

April 2005 Revised May 2005

USB1T1103 Universal Serial Bus Peripheral Transceiver with Voltage Regulator

General Description

This chip provides a USB Transceiver functionality with a voltage regulator that is compliant to USB Specification Rev 2.0. this integrated 5V to 3.3V regulator allows interfacing of USB Application specific devices with supply voltages ranging from 1.65V to 3.6V with the physical layer of Universal Serial Bus. It is capable of operating at 12Mbits/s (full speed) data rates and hence is fully compliant to USB Specification Rev 2.0. The Vbusmon terminal allows for monitoring the Vbus line.

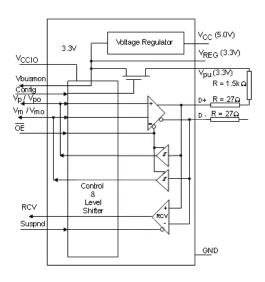
The USB1T1103 also provides exceptional ESD protection with 15kV contact HBM on D+, D- terminals.

Features

- Complies with Universal Serial Bus Specification 2.0
- Integrated 5V to 3.3V voltage regulator for powering VBus
- Utilizes digital inputs and outputs to transmit and receive USB cable data
- Supports full speed (12Mbits/s) data rates
- Ideal for portable electronic devices
- MLP technology package (16 terminal) with HBCC footprint
- 15kV contact HBM ESD protection on bus terminals
- Supports disable mode and is functionally equivalent to Philips ISP1102

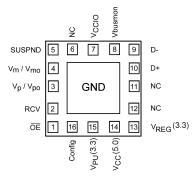
Applications

- PDA
- PC Peripherals
- Cellular Phones
- MP3 Players
- Digital Still Camera
- Information Appliance

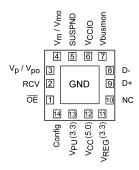

Ordering Code:

Order Number	Number			
USB1T1103MPX	MLP14D	Pb-Free 14-Terminal Molded Leadless Package (MLP), 2.5mm Square		
USB1T1103MHX	MLP16HB	Pb-Free 16-Terminal Molded Leadless Package (MHBCC), JEDEC MO-217, 3mm Square		

Pb-Free package per JEDEC J-STD-020B.



Logic Diagram


Connection Diagrams

MLP16 GND Exposed Diepad

(Bottom View)

MLP14 GND Exposed Diepad

(Bottom View)

Terminal Descriptions

Termina	Number	Terminal	1/0	Tourning! Description		
MLP14	MLP16	Name	I/O	Terminal Description		
1	1	ŌĒ	I	Output Enable: Active LOW enables the transceiver to transmit data on the bus. When not active the transceiver is in the receive mode (CMOS level is relative to V _{CCIO})		
2	2	RCV	0	Receive Data Output: Non-inverted CMOS level output for USB differential Input (CMOS output level is relative to V_{CCIO}). Driven LOW when SUSPN is HIGH; RCV output is stable and preserved during SE0 condition.		
3	3	V _p /V _{po}	I/O	Single-ended D+ receiver output V_P (CMOS level relative to V_{CCIO}): Used for external detection of SE0, error conditions, speed of connected device; Terminal also acts as drive data input V_{po} (see Table 1 and Table 2). Output drive is 4 mA buffer.		
4	4	V _m /V _{mo}	I/O	Single-ended D– receiver output V_m (CMOS level relative to V_{CCIO}): Used for external detection of SE0, error conditions, speed of connected device; Terminal also acts as drive data input V_{mo} (see Table 1 and Table 2). Output drive is 4 mA buffer.		
5	5	SUSPND	ı	Suspend: Enables a low power state (CMOS level is relative to V _{CCIO}). While the SUSPND terminal is active (HIGH) it will drive the RCV terminal to logic "0" state.		
	6	NC		No Connect		
6	7	V _{CCIO}		Supply Voltage for digital I/O terminals (1.65V to 3.6V): When not connected the D+ and D- terminals are in 3-STATE. This supply bus is totally independent of $V_{\rm CC}$ (5V) and $V_{\rm REG}$ (3.3V), and must never exceed the $V_{\rm REG}$ (3.3) voltage. For $V_{\rm CCIO}$ disconnected the O+/O- terminals are HIGH Impedance and the $V_{\rm PU}$ (3.3V) is turned off.		
7	8	Vbusmon	0	Vbus monitor output (CMOS level relative to V _{CCIO}): When Vbus > 4.1V then Vbusmon = HIGH and when Vbus < 3.6V then Vbusmon = LOW. If SUSPND = HIGH then Vbusmon is pulled HIGH.		
9, 8	10, 9	D+, D-	AI/O	Data +, Data -: Differential data bus conforming to the USB standard. Terminals are HIGH Impedance for bus powered mode when Vbus < 3.6V. For ByPass Mode then HIGH Impedance when V _{REG} / Vbus < V _{REG} minimum.		
10	11	NC		No Connect		
	12	NC		No Connect		
11	13	V _{REG} (3.3V)		Internal Regulator Option: Regulated supply output voltage (3.0V to 3.6V) during 5V operation; decoupling capacitor of at least 0.1 µF is required. Regulator ByPass Option: Used as supply voltage input for 3.3V operation.		
12	14	V _{CC} (5.0V)		Internal Regulator Option: Used as supply voltage input (4.0V to 5.5V); can be connected directly to USB line Vbus. Regulator ByPass Option: Connected to V _{REG} (3.3V)		
13	15	V _{PU} (3.3V)		Pull-up Supply Voltage $(3.3V\pm10\%)$: Connect an external $1.5k\Omega$ resistor on D+ (FS data rate); Terminal function is controlled by Config input terminal: Config = LOW – V _{PU} $(3.3V)$ is floating (HIGH Impedance) for zero pull-up current. Config = HIGH – V _{PU} $(3.3V)$ = $3.3V$; internally connected to V _{REG} $(3.3V)$. V _{PU} is OFF in disable mode.		
14	16	Config	I	USB connect or disconnect software control input. Configures 3.3V to external 1.5k Ω resistor on D+ when HIGH.		
Exposed Diepad	Exposed Diepad	GND	GND	GND supply down bonded to exposed diepad to be connected to the PCB GND.		

Functional Description

The USB1T1103 transceiver is designed to convert CMOS data into USB differential bus signal levels and to convert USB differential bus signal to CMOS data.

To minimize EMI and noise the outputs are edge rate controlled with the rise and fall times controlled and defined for full speed data rates only (12Mbits/s). The rise, fall times are balanced between the differential terminals to minimize skew.

The USB1T1103 differs from earlier USB Transceiver in that the V_p/V_m and V_{po}/V_{mo} terminals are now I/O terminals

rather than discrete input and output terminals. Table 1 describes the specific terminal functionality selection. Table 2 and Table 3 describe the specific Truth Tables for Driver and Receiver operating functions.

The USB1T1103 also has the capability of various power supply configurations, including a disable mode for $\rm V_{CCIO}$ disconnected, to support mixed voltage supply applications (see Table 4) and Section 2.1 for detailed descriptions.

Functional Tables

TABLE 1. Function Select

SUSPND	OE	D+, D-	RCV	V _p /V _{po}	V _m /V _{mo}	Function
L	L	Driving & Receiving	Active	V _{po} Input	V _{mo} Input	Normal Driving (Differential Receiver Active)
L	Н	Receiving (Note 1)	Active	V _p Output	V _m Output	Receiving
Н	L	Driving	Inactive (Note 2)	V _{po} Input	V _{mo} Input	Driving during Suspend (Differential Receiver Inactive)
Н	Н	3-STATE (Note 1)	Inactive (Note 2)	V _p Output	V _m Output	Low Power State

Note 1: Signal levels is function of connection and/or pull-up/pull-down resistors.

Note 2: For SUSPND = HIGH mode the differential receiver is inactive and the output RCV is forced LOW. The out-of-suspend signaling (K) is detected via the single-ended receivers of the V_p/V_{po} and V_m/V_{mo} terminals.

TABLE 2. Driver Function (OE = L) using Differential Input Interface

	V _m /V _{mo}	V _p /V _{po}	Data (D+ / D−)
Ī	L	L	SE0 (Note 3)
Ī	L	Н	Differential Logic 1
Ī	Н	L	Differential Logic 0
Ī	Н	Н	Illegal State

Note 3: SE0 = Single Ended Zero

TABLE 3. Receiver Function ($\overline{OE} = H$)

D+, D-	RCV	V _p /V _{po}	V _m /V _{mo}
Differential Logic 1	Н	Н	L
Differential Logic 0	L	L	Н
SE0	Х	L	L

X = Don't Care

RCV(0) denotes the signal level on output RCV just prior to the SE0 or SE1 event. This level is stable during the SE0 or SE1 event period.

Power Supply Configurations and Options

The three modes of power supply operation are:

- · Normal Mode: Regulated Output and Regulator Bypass
 - Regulated Output: V_{CCIO} is connected and V_{CC}(5.0) is connected to 5V (4.0V to 5.5V) and the internal voltage regulator then produces 3.3V for the USB connections.
- 2. Internal Regulator Bypass Mode: V_{CCIO} is connected and both $V_{CC}(5.0)$ and $V_{REG}(3.3)$ are connected to a 3.3V source (3.0V to 3.6V).

In both cases for normal mode the $\rm V_{CCIO}$ is an independent voltage source (1.65V to 3.6V) that is a function of the external circuit configuration.

 Sharing Mode: V_{CCIO} is only supply connected. V_{CC} and V_{REG} are not connected. In this mode the D+ and D- terminals are 3-STATE and the USB1T1103 allows external signals up to 3.6V to share the D+ and D- bus lines. Internally the circuitry limits leakage from D+ and D- terminals (maximum 10 $\mu\text{A})$ and V_{CCIO} such that device is in low power (suspended) state. Terminals Vbusmon and RCV are forced LOW as an indication of this mode with Vbusmon being ignored during this state.

• Disable Mode: V_{CCIO} is not connected. V_{CC} is connected, or V_{CC} and V_{REG} are connected. 0V to 3.3V in this mode D+ and D- are 3-STATE and V_{PU} is HIGH Impedance (switch is turned off). The USB1T1103 allows external signals up to 3.6V to share the D+ and D- bus lines. Internally the circuitry limits leakage from D+ and D- pins (maximum $10\mu A$).

A summary of the Supply Configurations is described in Table $4. \,$

TABLE 4. Power Supply Configuration Options

Power Supply Mode Configuration						
Terminals	Disable	Sharing	Normal (Regulated Output)	Normal (Regulator Bypass)		
V _{CC} (5V)	Connected to 5V source	Not Connected or <3.6V	Connected to 5V Source	Connected to V _{REG} (3.3V) [Max Drop of 0.3V] (2.7V to 3.6V)		
V _{REG} (3.3V)	3.3V, 300μA Regulated Output	Not Connected	3.3V, 300 μA Regulated Output	Connected to 3.3V Source		
V _{CCIO}	≤0.5V	1.65V to 3.6V Source	1.65V to 3.6V Source	1.65V to 3.6V Source		
V _{PU} (3.3V)	3-STATE (off)	3-STATE (Off)	3.3V Available if Config = HIGH	3.3V Available if Config = HIGH		
D+, D-	3-STATE (off)	3-STATE	Function of Mode Set Up	Function of Mode Set Up		
$V_p/V_{po}, V_m/V_{mo}$	Invalid [I]	L	Function of Mode Set Up	Function of Mode Set Up		
RCV	Invalid [I]	L	Function of Mode Set Up	Function of Mode Set Up		
Vbusmon	Invalid [I]	L	Function of Mode Set Up	Function of Mode Set Up		
OE, SUSPND, Config	Hi-Z	Hi-Z	Function of Mode Set Up	Function of Mode Set Up		

Invalid [I] I/O are to be 3-STATE, outputs to be LOW.

ESD Protection

ESD Performance of the USB1T1103

HBM D+/D-: 15.0kV

HBM, all other terminals (Mil-Std 883E): 6.5kV

ESD Protection: D+/D- Terminals

Since the differential terminals of a USB transceiver may be subjected to extreme ESD voltages, additional immunity has been included in the D+ and D- terminals without compromising performance. The USB1T1103 differential terminals have ESD protection to the following limits:

- 15kV using the contact Human Body Model
- 8kV using the Contact Discharge method as specified in IEC 61000-4-2

Human Body Model

Figure 1 shows the schematic representation of the Human Body Model ESD event. Figure 2 is the ideal waveform representation of the Human Body Model.

IEC 61000-4-2, IEC 60749-26 and IEC 60749-27

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment, and as such evaluates the equipment in its entirety for ESD immunity. Fairchild Semiconductor has evaluated this device using the IEC 6100-4-2 representative system model depicted in Figure 3. Under the additional standards set forth by the IEC, this device is also compliant with IEC 60749-26 (HBM) and IEC 60749-27 (MM).

Additional ESD Test Conditions

For additional information regarding our product test methodologies and performance levels, please contact Fairchild Semiconductor.

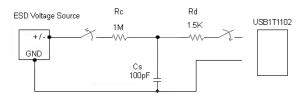


FIGURE 1. Human Body ESD Test Model



FIGURE 2. HBM Current Waveform

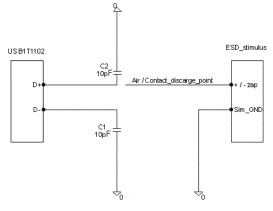


FIGURE 3. IEC 61000-4-2 ESD Test Model

Absolute Maximum Ratings(Note) **Conditions** -0.5V to +6.0V Supply Voltage (V_{CC})(5V)

-0.5V to +4.6V

I/O Supply Voltage (V_{CCIO})

Latch-up Current (ILU)

 $V_1 = -1.8V \text{ to } +5.4V$ 150 mA

DC Input Current (IIK)

 $V_1 < 0$ -18 mA

DC Input Voltage (V_I)

(Note) -0.5V to V_{CCIO} +0.5V

DC Output Diode Current (IOK)

 $V_O > V_{CC}$ or $V_O < 0$ ±18 mA

DC Output Voltage (V_O)

(Note) -0.5V to $V_{CCIO} + 0.5V$

Output Source or Sink Current (I_O)

 $V_O = 0$ to V_{CC}

Current for D+, D- Terminals ±12 mA Current for RCV, V_m/V_p ±12 mA

DC V_{CC} or GND Current

±100 mA (I_{CC}, I_{GND})

ESD Immunity Voltage (V_{ESD});

Contact HBM [3]

Terminals D+, D-, $I_{LI} < 1\mu A$ ±15kV All Other Terminals [3] $I_{1.1} < 1 \mu A$ ±6.5kV

Storage Temperature (T_{STO}) -40°C to + 125°C

Power Dissipation (P_{TOT})

48 mW I_{CC} (5V)

I_{CCIO}

Recommended Operating

DC Supply Voltage V_{CC} (5V) 4.0V to 5.5V

I/O DC Voltage V_{CCIO} 1.65V to 3.6V

0V to V_{CCIO} +5.5V DC Input Voltage Range (V_I) DC Input Range for AI/O (V_{AI/O}) 0V to V_{CC}

Terminals D+ and D-0V to 3.6V

Operating Ambient Temperature

-40°C to +85°C (T_{AMB})

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristic tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: IO Absolute Maximum Rating must be observed.

Note 6: Per ESD Methodology described in page 5.

DC Electrical Characteristics (Supply Terminals)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). V_{CC} (5V) = 4.0V to 5.5V or V_{REG} (3.3V) = 3.0V to 3.6V, V_{CCIO} = 1.65V to 3.6V

Symbol	Parameter	Conditions	-4	Limits -40°C to +85°C			
			Min	Тур	Max	Ì	
V _{REG} (3.3V)	Regulated Supply Output	Internal Regulator Option;	3.0	3.3	3.6		
		$I_{LOAD} \le 300 \ \mu A$	(Note 7) (Note 8)			V	
I _{CC}	Operating Supply Current (V _{CC} 5.0)	Transmitting and Receiving at		4.0	8.0	mA	
		12 Mbits/s; C _{LOAD} = 50 pF (D+, D-)		(Note 9)		IIIA	
I _{CCIO}	I/O Operating Supply Current	Transmitting and Receiving at		1.0	2.0	mA	
		12 Mbits/s		(Note 9)		IIIA	
I _{CC (IDLE)}	Supply Current during	IDLE: $V_{D+} \ge 2.7V$, $V_{D-} \le 0.3V$;			300	۸	
	FS IDLE and SE0 (V _{CC} 5.0)	SE0: $V_{D+} \le 0.3V$, $V_{D-} \le 0.3V$			(Note 10)	μА	
I _{CCIO} (STATIC)	I/O Static Supply Current	IDLE, SUSPND or SE0			20.0	μА	
I _{CC(DISABLE)}	Disable Supply Current	V _{CCIO} = 0V			25.0	μА	
		V _{CC} Connected	25.		25.0	μА	
I _{CC(SUSPND)}	Suspend Supply Current	SUSPND = HIGH			25.0		
	USB1T1103	OE = HIGH			(Note 10)	μА	
		$V_m = V_p = OPEN$					
I _{CCIO(SHARING)}	I/O Sharing Mode Supply Current	V _{CC} (5V) Not Connected			20.0	μА	
I _{D+} (SHARING)	Sharing Mode Load Current on	V _{CC} (5V) Not Connected			10.0	^	
I _{D+/-}	D+/D- Terminals	Config = LOW; $V_{D\pm} = 3.6V$			10.0	μА	
I _{D+(DISABLE)}	Disable Mode Load Current on	V _{CCIO} Not Connected or 0V			10.0	^	
I _{D+/-}	D+/D- Terminals	Config = $V_D \pm = 3.6V$ LOW or HIGH			10.0	μА	

9 mW

DC Electrical Characteristics (Continued)

				Limits -40°C to +85°C		
Symbol	Parameter	Conditions	-4			
			Min	Тур	Max	
V _{CCTH}	V _{CC} Threshold Detection Voltage	1.65V ≤ V _{CCIO} ≤ 3.6V				
		Supply Lost			3.6	V
		Supply Present	4.1			
V _{CCHYS}	V _{CC} Threshold Detection Hysteresis Voltage	V _{CCIO} = 1.8V		70.0		mV
V _{CCIOTH}	V _{CCIO} Threshold Detection Voltage	2.7V ≤ V _{REG} ≤ 3.6V				
		Supply Lost			0.5	V
		Supply Present	1.4			
V _{CCIOHYS}	V _{CCIO} Threshold Detection Hysteresis Voltage	V _{REG} = 3.3V		450		mV
V _{REGTH}	Regulated Supply Threshold Detection Voltage	$\begin{aligned} 1.65 V &\leq V_{CCIO} \leq V_{REG} \\ 2.7 V &\leq V_{REG} \leq 3.6 V \end{aligned}$				
		Supply Lost			0.8	V
		Supply Present	2.4 (Note 12)			
V _{REGHYS}	Regulated Supply Threshold Detection Hysteresis Voltage	V _{CCIO} = 1.8V		450		mV

Note 7: I_{LOAD} includes the pull-up resistor current via terminal V_{PU}

Note 8: The minimum voltage in Suspend mode is 2.7V.

Note 9: Not tested in production, value based on characterization.

Note 10: Excludes any current from load and $V_{\mbox{\footnotesize{PU}}}$ current to the 1.5k $\!\Omega$ resistor.

Note 11: Includes current between V_{pu} and the 1.5k internal pull-up resistor.

Note 12: When V_{CCIO} < 2.7V, minimum value for V_{REGTH} = 2.0V for supply present condition.

DC Electrical Characteristics (Digital Terminals – excludes D+, D- Terminals)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). $V_{CCIO} = 1.65V$ to 3.6V

			Lin	Limits -40°C to +85°C		
Symbol	Parameter	Test Conditions	-40°C t			
			Min	Max		
Input Levels						
V _{IL}	LOW Level Input Voltage			0.3*V _{CCIO}	V	
V _{IH}	HIGH Level Input Voltage		0.6*V _{CCIO}		V	
	OUTPUT LEVELS:					
V _{OL}	LOW Level Output Voltage	I _{OL} = 2 mA		0.4	V	
		$I_{OL} = 100 \ \mu A$		0.15	V	
V _{OH}	HIGH Level Output Voltage	I _{OH} = 2 mA	V _{CCIO} - 0.4		V	
		I _{OH} = 100 μA	V _{CCIO} - 0.15		V	
Leakage Cu	rent	<u> </u>	•			
lu	Input Leakage Current	V _{CCIO} = 1.65V to 3.6V		±1.0 (Note 13)	μА	
Capacitance		<u>.</u>	•			
C _{IN} , C _{I/O}	Input Capacitance	Terminal to GND		10.0	pF	

Note 13: If $V_{CCIO} \ge V_{REG}$ then leakage current will be higher than specified.

DC Electrical Characteristics (Analog I/O Terminals – D+, D- Terminals)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). $V_{CC} = 4.0 \text{V}$ to 5.5V or $V_{REG} = 3.0 \text{V}$ to 3.6V

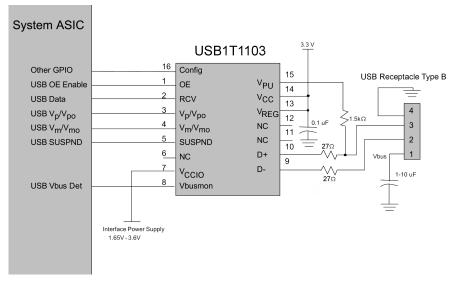
				Limits			
Symbol	Parameter	Test Condition	-40°C to +85°C			Units	
			Min	Тур	Max		
Input Levels	- Differential Receiver		•				
V _{DI}	Differential Input Sensitivity	V _{I(D+)} - V _{I(D-)}	0.2			V	
V _{CM}	Differential Common Mode Voltage		0.8		2.5	V	
INPUT LEVE	LS - Single-ended Receiver		•				
V _{IL}	LOW Level Input Voltage				0.8	V	
V _{IH}	HIGH Level Input Voltage		2.0			V	
V _{HYS}	Hysteresis Voltage		0.30		0.7	V	
Output Leve	ls		•			•	
V _{OL}	LOW Level Output Voltage	$R_L = 1.5k\Omega$ to 3.6V			0.3	V	
V _{OH}	HIGH Level Output Voltage	$R_L = 15k\Omega$ to GND	2.8 (Note 14)		3.6	V	
Leakage Cui	rent	•	•				
I _{OFF}	Input Leakage Current Off State				±1.0	μΑ	
	CAPACITANCE		•				
C _{I/O}	I/O Capacitance	Terminal to GND			20.0	pF	
Resistance	-	- 1					
Z _{DRV}	Driver Output Impedance		34.0	41.0 (Note 15)	44.0	Ω	
Z _{IN}	Driver Input Impedance		10.0			MΩ	
R _{SW}	Switch Resistance				10.0	Ω	
V _{TERM}	Termination Voltage	R _{PU} Upstream Port	3.0 (Note 16) (Note 17)		3.6	V	

Note 14: If V_{OH} min. = V_{REG} - 0.2V.

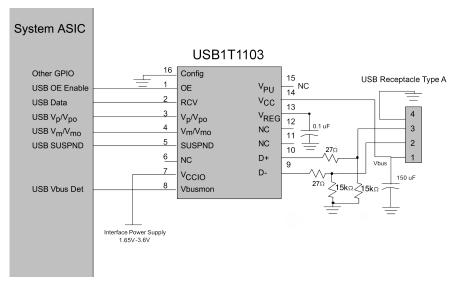
Note 15: Includes external resistors of 27Ω on both D+ and D- terminals.

Note 16: This voltage is available at terminal $\rm V_{PU}$ and $\rm V_{REG}.$

Note 17: Minimum voltage is 2.7V in the suspend mode.


AC Electrical Characteristics (A I/O Terminals Full Speed)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). $V_{CC} = 4.0 \text{V to } 5.5 \text{V or } V_{REG} = 3.0 \text{V to } 3.6 \text{V}, V_{CCIO} = 1.65 \text{V to } 3.6 \text{V}, C_L = 50 \text{ pF}; R_L = 1.5 \text{K on D+ to V}_{PU}$


				Limits		
Symbol	Parameter	Test Conditions	-40°C to +85°C			Unit
			Min	Тур	Max	
Driver Cha	racteristics					
t _R	Output Rise Time	C _L = 50 – 125 pF	4.0		20.0	
		10% to 90%				ns
t_{F}	Output Fall Time	Figures 4, 8	4.0		20.0	
t _{RFM}	Rise/Fall Time Match	t _F /t _R Excludes First Transition	90.0		111.1	%
		from Idle State	90.0		111.1	%
V _{CRS}	Output Signal Crossover Voltage	Excludes First Transition from	1.3		2.0	V
(Note 18)		Idle State see Waveform	1.3		2.0	V
Driver Tim	ing					
t _{PLH}	Propagation Delay	Figures 5, 8			18.0	ns
t _{PHL}	$(V_p/V_{po}, V_m/V_{mo} \text{ to } D+/D-)$	rigules 5, 6			16.0	115
t _{PHZ}	Driver Disable Delay	Figures 7, 8			15.0	ns
t_{PLZ}	(OE to D+/D-)	rigules 7, 6			13.0	115
t _{PZH}	Driver Enable Delay	Figure 7.0			15.0	
t_{PZL}	(OE to D+/D-)	Figures 7, 9			15.0	ns
Receiver T	iming					
t _{PLH}	Propagation Delay (Diff)	Figures 6, 10			15.0	ne
t_{PHL}	(D+/D- to Rev)	rigules 6, 10			13.0	ns
t _{PLH}	Single Ended Receiver Propagation Delay	Figures 6, 10			18.0	ns
t _{PHL}	$(D+/D- to V_p/V_{po}, V_m/V_{mo})$	i iguies 0, 10			10.0	115

Note 18: Not production tested, limits guaranteed by design.

Typical Application Configurations

Upstream Connection in Bypass Mode with Differential Outputs

Downstream Connection in Normal Mode with Differential Outputs

AC Waveforms

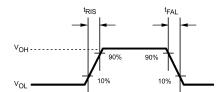


FIGURE 4. Rise and Fall Times

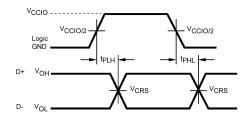


FIGURE 5. V_{po} , V_{mo} to D+/D-

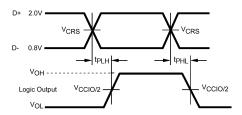


FIGURE 6. D+/D- to R_{CV}, V_{po}/V_{p} and V_{mo}/V_{m}

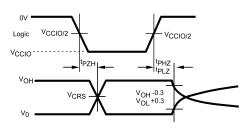
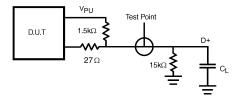
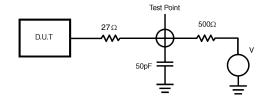




FIGURE 7. OE to D+/D-

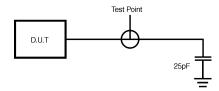
Test Circuits and Waveforms

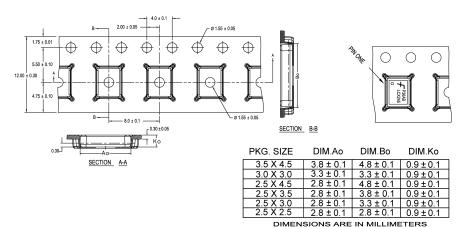
- $C_L = 50 \ pF$ Full Speed Propagation Delays $C_L = -125 \ pF$ Edge Rates only

FIGURE 8. Load for D+/D-

 $V=0 \ for \ t_{PZH}, \ t_{PHZ}$ $V = V_{REG}$ for t_{PZL}

FIGURE 9. Load for Enable and Disable Times

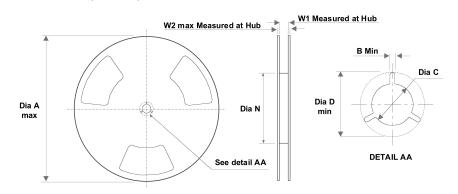



FIGURE 10. Load for $\rm V_m/\rm V_{mo}, \rm V_{p/}\rm V_{po}$ and RCV

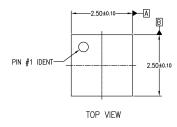
Tape and Reel Specification

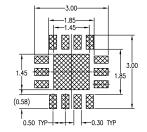
Tane Format for MHRCC and MI P

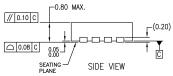
Tape Format for Min	Tape Format for MinbCC and MLF								
Package	Tape	Number	Cavity	Cover Tape					
Designator	Section	Cavities	Status	Status					
	Leader (Start End)	125 (typ)	Empty	Sealed					
MHX/MPX	Carrier	2500/3000	Filled	Sealed					
	Trailer (Hub End)	75 (typ)	Empty	Sealed					


TAPE DIMENSIONS inches (millimeters)

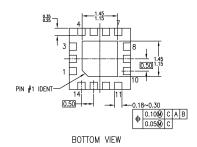
NOTES: unless otherwise specified

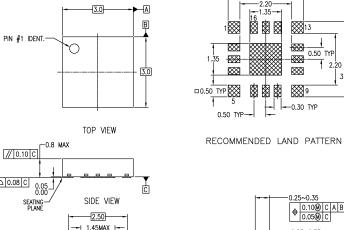

- 1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span.
- Smallest allowable bending radius.
 Thru hole inside cavity is centered within cavity.

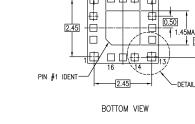

- 3. Intu note inside carry is centered within cavity.
 4. Tolerance is ±0.002[0.05] for these dimensions on all 12mm tapes.
 5. Ao and Bo measured on a plane 0.120[0.30] above the bottom of the pocket.
 6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
 7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
 8. Controlling dimension is millimeter. Diemension in inches rounded.
- **REEL DIMENSIONS** inches (millimeters)



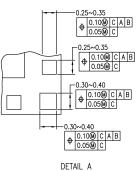
Tape Size	Α	В	С	D	N	W1	W2
12 mm	13.0	0.059	0.512	0.795	7.008	0.488	0.724
	330	(1.50)	(13.00)	(20.20)	(178)	(12.4)	(18.4)


Physical Dimensions inches (millimeters) unless otherwise noted


NOTES:


- A. NO JEDEC REGISTRATION
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP14DrevA


Pb-Free 14-Terminal Molded Leadless Package (MLP), 2.5mm Square Package Number MLP14D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

0.50

NOTES:

- A. SIMILAR TO JEDEC REGISTRATION MO-217, DATED 11/2001
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MI P16HBrevA

Pb-Free 16-Terminal Molded Leadless Package (MHBCC), JEDEC MO-217, 3mm Square Package Number MLP16HB

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com