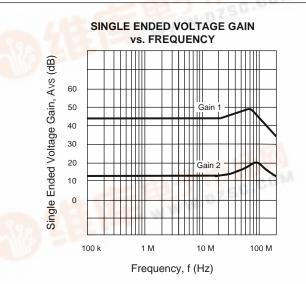
查询UPC1663G供应商

捷多邦,专业PCB打样工厂,24小时加急出货

ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER


FEATURES

NF

- BANDWIDTH AND TYPICAL GAIN 120 MHz at AVOL = 300 170 MHz at AVOL = 100 700 MHz at AVOL = 10
- VERY SMALL PHASE DELAY
- GAIN ADJUSTABLE FROM 10 TO 300
- NO FREQUENCY COMPENSATION REQUIRED

DESCRIPTION

The UPC1663G is a video amplifier with differential input and output stages. A high frequency process ($f_T = 6 \text{ GHz}$) improves AC performance compared with industry-standard video amplifiers. This device is excellent as a sense amplifier for high-density CCDs, as a video or pulse amplifier in high-resolution displays, and in communications equipment.

ELECTRICAL CHARACTERISTICS (TA = 25° C, Vcc = ± 6 V, Rs = 50Ω , f = 10 MHz)

PART NUMBER PACKAGE OUTLINE			UPC1663G G08			
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	ТҮР	MAX	
Icc	Power Supply Current	mA	CER VIE	13	20	
Avd	Differential Voltage Gain: Gain ¹ Gain ²	392	200 8	320 10	500 12	
BW	Bandwidth (Gain is 3 dB down from the gain at 100 KHz)	MHz MHz		120 700		
tR	Rise Time, Vout = 1V _{P-P} : Gain ¹ Gain ²	ns ns		2.9 2.7		
t pd	Propagation Delay, Vout = 1 Vp-p: Gain ¹ Gain ²	ns ns		2 1.2		
RIN	Input Impedance: Gain ¹ Gain ²	kΩ kΩ	50	4.0	Ed E	
CIN	Input Capacitance	pF		2	C. COM	
lio	Input Offset Current	μA	12. 100	0.4	5.0	
lв	Input Bias Current	μA		20	40	
VN	Input Noise Voltage, 10 k to 10 MHz	μVr.m.s.	C CL ····	3		
VI	Input Voltage Range	V	±1.0			
CMRR	Common Mode Rejection Ratio, Vcm = ± 1 V, f ≤ 100 kHz Vcm = ± 1 V, f = 5 MHz	dB dB	55 53	70 60		
SVRR	Supply Voltage Rejection Ratio, $\Delta V = \pm 0.5 V$	dB	50	70		
VO(off)	Output Offset Voltage, Vo(off) = OUT1 - OUT2 Gain ¹ Gain ²	V		0.3	1.5 1.0	
Vo (CM)	Output Common Mode Voltage	V	2.4	2.9	3.4	
VOp-p	Max. Output Voltage Swing, single-ended	Vp-p	3.0	4.0		
Isink	Output Sink Current	mA	2.5	3.6		

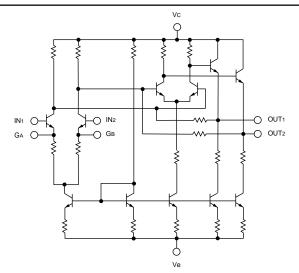
Notes:

12 Gain select pins GA and GB are connected together.

All gain select pins are open.

, insert adjustment resistor (0 to 10 k Ω) between GA and GB when variable gain is necessary.

California Fastarn Laboratorias

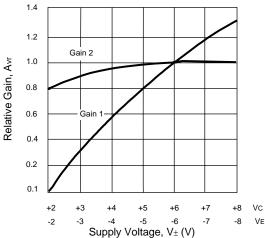

ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

SYMBOLS	PARAMETERS	UNITS	RATINGS
VC-VE	Voltage between Vc and VE	V	-0.3 to 14
Рт	Total Power Dissipation ²	mW	280
Vid	Differential Input Voltage	V	±5
Vin	Input Voltage	V	±6
lo	Output Current	mA	35
Тор	Operating Temperature	°C	-45 to +75
Тѕтс	Storage Temperature	°C	-55 to +150

Notes:

- 1. Operation in excess of any one of these parameters may result in permanent damage.
- 2. Mounted on 5 cm x 5 cm x 0.16 mm glass epoxy PCB (TA = Max TOP).
- Mounted on 50 cm x 50 cm x 1.6 mm glass epoxy PCB with copper film (TA = Max ToP).

EQUIVALENT CIRCUIT



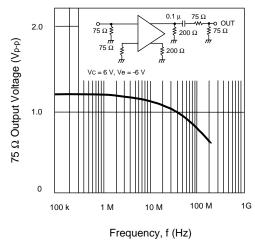
TYPICAL PERFORMANCE UNDER SINGLE SUPPLY +5 V OPERATION*

PARAMETER	CONDITIONS	TYPICAL	UNITS
Differential Gain	15 MHz	05	
Gain 1 Gain 2		35 11	dB dB
Bandwidth	Gain is 3 dB down from		
Gain 1 Gain 2	the gain at 100 KHz	106 115	MHz MHz
Rise Time	Rs = 50 Ω, Vout = 80 mV _{P-P}		
Gain 1		2.2	ns
Propagation Delay			
Gain 1	RS = 50 Ω, Vout = 80 mVp-p	2.8	ns
Gain 2	RS = 50 Ω, Vout = 60 mVp-p	1.8	ns
Phase Shift	100 MHz		
Gain 1		-123	degree
Gain 2		-93	degree
Output Power	Z∟ = 50 Ω, 15 MHz		
RA = 240 Ω		5.0	dBm
RA = 910 Ω		0	dBm
RA = 80 Ω		-11.5	dBm

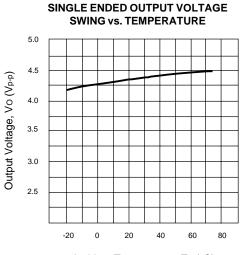
* See Application Circuit

NORMALIZED VOLTAGE GAIN vs. SUPPLY VOLTAGE

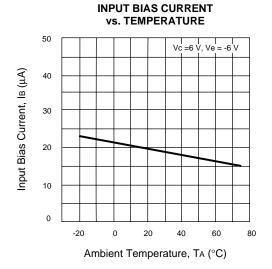
RECOMMENDED OPERATING CONDITIONS (TA = 25°C)

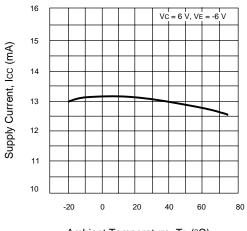

SYMBOLS	CHARACTERISTICS	UNITS	MIN	ТҮР	MAX
Vc	Positive Supply Voltage	V	+2	+6	+6.5
Ve	Negative Supply Voltage	V	-2	-6	-6.5
IO source	Source Current	mA			20
IO sink	Sink Current	mA			2.5
	Frequency Range	MHz	DC		200

Attention:

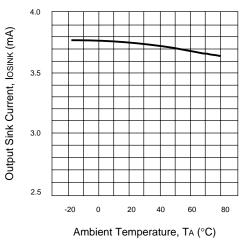

Due to high frequency characteristics, the physical circuit layout is very critical. Supply voltage line bypass, double-sided printed-circuit board, and wide-area ground line layout are necessary for stable operation. Two signal resistors connected to both inputs and two load resistors connected to both outputs should be balanced for stable operation.

TYPICAL PERFORMANCE CURVES (TA = 25°C)

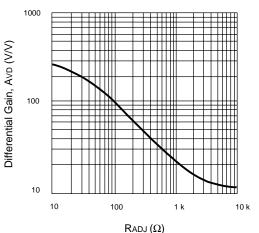

VIDEO LINE SINGLE ENDED OUTPUT VOLTAGE SWING vs. FREQUENCY


TYPICAL PERFORMANCE CURVES (TA = 25°C)

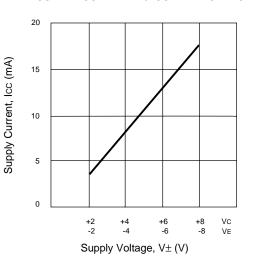
Ambient Temperature, TA (°C)

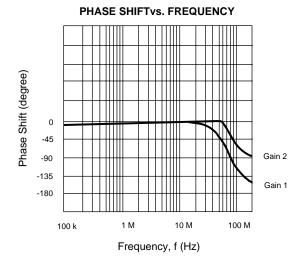


SUPPLY CURRENT vs. TEMPERATURE

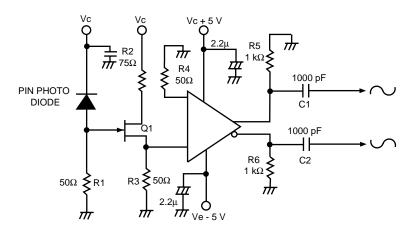


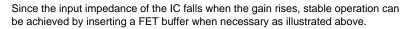
Ambient Temperature, TA (°C)


SINK CURRENT vs. TEMPERATURE


DIFFERENTIAL VOLTAGE GAIN vs. RESISTANCE BETWEEN GA AND GB

SUPPLY CURRENT vs. SUPPLY VOLTAGE




TYPICAL PERFORMANCE CURVES (TA = 25°C)

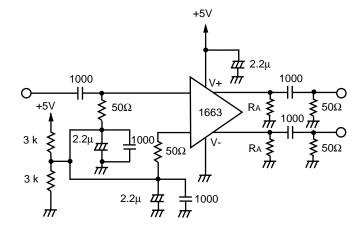
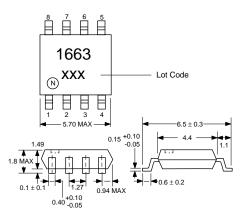

TYPICAL APPLICATIONS

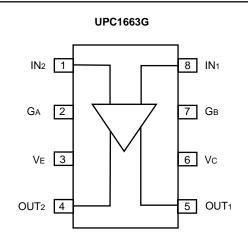
Photo Signal Detector



• Application for +5 V Single Supply

OUTLINE DIMENSIONS (Units in mm)

UPC1663G PACKAGE OUTLINE G08


Notes:

- 1. Each lead centerline is located within 0.12 mm (0.005 inch) of its true position at maximum material condition.
- 2. All dimensions are typical unless otherwise specified.

ORDERING INFORMATION

PART NUMBER	QUANTITY
UPC1663G-E1	2500/Reel

CONNECTION DIAGRAM (TOP VIEW)

EXCLUSIVE NORTH AMERICAN AGENT FOR NEC RF, MICROWAVE & OPTOELECTRONIC SEMICONDUCTORS

CALIFORNIA EASTERN LABORATORIES • Headquarters • 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • Telex 34-6393 • FAX (408) 988-0279

24-Hour Fax-On-Demand: 800-390-3232 (U.S. and Canada only) • Internet: http://WWW.CEL.COM