



# Average Current Mode PWM Controller IC

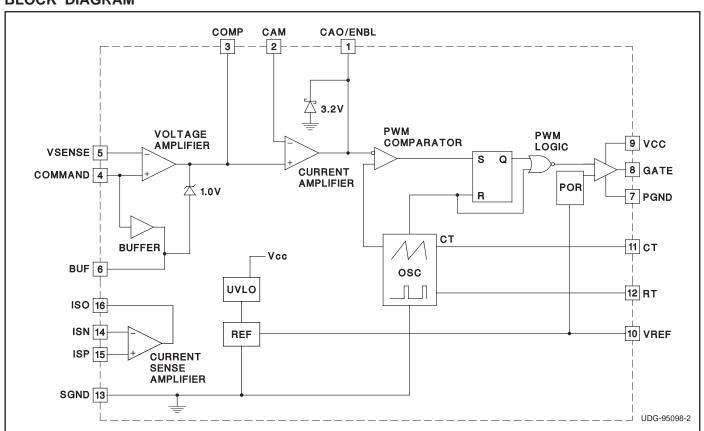
#### **FEATURES**

- 10.3V 20V Operating Range
- Low Offset Voltage Amplifier
- High Bandwidth Current and Voltage Amplifiers
- Low Offset Current Sense Amplifier
- Undervoltage Lockout
- Trimmed 5 Volt Reference
- Externally Programmable Oscillator Charge Current
- 1.5A Peak Totem Pole Output
- Available in 16-pin DIL or SOIC Packages

#### **DESCRIPTION**

The UC3886 family of PWM controller ICs is designed for DC-to-DC converters with average current mode control. It is designed for use in conjunction with the UC3910 4-bit DAC and Voltage Monitor. The UC3886 drives an external N-channel MOSFET and can be used to power the Intel Pentium® Pro and other high-end microprocessors.

The UC3886 in conjunction with the UC3910 converts 5VDC to an adjustable output ranging from 2.0V to 3.5V in 100mV steps with 35mV DC system accuracy.

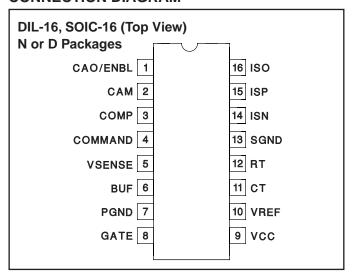

The oscillator is programmed by the user's selection of an external resistor and capacitor, and is designed for 300kHz typical operation.

The voltage and current amplifiers have 3.5MHz gain-bandwidth product to satisfy high performance system requirements.

The internal current sense amplifier permits the use of a low value current sense resistor, minimizing power loss. It has inputs and outputs accessible to allow user-selection of gain-setting resistors, and is internally compensated for a gain of 5 and above. The command voltage input is buffered and provided for use as the reference for the current sense amplifier.

The output of the voltage amplifier (input to the current amplifier) is clamped to 1 volt above the command voltage to serve as a current limit. The gate output can be disabled by bringing the CAO/ENBL pin to below 0.8 volts.

#### **BLOCK DIAGRAM**




# **ABSOLUTE MAXIMUM RATINGS**

| Supply Voltage                              |
|---------------------------------------------|
| Output Current                              |
| CAM, COMMAND, VSENSE, ISN, ISP ± 1/         |
| Analog Input                                |
| Storage Temperature                         |
| Junction Temperature                        |
| Lead Temperatue (Soldering, 10 sec.) +300°C |
|                                             |

Currents are positive into, negative out of the specified terminal. Consult Packaging Section of Databook for thermal limitations and considerations of packages.

## **CONNECTION DIAGRAM**



**ELECTRICAL CHARACTERISTICS** Unless otherwise specified, VCC = 12V, VCOMMAND = 3.0V, CT = 1nF, RT = 10k,  $TA = TJ = 0^{\circ}C < TA < 70^{\circ}C$  for the UC3886. (Note:  $-25^{\circ}C < TA < 85^{\circ}C$  for the UC2886,

| PARAMETER                    | PARAMETER TEST CONDITIONS               |       | TYP   | MAX   | UNITS |
|------------------------------|-----------------------------------------|-------|-------|-------|-------|
| Overall                      |                                         |       |       |       |       |
| Supply Current               | VCC = 11V, Gate Open                    |       | 10    | 15    | mA    |
|                              | VCC = 9.3V                              |       |       | 5     | mA    |
| Undervoltage Lockout         |                                         |       |       |       |       |
| Start Threshold              |                                         | 9.7   | 10.3  | 10.8  | V     |
| UVLO Hysteresis              |                                         |       | 0.25  | 0.4   | V     |
| Voltage Error Amplifier      |                                         |       |       |       |       |
| Input Offset Voltage         | V <sub>CM</sub> = 3.0V (UC3886)         |       |       | 4     | mV    |
|                              | V <sub>CM</sub> = 3.0V (UC2886)         |       |       | 15    | mV    |
| Input Bias Current           | $V_{CM} = 3.0V$                         |       |       | -2    | μΑ    |
| Input Offset Current         | V <sub>CM</sub> = 3.0V (UC3886)         |       |       | 0.01  | μΑ    |
|                              | V <sub>CM</sub> = 3.0V (UC2886)         |       |       | 0.1   | μΑ    |
| Open Loop Gain               | $2.5V < V_{COMP} < 3.5V$                | 60    | 85    |       | dB    |
| Common-Mode Rejection Ratio  | 2V < V <sub>COMP</sub> < 4V             | 60    | 85    |       | dB    |
| Power Supply Rejection Ratio | 11V < VCC < 15V                         | 60    | 85    |       | dB    |
| Output High Voltage (Clamp)  | $I_{COMP} = -100\mu A \text{ (UC3886)}$ | 3.95  | 4     | 4.05  | V     |
|                              | $I_{COMP} = -100\mu A \text{ (UC2886)}$ | 3.9   |       | 4.1   | V     |
| Output Low Voltage (Clamp)   | $I_{COMP} = 100 \mu A$                  | 1.9   |       | 2.7   | V     |
| Output Sink Current          | $V_{COMP} = 3.7V$                       | 0.9   |       |       | mA    |
| Output Source Current        | $V_{COMP} = 2.8V$                       | -0.15 | -0.25 |       | mA    |
| Gain-Bandwidth Product       | F = 100kHz                              | 2     | 3.5   |       | MHz   |
| 5.0V Reference               |                                         |       |       |       |       |
| Output Voltage               | out Voltage I <sub>VREF</sub> = 1.0mA   |       | 5     | 5.1   | V     |
| Total Variation              | Line, Load, Temperature                 |       |       | 5.175 | V     |
| Line Regulation              | ine Regulation 11V < VCC < 15V          |       |       | 10    | mV    |
| Load Regulation              | 0 < I <sub>VREF</sub> < 2mA             |       |       | 15    | mV    |
| Short Circuit Current        |                                         | -10   |       | -40   | mA    |

**ELECTRICAL CHARACTERISTICS** Unless otherwise specified, VCC = 12V, VCOMMAND = 3.0V, CT = 1nF, RT = 10k,  $TA = TJ = 0^{\circ}C < TA < 70^{\circ}C$  for the UC3886. (Note:  $-25^{\circ}C < TA < 85^{\circ}C$  for the UC2886.

| PARAMETER                     | TEST CONDITIONS                                   | MIN  | TYP   | MAX  | UNITS |
|-------------------------------|---------------------------------------------------|------|-------|------|-------|
| Input Buffer                  |                                                   |      |       |      |       |
| Gain                          | $I_{BUF} = \pm 500 \mu A (UC3886)$                | 0.98 | 1     | 1.02 | V/V   |
|                               | $I_{BUF} = \pm 500 \mu A (UC2886)$                | 0.95 |       | 1.05 | V/V   |
| Current-Sense Amplifier       |                                                   |      |       |      |       |
| Input Offset Voltage          | V <sub>CM</sub> = 3.0V (UC3886)                   |      |       | 2    | mV    |
|                               | V <sub>CM</sub> = 3.0V (UC2886)                   |      |       | 6    | mV    |
| Input Bias Current            | V <sub>CM</sub> = 3.0V                            |      |       | -1   | μΑ    |
| Input Offset Current          | V <sub>CM</sub> = 3.0V                            |      |       | 0.2  | μΑ    |
| Open Loop Gain                | 2V < V <sub>ISO</sub> < 6V                        | 60   | 85    |      | dB    |
| CMRR                          | 0V < V <sub>CM</sub> < 4.5V                       | 60   | 85    |      | dB    |
| PSRR                          | 11V < VCC < 15V                                   |      | 85    |      | dB    |
| Output High Voltage           | $I_{ISO} = -100\mu A$                             | 5    |       |      | V     |
| Output Low Voltage            | I <sub>ISO</sub> = 1mA                            |      |       | 1    | V     |
| Output Source Current         | V <sub>ISO</sub> = 2V                             | -0.2 |       |      | mA    |
| Gain-Bandwidth Product        | F = 100kHz                                        | 2    | 3.5   |      | MHz   |
| Current Amplifier             |                                                   |      |       |      | •     |
| Input Offset Voltage          | V <sub>CM</sub> = 3.0V (UC3886)                   |      |       | 13   | mV    |
|                               | V <sub>CM</sub> = 3.0V (UC2886)                   |      |       | 18   | mV    |
| Input Bias Current            | V <sub>CM</sub> = 3.0V                            |      |       | 1    | μА    |
| Open Loop Gain                | 1V < V <sub>CAO</sub> < 3V                        | 60   | 85    |      | dB    |
| CMRR                          | 1.5V < V <sub>CM</sub> < 4.5V                     | 60   | 85    |      | dB    |
| PSRR                          | 11V < VCC < 15V                                   | 60   | 85    |      | dB    |
| Output High Voltage           | $I_{CAO} = -100\mu A$                             | 3    |       | 3.3  | V     |
| Output Low Voltage            | $I_{CAO} = 100\mu A$                              |      |       | 1    | V     |
| Output Source Current         | V <sub>CAO</sub> =1V                              | -0.1 | -0.25 |      | mA    |
| Gain-Bandwidth Product        | F = 100kHz                                        | 2    | 3.5   |      | MHz   |
| Oscillator                    |                                                   |      |       | I    |       |
| Frequency                     | RT = 10k, CT = 1nF (UC3886)                       | 90   | 100   | 110  | kHz   |
|                               | RT = 10k, CT = 1nF (UC2886)                       | 85   |       | 115  | kHz   |
| Frequency Change With Voltage | 11V > VCC > 15V                                   |      |       | 1    | %     |
| CT Peak Voltage               |                                                   | 2.6  | 2.8   |      | V     |
| CT Valley Voltage             |                                                   |      | 1     | 1.2  | V     |
| CT Peak-to-Peak Voltage       |                                                   | 1.6  | 1.8   | 2.0  | V     |
| Output Section                |                                                   |      |       |      |       |
| Output Low Voltage            | I <sub>GATE</sub> = 200mA                         |      | 1.6   | 2.2  | V     |
| Output High Voltage           | $I_{GATE} = -200 \text{mA}$                       | 9    | 10.3  |      | V     |
| Output Low Voltage            | 5V < VCC < 9V, I <sub>GATE</sub> = 10mA           |      |       | 0.5  | V     |
| . 5-                          | V <sub>CAO</sub> < 0.8V, I <sub>GATE</sub> = 10mA |      |       | 0.5  | V     |
| Rise/Fall Time                | C <sub>L</sub> = 1nF                              |      |       | 150  | ns    |
| Maximum Duty Cycle            | (UC3886)                                          | 90   |       |      | %     |
| , , , -                       | (UC2886)                                          | 85   |       |      | %     |

#### PIN DESCRIPTIONS

**BUF:** (Buffer Output) The voltage on COMMAND pin is buffered and presented to the user here. This voltage is used to provide the operating bias point for the current sense amplifier by connecting a resistor between BUF and ISP. Decouple BUF with 0.01μF or greater to SGND.

**CAM:** (Current Amplifier Minus Input) The average load current feedback from ISO is typically applied through a resistor here.

**CAO/ENBL:** (Current Amplifier Output/Chip Enable) The current loop compensation network is connected between CAO/ENBL and CAM, the inverting input of the current amplifier. The voltage at CAO/ENBL is the input to the PWM comparator and regulates the output voltage of the system. The GATE output is disabled (held low) unless the voltage at this pin exceeds 1.0 volts, allowing the PWM to force zero duty cycle when necessary. The user can force this pin below 0.8 volts externally with an open collector, disabling the GATE drive.

**COMMAND:** (Voltage Amplifier Non-Inverting Input) This input to the voltage amplifier is connected to a command voltage, such as the output of a DAC. This voltage sets the switching regulator output voltage.

**COMP:** (Compensation, Voltage Amplifier Output) The system voltage compensation network is applied between COMP and VSENSE. The voltage at COMP is clamped to prevent it from going more than 1V above the COMMAND voltage. This is used to provide an accurate average current limit. The voltage on COMP is also clamped to 0.7V below the voltage on COMMAND. This is done to avoid applying a full charge to capacitors in the compensation network during transients, allowing quick recovery time and little overshoot.

CT: (Oscillator Timing Capacitor) A capacitor from CT to SGND along with the resistor on RT, sets the PWM frequency and maximum duty cycle according to these formulas:

$$D_{MAX} = 1 - \frac{2.0 V}{RT \cdot 4.0 mA}$$

where  $D_{\mbox{\scriptsize MAX}}$  is the maximum operating duty cycle, and RT is in ohms.

$$F_{OSC} = \frac{2.0 \, V \bullet \left( \left( 4.0 \, mA \bullet RT \right) - 2.0 \, V \right)}{CT \bullet 1.8 \, V \bullet RT^2 \bullet 4.0 \, mA}$$

where  $F_{OSC}$  is the UC3886 oscillator switching frequency in Hz, RT is in ohms, and CT is in farads.

**GATE:** (PWM Output) The output is a 1A totem pole driver. Use a series resistor of at least 5 to prevent interaction between the gate impedance and the output driver that might cause excessive overshoot.

**ISN:** (Current Sense Amplifier Inverting Input) A resistor to the low side of the average current sense resistor and a resistor to ISO are applied to this pin to make a differential sensing amplifier.

**ISO:** (Current Sense Amplifier Output) A feedback resistor to ISN is connected here to make a differential sensing amplifier. The voltage at this pin is equal to (V<sub>BUF</sub> + A • I<sub>AVG</sub> • R<sub>SENSE</sub>) where A is the user determined gain of the differential amplifier, I<sub>AVG</sub> is the average load current of the system, and R<sub>SENSE</sub> is the average current sensing resistor. For stability, A must be greater than 5. Set A such that A • I<sub>SC</sub> • R<sub>SENSE</sub> = 1.0V where ISC is the user-determined short circuit current limit.

**ISP:** (Current Sense Amplifier Non-Inverting Input) A resistor to the high side of the average current sense resistor and a resistor to BUF are connected to this pin to make a differential sensing amplifier.

**PGND:** (Power Ground) The PWM output current returns to ground through this pin. This is separated from SGND to avoid on-chip ground noise generated by the output current.

**RT:** (Oscillator Charging Current) This pin is held at 2V. Resistor RT from this pin to SGND sets the oscillator charging current. Use 5k < RT < 100k.

**SGND:** (Signal Ground) For better noise immunity, signal ground is provided at this pin.

**VCC:** (Positive Supply Voltage) This pin supplies power to the chip and to the gate drive output. Decouple to PGND and separately to SGND for best noise immunity. The reference (VREF), GATE output, oscillator, and amplifiers are disabled until VCC exceeds 10.3V.

VREF: (Voltage Reference Output) An accurate 5V reference as provided at this pin. The output can deliver 2mA to external circuitry, and is internally short circuit current limited. VREF is disabled if VCC is below UVLO. Bypass 5V REF to SGND with an  $0.01\mu F$  or larger capacitor for best stability.

**VSENSE:** (Voltage Sense Input) This input is connected to COMP through a feedback network and to the power supply output through a resistor or a divider network.

#### **APPLICATION INFORMATION**

#### **OSCILLATOR**

The UC3886 oscillator is a saw tooth. The rising edge is governed by a current controlled by RT flowing into the capacitor CT. The falling edge of the sawtooth sets the dead time for the output. Selection of RT should be done first, based on desired maximum duty cycle. CT can then be chosen based on the desired frequency, Fs, and the value of RT. The design equations are:

$$D_{MAX} = 1 - \frac{2.0 V}{RT \cdot 4.0 \, mA}$$

$$F_{OSC} = \frac{2.0 V \cdot ((4.0 \, mA \cdot RT) - 2.0 V)}{CT \cdot 1.8 V \cdot RT^2 \cdot 4.0 \, mA}$$

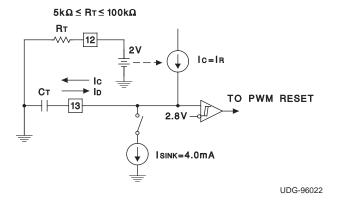



Figure 1. Oscillator

#### Configuring the Current Sense Amplifier

The UC3886 Current Sense Amplifier is used to amplify a differential current sense signal across a low value current sense resistor, R<sub>SENSE</sub>. This amplifier must be set up as a differential amplifier as shown.

The Current Sense Amplifier gain, G<sub>CSA</sub>, is given by the ratio of R2/R1. The output of the Current Sense Amplifier at the ISO pin is given by

$$V_{ISO} = V_{BUF} + V_{SENSE} \bullet \frac{R2}{R1}$$

The Current Sense Amplifier gain, G<sub>CSA</sub>, must be programmed to be greater than or equal to 5.0 (14dB), as this amplifier is not stable with gain below 5.0. The Current Sense Amplifier gain is limited on the high side by its Gain-Bandwidth product of 2.5MHz. Therefore GCSA must be programmed between

G<sub>CSA MIN</sub> = 5.0 and G<sub>CSA MAX</sub> = 2.5MHz/F<sub>SWITCH</sub>

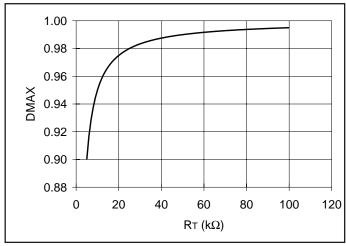



Figure 2. Programming Maximum Duty Cycle with RT

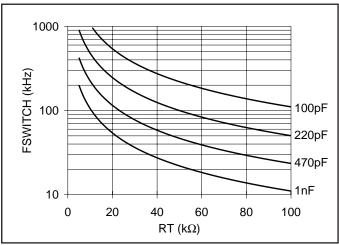



Figure 3. Programming Switching Frequency with CT

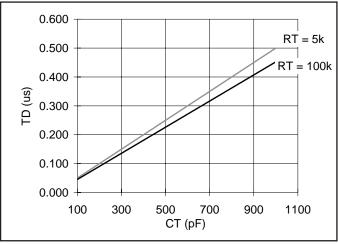



Figure 4. Deadtime vs. CT and RT

# **APPLICATION INFORMATION (cont.)**

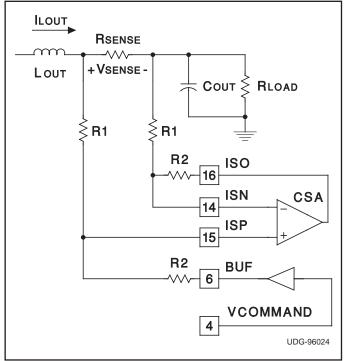



Figure 5. Configuring the Current Sense Amplifier

# **Enabling/Disabling the UC3886 Gate Drive**

The CAO/ENBL pin can be used to Disable the UC3886 gate drive by forcing this pin below 0.8V, as shown. Bringing the voltage below the valley of the PWM oscillator ramp will insure a 0% duty cycle, effectively disabling the gate drive. A low noise open collector signal should be used as an Enable/Disable command.

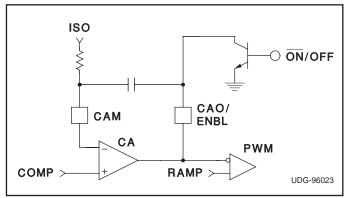



Figure 6. Enabling/Disabling the UC3886

## **TYPICAL APPLICATIONS**

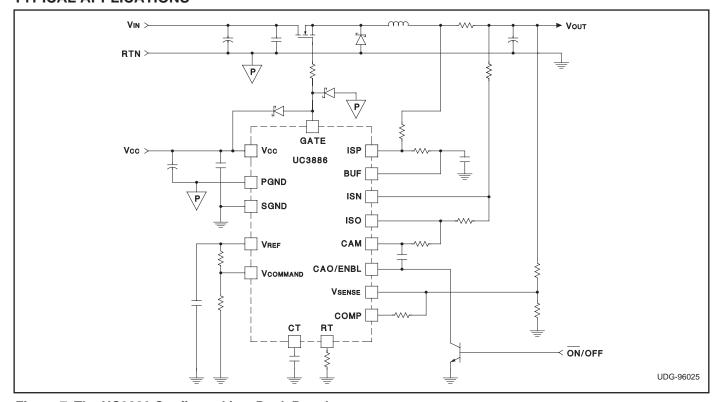



Figure 7. The UC3886 Configured in a Buck Regulator

# **TYPICAL APPLICATIONS (cont.)**

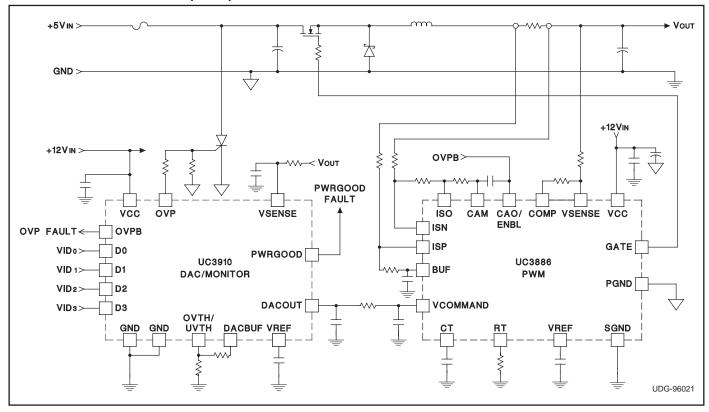



Figure 8. UC3886 Configured with the UC3910 for a Pentium® Pro DC/DC Converter





.com 17-Dec-2007

#### PACKAGING INFORMATION

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------|
| UC2886D          | ACTIVE                | SOIC            | D                  | 16   | 40             | Green (RoHS & no Sb/Br)   | Call TI          | Level-2-260C-1 YEAR          |
| UC2886DG4        | ACTIVE                | SOIC            | D                  | 16   | 40             | Green (RoHS & no Sb/Br)   | Call TI          | Level-2-260C-1 YEAR          |
| UC3886D          | ACTIVE                | SOIC            | D                  | 16   | 40             | Green (RoHS & no Sb/Br)   | Call TI          | Level-2-260C-1 YEAR          |
| UC3886DG4        | ACTIVE                | SOIC            | D                  | 16   | 40             | Green (RoHS & no Sb/Br)   | Call TI          | Level-2-260C-1 YEAR          |
| UC3886DTRG4      | ACTIVE                | SOIC            | D                  | 16   |                | TBD                       | Call TI          | Call TI                      |
| UC3886N          | ACTIVE                | PDIP            | N                  | 16   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | N / A for Pkg Type           |
| UC3886NG4        | ACTIVE                | PDIP            | N                  | 16   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | N / A for Pkg Type           |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products              |                        | Applications       |                           |
|-----------------------|------------------------|--------------------|---------------------------|
| Amplifiers            | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters       | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP                   | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface             | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic                 | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt            | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers      | microcontroller.ti.com | Security           | www.ti.com/security       |
| RFID                  | www.ti-rfid.com        | Telephony          | www.ti.com/telephony      |
| Low Power<br>Wireless | www.ti.com/lpw         | Video & Imaging    | www.ti.com/video          |
|                       |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated