5V, SUPER MINIMOLD SI MMIC WIDEBAND AMPLIFIER

FEATURES

- WIDEBAND RESPONSE:
$\mathrm{fu}=2.9 \mathrm{GHz}$ TYP at 3dB bandwidth
- NOISE FIGURE:
$\mathrm{NF}=2.3 \mathrm{~dB}$ TYP at $\mathrm{f}=1.5 \mathrm{GHz}$
- POWER GAIN:
$\mathrm{GP}=20.5 \mathrm{~dB}$ TYP at $\mathrm{f}=1.5 \mathrm{GHz}$
- SUPPLY VOLTAGE:

VCC $=4.5$ to 5.5 V

- HIGH DENSITY SURFACE MOUNTING:

6-pin super mini-mold package

DESCRIPTION

NEC's UPC3215TB is a Silicon Monolithic IC designed as a wideband amplifier. The UPC3215TB is suitable for systems requiring wideband operation from HF to L band.
This IC is manufactured using NEC's 30 GHz fmax UHSO (Ultra High Speed Process) silicon bipolar process. The package is 6 -pin super minimold suitable for surface mount.

The UPC3215TB is manufactured according to NEC's stringent quality assurance standards to ensure highest reliability and consistent superior performance.

APPLICATIONS

- Systems requiring wideband operation from HF to L band.
- DBS receivers and tuners

ELECTRICAL CHARACTERISTICS $\left(\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{Zs}=\mathrm{ZL}=50 \Omega\right)$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{Zs}=\mathrm{ZL}=50 \Omega\right)$

PART NUMBER PACKAGE OUTLINE								UPC3215TB S06
SYMBOLS	STANDARD CHARACTERISTICS		REFERENCE VALUES					
PSAT	Saturated Output Power,	PIN $=0 \mathrm{dBm}$	dBm	+3.5				
OIP3	Output Intercept Point	$\mathrm{f} 1=1.5 \mathrm{GHz}, \mathrm{f} 2=1.501 \mathrm{GHz}$	dBm	dB				
$\Delta \mathrm{GP}$	Gain Flatness,	$\mathrm{f}=0.1$ to 2.15 GHz	1.0					

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

SYMBOLS	PARAMETERS	UNITS	RATINGS
Vcc	Supply Voltage	V	6.0
Icc	Total Supply Current	mA	30
PIn	Input Power	dBm	+10
PT	Total Power Dissipation ${ }^{2}$	mW	270
Top	Operating Temperature	${ }^{\circ} \mathrm{C}$	-40 to +85
TsTG	Storage Temperature	${ }^{\circ} \mathrm{C}$	-55 to +150

Notes:

1. Operation in excess of any one of these parameters may result in permanent damage.
2. Mounted on a $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass PWB, with copper patterning on both sides. $\left(\mathrm{TA}=85^{\circ} \mathrm{C}\right)$.

RECOMMENDED

OPERATING CONDITIONS

SYMBOLS	PARAMETERS	UNITS	MIN	TYP	MAX
Vcc	Supply Voltage	V	4.5	5.0	5.5
TA_{A}	Operating Ambient Temperature	${ }^{\circ} \mathrm{C}$	-40	+25	+85
PIN	Input Power	dBm			0
fin	Input Frequency	GHz			2.9

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

TEST CIRCUIT

 OPERATING AMBIENT TEMPERATURE

INSERTION POWER GAIN vs.
FREQUENCY

ISOLATION vs. FREQUENCY

OUTPUT RETURN LOSS vs.
FREQUENCY

NOISE FIGURE vs. FREQUENCY

INPUT RETURN LOSS vs. FREQUENCY

OUTPUT POWER vs. INPUT POWER

OUTPUT POWER vs. INPUT POWER

OUTPUT POWER OF EACH TONE vs. INPUT POWER OF EACH TONE

OUTPUT POWER vs. INPUT POWER AND VOLTAGE

OUTPUT POWER OF EACH TONE vs. INPUT POWER OF EACH TONE

OUTPUT POWER OF EACH TONE vs. INPUT POWER OF EACH TONE

TYPICAL PERFORMANCE CURVES $\left(T_{\mathrm{A}}=25^{\circ}\right)$

OUTPUT POWER OF EACH TONE vs. INPUT POWER OF EACH TONE

EXAMPLE OF APPLICATION CIRCUIT

TYPICAL SCATTERING PARAMETERS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Start: 0.1 GHz
Stop: 3.1 GHz

Start: 0.1 GHz
Stop: 3.1 GHz
$\mathrm{Vcc}=\mathrm{Vout}=5.0 \mathrm{~V}$, $\mathrm{Icc}=16 \mathrm{~mA}$

FREQUENCY	S11		S21		S12		S22		K
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	
0.1	0.207	174.1	10.788	-4.6	0.013	6.3	0.285	-3.3	3.38
0.2	0.190	173.1	10.714	-9.8	0.013	-0.5	0.282	-3.7	3.39
0.3	0.186	174.3	10.565	-14.3	0.013	2.7	0.283	-4.6	3.37
0.4	0.192	173.8	10.359	-18.3	0.014	4.7	0.285	-6.2	3.92
0.5	0.200	174.5	10.225	-21.7	0.013	5.3	0.286	-7.6	3.96
0.6	0.201	173.0	10.116	-24.9	0.013	2.1	0.286	-8.8	3.69
0.7	0.204	173.0	10.116	-28.0	0.011	1.6	0.288	-10.4	3.91
0.8	0.206	172.4	10.122	-31.1	0.011	12.9	0.289	-11.7	4.17
0.9	0.210	172.7	10.186	-34.5	0.011	5.1	0.290	-13.5	3.99
1.0	0.212	171.4	10.182	-37.7	0.009	4.1	0.285	-14.9	4.28
1.1	0.218	169.4	10.208	-14.6	0.011	4.9	0.299	-16.8	4.19
1.2	0.217	168.4	10.296	-45.6	0.009	11.0	0.300	-18.0	4.65
1.3	0.221	165.9	10.248	-49.7	0.006	20.5	0.299	-20.2	5.78
1.4	0.228	164.7	10.438	-53.9	0.008	1.6	0.307	-23.1	6.97
1.5	0.233	162.3	10.369	-58.0	0.006	20.5	0.299	-16.8	4.19
1.6	0.238	159.5	10.554	-62.7	0.005	31.6	0.316	-27.5	11.54
1.7	0.244	157.2	10.492	-67.2	0.004	48.5	0.317	-30.5	11.75
1.8	0.246	153.9	10.483	-72.2	0.003	87.2	0.318	-33.3	13.52
1.9	0.248	150.6	10.408	-76.9	0.004	93.4	0.323	-36.9	8.46
2.0	0.246	147.4	10.405	-82.2	0.007	114.5	0.323	-40.6	7.46
2.1	0.241	144.9	10.267	-87.2	0.008	115.4	0.319	-44.9	6.20
2.2	0.236	142.2	10.039	-92.7	0.011	124.0	0.312	-48.9	4.50
2.3	0.229	142.2	9.896	-97.7	0.012	121.6	0.306	-52.6	4.12
2.4	0.219	143.5	9.684	-102.4	0.014	124.9	0.292	-56.3	3.40
2.5	0.215	145.7	-9.348	-107.5	0.015	117.8	0.279	-59.3	3.42
2.6	0.213	149.3	9.068	-112.0	0.018	117.3	0.270	-61.7	3.02
2.7	0.221	150.1	8.673	-116.6	0.017	114.4	0.256	-63.7	3.17
2.8	0.234	151.3	8.437	-121.1	0.020	114.0	0.248	-65.1	2.85
2.9	0.253	152.1	8.080	-124.9	0.021	111.6	0.237	-67.3	2.98
3.0	0.264	150.7	7.791	-129.4	0.020	112.5	0.232	-68.0	2.90
3.1	0.283	148.7	7.458	-132.7	0.022	113.7	0.229	-70.2	3.02

OUTLINE DIMENSIONS
(Units in mm)
UPC3215TB
PACKAGE OUTLINE S06

LEAD CONNECTIONS

(Top View)

(Bottom View)

1. INPUT
2. GND
3. GND
4. OUTPUT
5. GND
6. Vcc

PIN DESCRIPTION

Pin No.	Pin Name (V)	Applied Voltage	Pin Voltage	Description Circuit	Internal Equivalent
1	Input	-	0.82	Signal input pin. An internal matching circuit, configured with resistors, enables 50Ω connection over a wide band. A multi-feedback circuit is designed to cancel the deviations of hFE and resistance. This pin must be coupled to the signal source with capacitor for DC cut.	
$\begin{aligned} & 2 \\ & 3 \\ & 5 \end{aligned}$	GND	0	-	Ground pins. These pins should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be connected together with wide ground pattern to decrease impedance difference.	
4	Output	-	3.8	Signal output pin. An internal matching circuit, configured with resistors, enables 50Ω connection over a wide band. This pin must be coupled to next stage with capacitor for DC cut.	
6	VCC	4.5 to 5.5	-	Power supply pin. This pin should be externally equipped with a bypass capacitor to minimize ground impedance.	

ORDERING INFORMATION

PART NUMBER	QTY
UPC3215TB-E3-A	3K/Reel

Note: Embossed Tape, 8 mm wide. Pins 1, 2 and 3 face perforated side of tape.

[^0]
Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb -free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	$<1000 \mathrm{PPM}$	-A	
Mercury	$<1000 \mathrm{PPM}$	Not Detected	
Cadmium	$<100 \mathrm{PPM}$	Not Detected	
Hexavalent Chromium	$<1000 \mathrm{PPM}$	Not Detected	
PBB	$<1000 \mathrm{PPM}$	Not Detected	
PBDE	$<1000 \mathrm{PPM}$	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

[^0]: Life Support Applications
 These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

