-conversion mixers
 - On-chip, zero-IF channel filter
 - I/Q, non-demodulated outputs
 - Highpass filters to remove DC offsets.
- External Voltage Controlled Oscillator (VCO):
 - Both Local Oscillators (LOs) derived from the VCO.

APPLICATIONS

- FLEX™, ERMES and POCSAG pagers
- Remote control terminals.

GENERAL DESCRIPTION

The UAA3500HL is a one-chip pager receiver complying with POCSAG, FLEX™ and ERMES standards. The IC performs in accordance with specifications in the –10 to +55 °C temperature range.

The UAA3500HL contains a front-end receiver, which can be configured through external components for any frequency band between 130 and 930 MHz. The back-end receiver consists of the channel filter and limiters. An external VCO ensures the Local Oscillator (LO) for the front-end. Designed in an advanced BiCMOS process, it combines high performance with low-power consumption and a high degree of integration, thus reducing external component costs and total radio size.

Its first advantage is to remove the expensive SAW filter necessary in a superhet architecture, replacing it by an integrated, elliptic channel filter that provides 70 dB adjacent channel rejection. The receive front-end section consists of a low-noise amplifier that drives mixers through an external LC image rejection filter. The output drives the I and Q second mixers, whose outputs are at zero frequency. The receiver back-end section consists of filters (channel filtering), limiters (limited output required) and high-pass filters (DC block) to remove DC offsets. Outputs are I and Q, undemodulated signals.

Its second advantage is to provide the two LO signals from one VCO only, tuned by a PLL. An on-chip frequency divider-by-2 and buffers provide the LO sources.

Its third advantage is to provide two voltage regulators, allowing to obtain 1.0 and 1.8 V regulated voltages.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
UAA3500HL	LQFP48	plastic low profile quad flat package; 48 leads; body 7 × 7 × 1.4 mm	SOT313-2

Pager receiver

UAA3500HL

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS ⁽¹⁾	MIN.	TYP.	MAX.	UNIT
V _{CC1}	supply voltage 1 (B++; see note 2)		1.85	2.1	3.3	V
V _{CC2}	supply voltage 2 (B+; see note 2)		1.05	1.4	1.5	V
I _{CC1(RX)}	supply current from B++	RX section on; DC tested $f_{RF} = 160$ MHz $f_{RF} = 280$ MHz $f_{RF} = 930$ MHz	— — 2.35	2.4 2.4 2.7	— — 3	mA mA mA
I _{CC2(RX)}	supply current from B+	RX section on; DC tested $f_{RF} = 160$ MHz $f_{RF} = 280$ MHz $f_{RF} = 930$ MHz	— — 1.85	1.3 1.4 2.3	— — 2.45	mA mA mA
NF _{RX}	receiver noise figure	from RF input to 2nd mixer input $f_{RF} = 160$ MHz $f_{RF} = 280$ MHz $f_{RF} = 930$ MHz	— — —	2.7 3.1 4.4	— — —	dB dB dB
P _{i(ref)}	RF input sensitivity	3% BER $f_{RF} = 160$ MHz; 1600 bits/s 2-level FSK $f_{RF} = 280$ MHz; 1600 bits/s 2-level FSK $f_{RF} = 930$ MHz; 6400 bits/s 2-level FSK $f_{RF} = 930$ MHz; 6400 bits/s 4-level FSK	— — — —	—128.5 —128 —126.5 —123	— — — —	dBm dBm dBm dBm
ACR	adjacent channel rejection		65	70	—	dB
T _{amb}	ambient temperature		—10	+25	+55	°C

Notes

1. For 930 MHz band; for other conditions see Chapters "DC characteristics" and "AC characteristics".
2. For B+ and B++, see Fig.3.

Pager receiver

UAA3500HL

BLOCK DIAGRAM

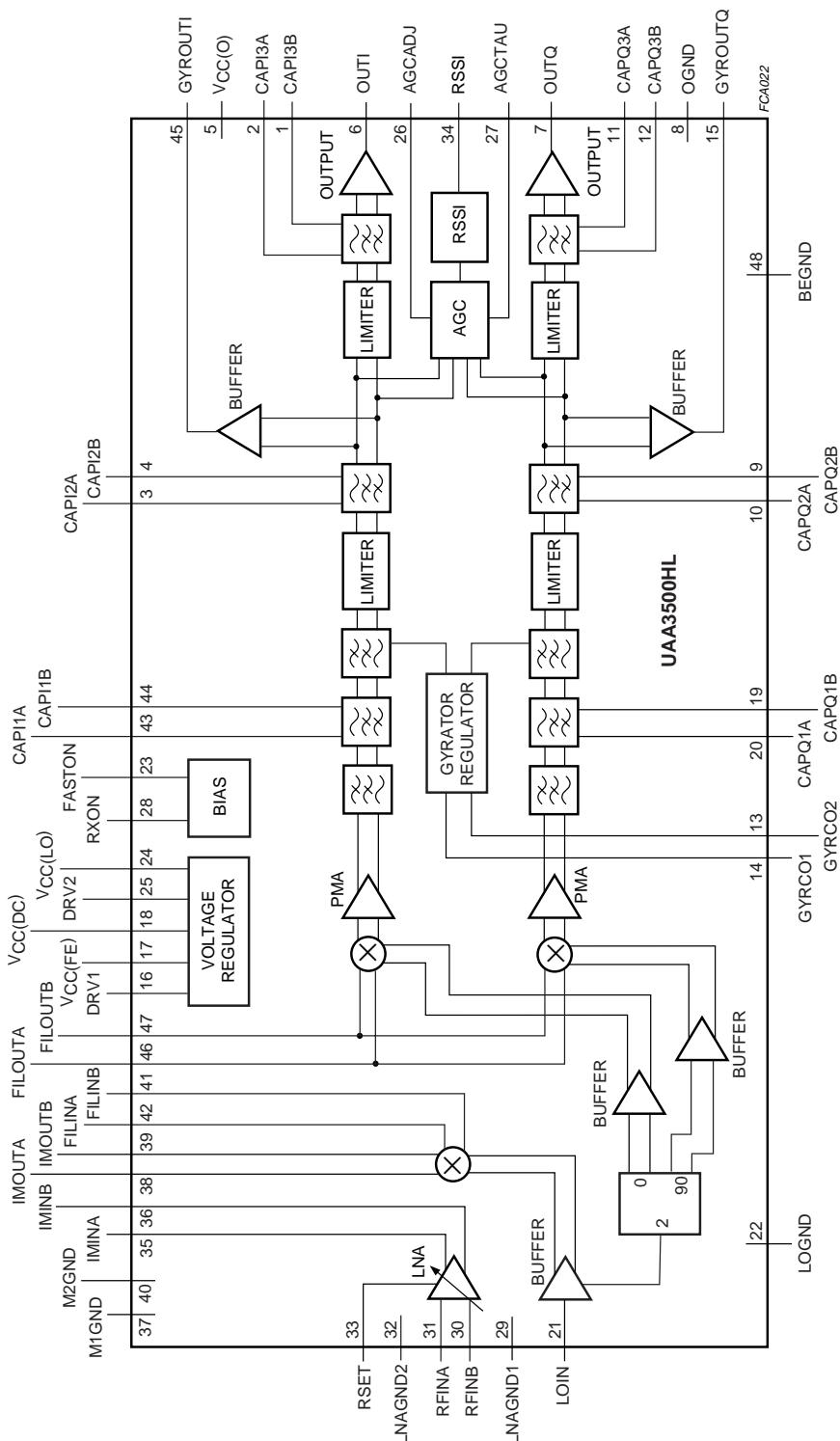


Fig.1 Block diagram.

Pager receiver

UAA3500HL

PINNING

SYMBOL	PIN	DESCRIPTION
CAPI3B	1	3rd DC filter (I path) external capacitor B (I path)
CAPI3A	2	3rd DC filter (I path) external capacitor A (I path)
CAPI2A	3	2nd DC filter (I path) external capacitor A (I path)
CAPI2B	4	2nd DC filter (I path) external capacitor A (I path)
V _{CC(O)}	5	output stage supply voltage B++ (I path)
OUTI	6	output I and Q signals (I path)
OUTQ	7	output I and Q signals (Q path)
OGND	8	output stage ground
CAPQ2B	9	2nd DC filter external capacitor B (Q path)
CAPQ2A	10	2nd DC filter external capacitor A (Q path)
CAPQ3A	11	3rd DC filter external capacitor A (Q path)
CAPQ3B	12	3rd DC filter external capacitor B (Q path)
GYRCO2	13	external resistor to set-up gyrator filter cut-off frequency
GYRCO1	14	external resistor to set-up gyrator filter cut-off frequency
GYROUTQ	15	Q-gyrator output
DRV1	16	regulator driver (1.8 V)
V _{CC(FE)}	17	regulated voltage for front-end (1.8 V)
V _{CC(DC)}	18	input voltage from DC-to-DC converter (2.1 V)
CAPQ1B	19	1st DC filter external capacitor (Q path)
CAPQ1A	20	1st DC filter external capacitor (Q path)
LOIN	21	LO input
LOGND	22	LO strip ground
FASTON	23	fast mode enable
V _{CC(LO)}	24	regulated voltage for LO strip (1.0 V)
DRV2	25	regulator driver (1.0)
AGCADJ	26	AGC loop gain control
AGCTAU	27	AGC loop time constant
RXON	28	receiver mode enable
LNAGND1	29	receiver LNA (Low Noise Amplifier) ground 1
RFINB	30	LNA input B
RFINA	31	LNA input A
LNAGND2	32	receiver LNA ground 2
RSET	33	LNA current setup
RSSI	34	received signal strength indicator
IMINA	35	image rejection filter input A
IMINB	36	image rejection filter input B
M1GND	37	first mixer ground
IMOUTA	38	image rejection filter output A
IMOUTB	39	image rejection filter output B
M2GND	40	second mixers ground

Pager receiver

UAA3500HL

SYMBOL	PIN	DESCRIPTION
FILINB	41	band filter input B
FILINA	42	band filter input A
CAPI1A	43	1st DC filter external capacitor (I path)
CAPI1B	44	1st DC filter external capacitor (I path)
GYROUTI	45	I-gyrator output
FILOUTA	46	band filter output to second mixers
FILOUTB	47	band filter output to second mixers
BEGND	48	receiver back-end ground

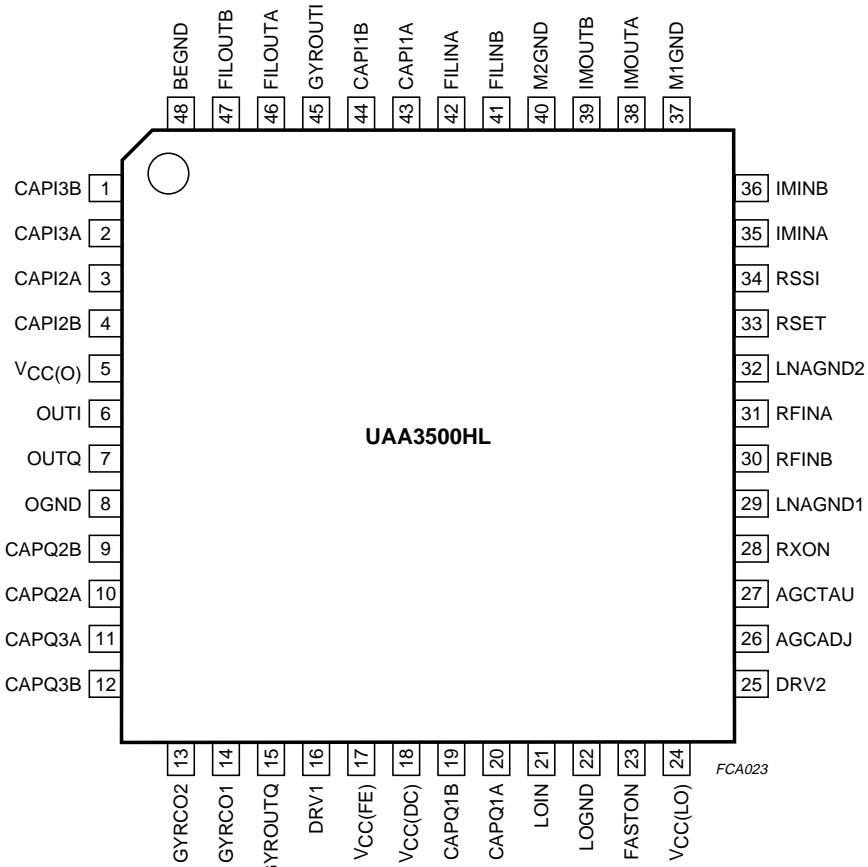


Fig.2 Pin configuration.

Pager receiver

UAA3500HL

FUNCTIONAL DESCRIPTION

Receiver front-end section

The receiver front-end consists of an LNA, followed by the first and the second mixers. For operation at low frequency (160 and 280 MHz, for instance), the first mixer can be bypassed, saving some current. The image rejection is done by an external LC filter placed between the LNA, the first mixer and the antenna selectivity. The IF band is filtered by an external filter placed between the first mixer and the second mixers for the I and Q paths. The RF signals are in phase, and the LO signals are shifted by 90°. The output signals are at zero frequency.

To increase the immunity to interferers, an AGC loop controls the LNA gain by attenuating the RF input signal. Four steps of attenuation are possible (each having 8 dB), ranging therefore from 0 to 32 dB. The AGC loop threshold level and time constant may be controlled externally at pins AGCADJ and AGCTAU. The second LO I/Q phase shift is made by a quadrature divider, whose input is the VCO oscillating signal.

The LNA current is setup by an external resistor. All the receivers (front-end and back-end) are turned on by pin RXON.

Receiver back-end section

The down-converted signal is amplified and then filtered by a Sallen-Key filter, which shows a notch at 15 kHz and about 6 dB rejection out-of-band. Then comes the first high-pass filter (DC block), followed by the gyrator filter, which performs an elliptic, 7-pole low-pass filtering. The signal is then amplified by the first limiter, filtered by the second DC block, amplified again, and filtered again by the third DC block. Finally, an output stage delivers the signal with rail-to-rail logic levels.

Table 1 Switching signals on the receiver

SIGNAL	SECTION	LEVEL	ON/OFF
RXON	receive section powered-on	HIGH	on
	receive section powered-off	LOW	off
FASTON	fast mode powered-on	HIGH	on
	fast mode powered-off	LOW	off

The first, second and third DC block frequencies are set at 4, 8 and 12 Hz respectively by external 330 nF capacitors.

The two voltage regulators are also activated by RXON.

At the output of the gyrator filter, the signal is buffered and logarithmically converted. It then controls the AGC loop.

To rapidly reach the DC operating point, a fast mode is built into the three DC blocks.

LO

The external VCO is AC-coupled at input LOIN. It is then buffered to drive the first mixer. LOIN also enters a quadrature divider-by-2, whose output signals are also buffered to drive the second mixers. The VCO frequency should be $\frac{2}{3}$ of the input RF signal.

The LO signal must be generated with an external frequency synthesizer and VCO or with a crystal oscillator.

OPERATING MODES

To use the IC, all V_{CC} pins must be connected to the supply voltage B++ (2.1 V). The 1.8 V regulated voltage sinks current from B++ and the 1.0 V regulated voltage from B+ (1.4 V). In a typical application, the B+ supply is the battery and the B++ supply is the DC/DC converter located in the baseband chip.

In normal operating mode, the receiver should be powered-on in fast mode. The fast mode can be turned off after several milliseconds.

Table 1 gives the definition of the polarity of the switching signals on the receive section.

Pager receiver

UAA3500HL

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		–	6	V
ΔGND	difference in ground supply voltage applied between all grounds	note 1	–	0.3	V
$P_{I(max)}$	maximum power input		–	20	dBm
$T_{j(max)}$	maximum operating junction temperature		–	150	°C
$P_{(max)}$	maximum power dissipation	in stagnant air at 25 °C	–	500	mW
T_{stg}	storage temperature		–65	+150	°C

Note

1. Pins short circuited internally must be short circuited externally.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air	90	K/W

HANDLING

All pins withstand the ESD test in accordance with "MIL-STD-883C class 2 (method 3015.5)".

DC CHARACTERISTICS

 $V_{CC} = 2.1$ V; $T_{amb} = 25$ °C; 930 MHz band application, 3% BER and 1600 bits/s 2 level; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Pins: $V_{CC(o)}$, $DRV1$, $V_{CC(FE)}$, $V_{CC(DC)}$, $V_{CC(LO)}$ and $DRV2$						
V_{CC1}	supply voltage 1 (B++; see note 1)	over full temperature range	1.85	2.1	3.3	V
V_{CC2}	supply voltage 2 (B+; see note 1)	over full temperature range	1.05	1.4	1.5	V
$I_{CC1(RX)}$	supply current from B++	RX section on; DC tested $f_{RF} = 160$ MHz $f_{RF} = 280$ MHz $f_{RF} = 930$ MHz	– – 2.35	2.4 2.4 2.7	– – 3	mA mA mA
$I_{CC2(RX)}$	supply current from B+	RX section on; DC tested $f_{RF} = 160$ MHz $f_{RF} = 280$ MHz $f_{RF} = 930$ MHz	– – 1.85	1.3 1.4 2.3	– – 2.45	mA mA mA
$I_{CC1(pd)}$	standby current from B++	Power-down mode; DC tested	0	0.01	1	µA
$I_{CC2(pd)}$	standby current from B+	Power-down mode; DC tested	0	0.01	0.5	µA

Pager receiver

UAA3500HL

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Pins: RXON, FASTON, OUTI and OUTQ						
V_{IH}	HIGH-level voltage		$V_{CC} - 0.3$	V_{CC}	$V_{CC} + 0.3$	V
V_{IL}	LOW-level voltage		-0.3	-	+0.4	V
I_{IH}	HIGH-level static current	$V_{CC} - 0.4$ V	-1	-	+1	μ A
I_{IL}	LOW-level static current	pin at 0.4 V	-1	-	+1	μ A
Pins: CAPI1A, CAPI1B, CAPQ1A and CAPQ1B						
V_{CAP}	DC level	RX section on	1.20	1.40	1.60	V
Pins: CAPI2A, CAPI2B, CAPQ2A, CAPQ2B						
V_{CAP}	DC level	RX section on	1.40	1.57	1.80	V
Pins: CAPI3A, CAPI3B, CAPQ3A, CAPQ3B						
V_{CAP}	DC level	RX section on	1.30	1.57	1.90	V
Pins: RFINA and RFINB						
V_{RF}	DC level	RX section on	-	0.92	-	V
Pins: IMOUTA and IMOUTB						
V_{IMOUT}	DC level	RX section on	-	0.17	-	V
Pins: $V_{CC(LO)}$						
$V_{VCC(LO)}$	DC level	RX section on	0.95	1.00	1.05	V
Pins: $V_{CC(FE)}$						
$V_{VCC(FE)}$	DC level	RX section on	1.75	1.80	1.85	V
Pins: FIOUTA and FIOUTB						
V_{FIOUT}	DC level	RX section on	-	0.24	-	V
Pins: AGCTAU and RSSI						
V_{RSSI}	DC level	RX section on; FASTON is LOW RX section on; FASTON is HIGH	- $V_{CC} - 0.3$	0 V_{CC}	0.30 -	V
V_{AGCTAU}	DC level	RX section on; FASTON is HIGH	1.50	1.60	1.70	V
Pins: GYROUTI and GYROUTQ						
V_{GYROUT}	DC level	RX section on	1.37	1.42	1.47	V
Output stage						
V_{OH}	HIGH-level output voltage	$I_o = -5 \mu A$	-	$V_{CC} - 0.2$	-	V
V_{OL}	LOW-level output voltage	$I_o = 5 \mu A$	-	0.2	-	V

Note

1. For B+ and B++, see Fig.3.

Pager receiver

UAA3500HL

AC CHARACTERISTICS

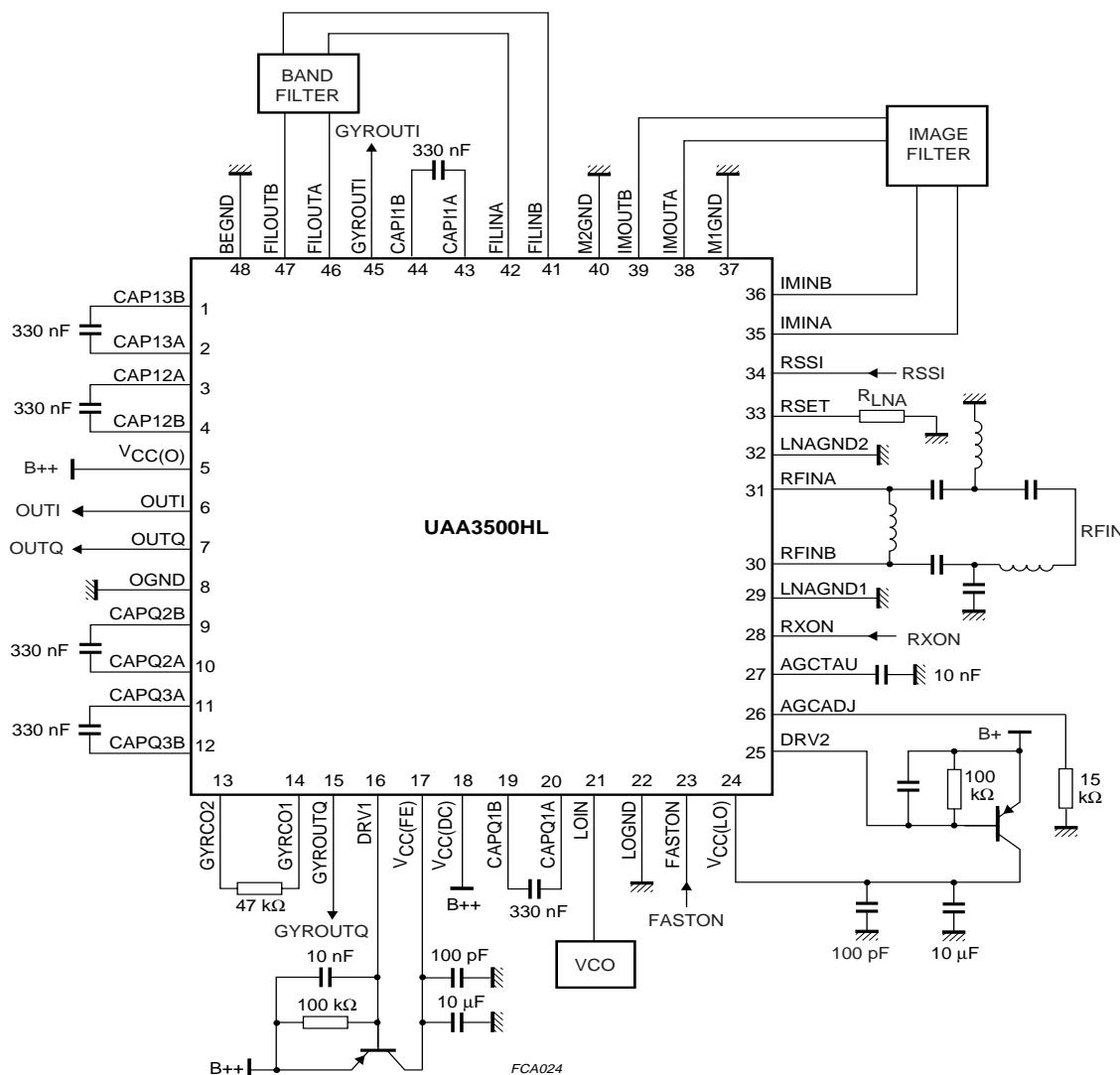
$V_{CC} = 2.1$ V; $T_{amb} = 25$ °C; 930 MHz band application, 3% BER and 1600 bits/s 2 level; on evaluation board according to Fig.3; system measurement done using PCD5009, PCD5010 baseband; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Receiver						
$P_{i(\text{ref})}$	RF input sensitivity	3% BER $f_{RF} = 160$ MHz; 1600 bits/s 2-level FSK $f_{RF} = 280$ MHz; 1600 bits/s 2-level FSK $f_{RF} = 930$ MHz; 6400 bits/s 2-level FSK $f_{RF} = 930$ MHz; 6400 bits/s 4-level FSK	–	–128.5	–	dBm
			–	–128	–	dBm
			–	–126.5	–	dBm
			–	–123	–	dBm
$G_{(\text{PCFE})}$	front-end conversion power gain	from RF input to 2nd mixer input $f_{RF} = 160$ MHz $f_{RF} = 280$ MHz $f_{RF} = 930$ MHz	–	20	–	dB
			–	12.8	–	dB
			–	12.7	–	dB
NF_{RX}	receiver noise figure	from RF input to 2nd mixer input $f_{RF} = 160$ MHz $f_{RF} = 280$ MHz $f_{RF} = 930$ MHz	–	2.7	–	dB
			–	3.1	–	dB
			–	4.4	–	dB
IP1	1 dB input compression point	from RF input to 2nd mixer input	–	–38	–	dBm
IP2	2nd order intercept point	from 2nd mixer input to gyrator output	45	–	–	dBm
IP3	3rd order intercept point	from RF input to 2nd mixer input; note 1	–	–33	–	dBm
IM3	3rd order intermodulation	3 signal measurement	55	–	–	dB
CCR	co-channel rejection	threshold +3 dB	–	5	–	dB
ACR	adjacent channel rejection	channel spacing = 25 kHz; from RF input to gyrator output	65	70	–	dB
α_{bl}	blocking immunity	frequency offset >1 MHz	75	80	–	dB
G_{AGC}	front-end gain reduction by AGC step		7	8	9	dB
AGC_{th}	AGC threshold	above sensitivity	20	25	30	dB
t_{on}	establishment time	until sensitivity +3 dB is reached	–	–	30	ms
ΔIQ	IQ channel unbalance		–	–	2	dB
R_{LNA}	LNA current set resistor	160 MHz	–	56	–	kΩ
		280 MHz	–	47	–	kΩ
		930 MHz	–	27	–	kΩ
R_{gyr}	gyrator cut-off frequency set resistor	cut-off frequency = 8.5 kHz	–	47	–	kΩ
LO						
f_{VCO}	VCO frequency		–	$\frac{2}{3}f_{RF}$	–	MHz

Pager receiver

UAA3500HL

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
LNA						
G_{LNA}	RF amplifier power gain	from RF input to image filter output $f_{RF} = 160$ MHz $f_{RF} = 280$ MHz $f_{RF} = 930$ MHz	– – 12.5	20 16.2 14.2	– – –	dB dB dB
NF_{LNA}	RF amplifier noise figure	from RF input to image filter output $f_{RF} = 160$ MHz $f_{RF} = 280$ MHz $f_{RF} = 930$ MHz	– – –	1.8 1.9 2.2	– – 2.5	dB dB dB
$IP1_{LNA}$	1 dB input compression point	from RF input to image filter output	–	–27	–	dBm
$IP3_{LNA}$	3rd order intercept point	from RF input to image filter output	–21	–17.6	–	dBm
First mixer						
G_{FM}	1st mixer power gain		–0.5	0	–	dB
NF_{FM}	1st mixer noise figure		–	10.2	13	dB
$IP1_{FM}$	1 dB input compression point		–	–22	–	dBm
$IP3_{FM}$	3rd order intercept point		–12.5	–11	–	dBm
Second mixer, PMA, Sallen-Key, 1st DC block and gyrator filter						
G_{VBE}	voltage gain	from 2nd mixer input to gyrator output	42	45	–	dB
$IP3_{BE}$	3rd order intercept point	from 2nd mixer input to gyrator output	–	–59	–	dBm
1st DC block						
$f_{cut-off}$	cut-off frequency	measured at gyrator output; FASTON is LOW	–	4	–	Hz
$f_{cut-off}$	cut-off frequency	measured at gyrator output; FASTON is HIGH	150	400	–	Hz


Note

1. The two tones for intermodulation test would normally be set at 2 and 4 or 4 and 8 channels for type approval tests i.e 930 and 930.1 or 930.1 and 930.2 MHz.

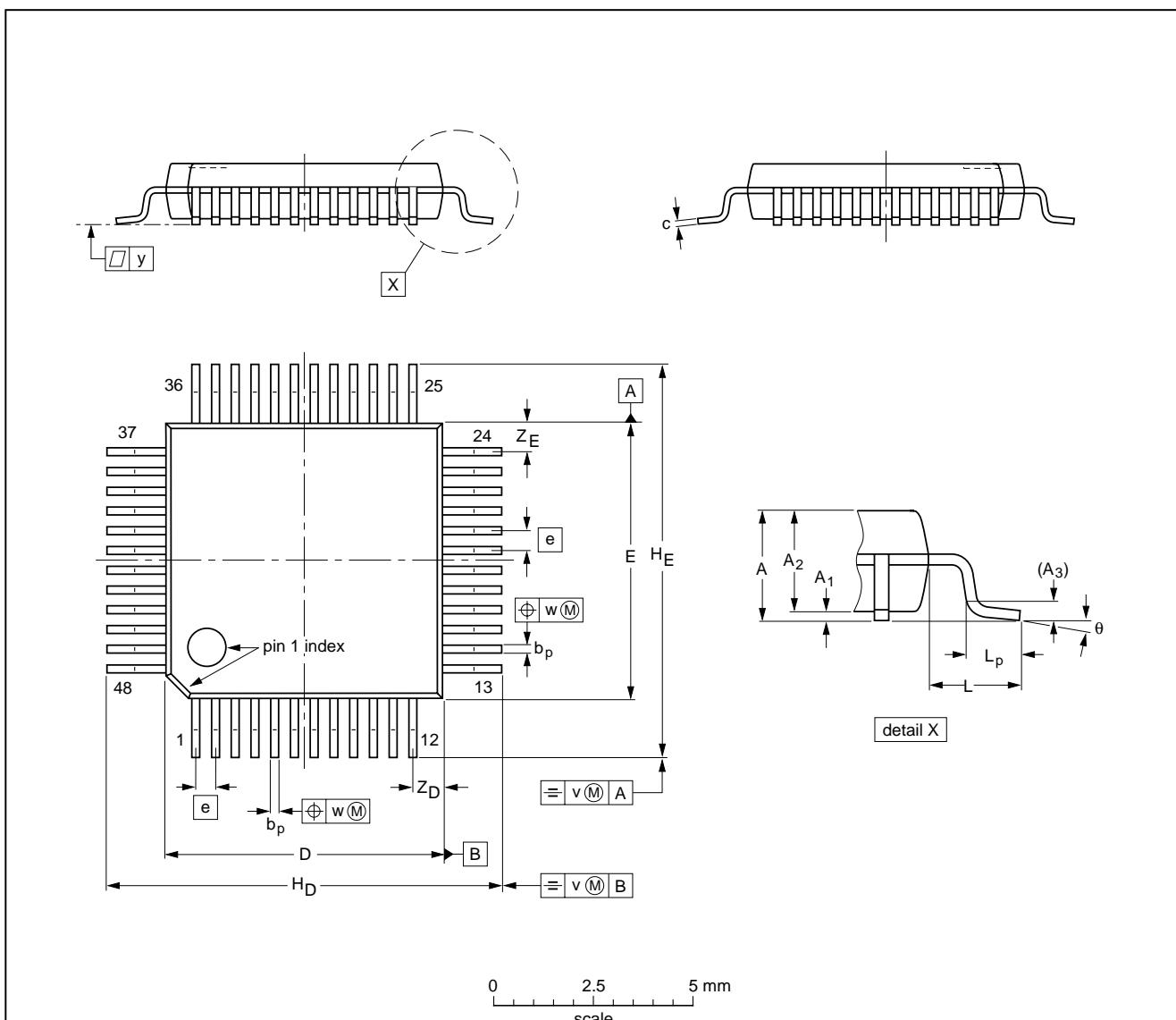
Pager receiver

UAA3500HL

APPLICATION INFORMATION

Electrical diagram of the UAA3500HL demonstration board for FLEX™ applications. All matching is to 50 Ω for measurement purposes.
 B+ = 1.4 V; B++ = 2.1 V.

Fig.3 Demonstration board diagram.


Pager receiver

UAA3500HL

PACKAGE OUTLINE

LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm

SOT313-2

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	b _p	c	D ⁽¹⁾	E ⁽¹⁾	e	H _D	H _E	L	L _p	v	w	y	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
mm	1.60 0.05	0.20 1.35	1.45	0.25	0.27 0.17	0.18 0.12	7.1 6.9	7.1 6.9	0.5	9.15 8.85	9.15 8.85	1.0	0.75 0.45	0.2	0.12	0.1	0.95 0.55	0.95 0.55	7° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT313-2		MS-026				97-08-01 99-12-27

Pager receiver

UAA3500HL

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is **preferred** to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis **must** be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

Pager receiver

UAA3500HL

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD	
	WAVE	REFLOW ⁽¹⁾
BGA, SQFP	not suitable	suitable
HLQFP, HSQFP, HSOP, HTSSOP, SMS	not suitable ⁽²⁾	suitable
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable

Notes

1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139

Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773

Belgium: see The Netherlands

Brazil: see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087

China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America

Czech Republic: see Austria

Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905

Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloni St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838, Fax +39 039 203 6800

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811

Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001

Portugal: see Spain

Romania: see Italy

Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria

Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +27 11 471 5401, Fax. +27 11 471 5398

South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382

Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087

Uruguay: see South America

Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 3341 299, Fax. +381 11 3342 553

Internet: <http://www.semiconductors.philips.com>

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 2000

SCA 69

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

465008/02/00/16

Date of release: 2000 Jan 18

Document order number: 9397 750 06478

Let's make things better.

Philips

Semiconductors

PHILIPS