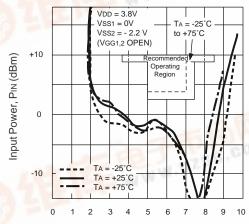


9 GHz DIVIDE-BY-4 **DYNAMIC PRESCALER**

UPG503B


FEATURES

- WIDE OPERATING FREQUENCY RANGE: $f_{IN} = 3.5 \text{ to } 9.0 \text{ GHz } (T_A = 25^{\circ}\text{C})$
- DIVISION RATIO OF 4
- GUARANTEED OPERATING TEMPERATURE RANGE: -25°C to +75°C

DESCRIPTION

The UPG503B is a GaAs divide-by-4 prescaler that is capable of operating up to 9 GHz. It is designed to be used in the frequency synthesizers of microwave communication systems and measurement equipment. The UPG503B is a dynamic divider. It employs buffered FET logic (BFL). The UPG503B is available in a hermetic 8-lead ceramic flat package.

INPUT POWER vs. INPUT FREQUENCY

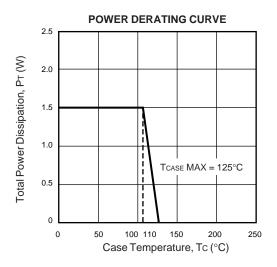
Input Frequency, f (GHz)

PART NUMBER PACKAGE OUTLINE			UPG503B BF08		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
Idd	Supply Current Supply Current	mA	40	80	130
ISS1	Sink Current ² Iss1 = IDD - ISS2	mA		27	
ISS2	Sink Current ²	mA	21	53	93
fIN(U)	Upper Limit of Input Frequency, PIN = +9 to +10 dBm	GHz	8.6	9.0	
fIN(L)	Lower Limit of Input Frequency, PIN = +9 to +10 dBm	GHz	47	3.5	3.7
Pin	Input Power, fin = 3.7 to 8.6 GHz fin = 5.0 to 7.4 GHz	dBm dBm	9.0 3.0	0750	10.0 10.0
Роит	Output Power, $fin = 8.6 \text{ GHz}$, $Pin = +10 \text{ dBm}$ fin = 3.7 GHz, $Pin = +10 dBm$	dBm dBm	0	3 3	
Rтн	Thermal Resistance, Channel to Case	°C/W			10

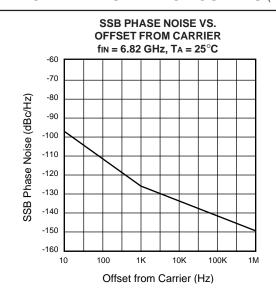
- 1. Device may exhibit low frequency spur typically below 150 Hz and -45 dBm.
- 2. Current is positive into the IDD pin and returns through the Iss1 and Iss2 pins.

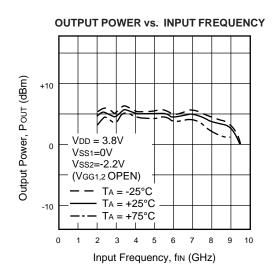
ELECTRICAL CHARACTERISTICS TA = 25°C to +75°C, VDD = 3.8 V, VSS1 = 0 V, VSS2 = -2.2 V)

PART NUMBER PACKAGE OUTLINE			UPG503B BF08		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
IDD	Supply Current	mA		80	
Iss1	Sink Current ¹ Iss1 = IDD - Iss2	mA		27	
ISS2	Sink Current ¹	mA		53	
fIN(U)	Upper Limit of Input Frequency, PIN = +9 to +10 dBm	GHz	8.0		
fIN(L)	Lower Limit of Input Frequency, PIN = +9 to +10 dBm	GHz			4.0
Pin	Input Power, fin = 4.0 to 8.0 GHz fin = 5.0 to 7.0 GHz	dBm dBm	9.0 4.0		10.0 10.0
Роит	Output Power fin = 8.0 GHz , Pin = $+10 \text{ dBm}$ fin = 4.0 GHz , Pin = $+10 \text{ dBm}$	dBm dBm	-1.0 -1.0	2.0 2.0	


Note:

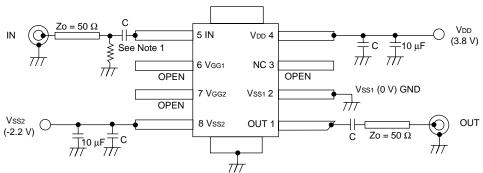
ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)


SYMBOLS	PARAMETERS	UNITS	RATINGS
VDD-VSS1	Supply Voltage	V	5.0
Vss2-Vss1	Supply Voltage	V	-5.0
PIN	Input Power	dBm	13
Рт	Total Power Dissipation ²	W	1.5
Тѕтс	Storage Temperature	°C	-65 to +175
Tc	Case Temperature	°C	-65 to +125


Notes:

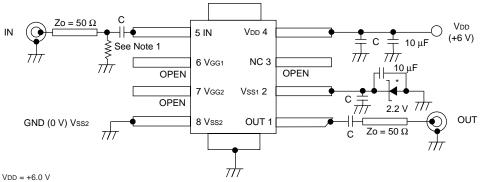
- 1. Operation in excess of any one of these conditions may result in permanent damage.
- 2. Tc ≤ 125°C

TYPICAL PERFORMANCE CURVES (TA = 25°)



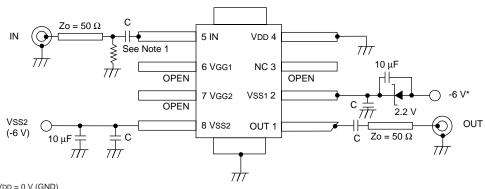
^{1.} Current is positive into the IDD pin and returns through the ISS1 and ISS2 pins.

POWER SUPPLY CONFIGURATIONS (VGG1 and VGG2 are normally open)


CONFIGURATION 1 2 Bias Supply

VDD = 3.8 V VSS1 = 0 V (GND) VSS2 = -2.2 V

C: 1000 - 5000 pF Chip Capacitor


CONFIGURATION 2 Single Positive Bias Supply

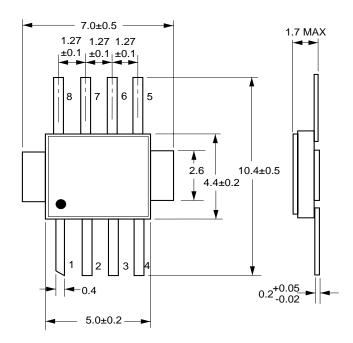
VSS2 = 0 V (GND) C: 1000 - 5000 pF Chip Capacitor

* VSS1 should be connected to GND through a 2.2 V Zener Diode (RD2.2FB or IN3394).

CONFIGURATION 3 Single Negative Bias Supply

VDD = 0 V (GND) VSS2 = -6 V C: 1000 - 5000 pF Chip Capacitor

* For VSS1, the bias voltage of -6.0 should be applied through a 2.2 V Zener Diode (RD2.2FB or IN3394).


Notes:

- 1. Because of the high internal gain and gain compression of the UPG503B, the device is prone to self-oscillation in the absence of an RF input signal. This self-oscillation can be suppressed by either of the following means:
 - Add a shunt resistor to the RF input line. Typically a resistor value between 50 and 1000 ohms will suppress the self-oscillation (see the test circuit schematic).
 - Apply a negative voltage through a 1000 ohm resistor to the normally open Vgg1 connection. Typically voltages between 0 and -9 volts will suppress the self-oscillation.

Both of these approaches will reduce the input sensitivity of the device (by as much as 3 dB for a 50 ohm shunt resistor), but otherwise have no effect on the reliability or electrical characteristics of the device.

OUTLINE DIMENSIONS (Units in mm)

UPG503B **PACKAGE OUTLINE BF08**

LEAD CONNECTIONS:

1. OUTPUT 5. INPUT 2. Vss1 6. Vgg1 3. NC* 7. VGG2 4. VDD 8. Vss2

* No Connection