UTC MC3361BP LINEAR INTEGRATED CIRCUIT ## LOW VOLTAGE/POWER NARROW **BAND FM IF** #### **DESCRIPTION** The UTC MC3361BP is designed for use in FM dual conversion communication. It contains a complete narrow band FM demodulation system operable to less than 2.5V supply voltage. This low-power narrow-band FM IF system provides the second converter, second IF, demodulator. Filter Amp and squelch circuitry for communications and scanning receivers. ### **FEATURES** - *Low power consumption (4.0mA typ. at Vcc=4.0V) - *Excellent input sensitivity - (-3dB limiting, 2.0μVrms typ.) - *Minimum number of external components required. - *Operating Voltage:2.5~7.0V ### **APPLICATIONS** - *Cordless phone (for home use) - *FM dual conversion communications equipment ### **PIN CONFIGURATION** UTC UNISONIC TECHNOLOGIES CO., LTD. QW-R108-010,A # UTCMC3361BP LINEAR INTEGRATED CIRCUIT ## ABSOLUTE MAXIMUM RATINGS(TA=25°C) | PARAMETER | SYMBOL | VALUE | UNIT | |------------------------------|----------|--------------|-------| | Max. Supply Voltage | Vcc(max) | 10 | V | | Supply Voltage Range | Vcc | 2.5 to 7.0 | V | | Detector Input voltage | VI(DET) | 1.0 | Vp-p | | RF Input Voltage (Vcc>=4.0V) | VI(RF) | 1.0 | Vrms | | Mute Function | VMUTE | -0.5 ~ + 5.0 | Vpeak | | Operating Temperature | TOPR | -20 to +70 | °C | | Storage Temperature | Tstg | -65 to +150 | °C | Note: Absolute maximum ratings are those values beyond which permanent damage to the device may occur. These are stress ratings only and functional operation of the device at or beyond them is not implied. Long exposure to these conditions may affect device reliability. ## **ELECTRICAL CHARACTERISTICS** (Vcc=4.0V, fo=10.7MHz, Δ f=+-3KHz,Ta=25°C, unless otherwise specified) | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------------|------------|----------------------|-----|-----|-----|-----------| | Operating Current | Icc | Squelch off (V12=2V) | | 4.0 | | mA | | | | Squelch on (V12=GND) | | 6.0 | | | | Input Limiting voltage | VI(LIM) | -3.0dB limiting | | 2.0 | | μV | | Detector Output voltage | VO(DET) | | | 2.0 | | Vdc | | Detector Output Impedance | ZO(DET) | | | 400 | | Ω | | Audio Output Voltage | Vo | Vin=10mV | 100 | 160 | | mVrms | | Filter Gain | G∨ | f=10KHz,Vin=5mV | 40 | 48 | | dB | | Filter Output DC Voltage | Vo(DC) | | | 1.5 | | Vdc | | Trigger Hysteresis of filter | VTH | | | 50 | | mV | | Mute Switch-on Resistance | RON(MUTE) | Mute "Low" | | 10 | | Ω | | Mute Switch-off Resistance | ROFF(MUTE) | Mute "High" | | 10 | | $M\Omega$ | | Scan Control "Low" Output | VL(SCAN) | Mute off (V12=2V) | | | 0.5 | Vdc | | Scan Control "High" Output | VH(SCAN) | Mute on (V12=GND) | 3.0 | | | Vdc | | Mixer Conversion Gain | GV(MIXER) | | | 24 | | dB | | Mixer Input Resistance | RI(MIXER) | | | 3.3 | | ΚΩ | | Mixer Input Capacitance | CI(MIXER) | | | 2.2 | | pF | ## UTCMC3361BP LINEAR INTEGRATED CIRCUIT ### APPLICATION CIRCUIT In the above typical application, the audio signal is recovered using a conventional quadrature FM detector. The absence of an input signal is indicated by the presence of noise above the desired audio frequencies. This "noise band: is monitored by an active filter and a detector. A squelch trigger circuit indicates the presence of noise (or a tone) by an output which can be used to control scanning. At the same time, an internal switch is operated which can be used to mute the audio.