HIGH VOLTAGE IGNITION COIL DRIVER POWER IC

－NO EXTERNAL COMPONENT REQUIRED
－INTEGRATED HIGH VOLTAGE CLAMP
－COIL CURRENT LIMIT INTERNALLY SET
－HIGH RUGGEDNESS

DESCRIPTION

The VB922 is a monolithic high voltage integrated circuits made using STMicroelectronics VIPower Technology，which combines a vertical current flow power trilinton with a coil current limiting circuit and a collector voltage clamping．
The device is peculiarly suitable for application in high performance electronic car ignition，where coil current limitation and voltage clamping are required．

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
HV_{c}	Collector Voltage	Internally Limited	V
I_{c}	Collector Current	Internally Limited	A
I_{in}	Input Current	40	mA
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	150	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Operating Junction Temperature	-40 to150	${ }^{\circ} \mathrm{C}$
$\mathrm{E}_{\mathrm{s} / \mathrm{b}}$	Avalanche Energy	350	mJ

THERMAL DATA

Symbol	Parameter	Value	Unit	
Rthnj-case	Thermal	Resistance Junction-case	Max	0.83
$R_{\text {thj-amb }}$	Thermal	Resistance Junction-ambient	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\text {batt }}=14 \mathrm{~V}$, HEI Coil $=\mathrm{xx}, \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$
unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\text {cgo }}$	Collector Cut-off Current	$\mathrm{V}_{\text {in }}=0 \quad \mathrm{HV}$ c $=200 \mathrm{~V}$			250	$\mu \mathrm{A}$
V_{cl}	Clamping Voltage	$-40<\mathrm{T}_{\mathrm{j}}<125^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}$	350	400	500	V
$\mathrm{V}_{\text {cg(sat) }}$	Power Stage Saturation Voltage	$\mathrm{I}_{\mathrm{c}}=5 \mathrm{~A} \quad \mathrm{~V}_{\text {in }}=4 \mathrm{~V}$		2	2.5	V
I_{c} *	Coil Current Limit	$\begin{aligned} & 50 \leq \mathrm{T}_{\mathrm{j}} \leq 150^{\circ} \mathrm{C} \\ & -30 \leq \mathrm{T}_{\mathrm{j}} \leq 50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 6.7 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 8.1 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
$V_{f}{ }^{* *}$	Diode Forward Voltage	$\mathrm{If}_{\mathrm{f}}=10 \mathrm{~A}$			3.5	V
$\mathrm{V}_{\text {inCL }}$	Input Voltage During On State	$-30 \leq T_{j} \leq 120^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{c}}=5 \mathrm{~A}$ $\mathrm{l}_{\text {in }}=10 \mathrm{~mA}$ see note 1			4	V
$\mathrm{V}_{\text {inTH }}$	Threshold Input Voltage	$-30 \leq \mathrm{T}_{\mathrm{j}} \leq 120^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{c}}=5 \mathrm{~A}$ see note 2	0.5		4	V
$t_{\text {d(off }}$	Switching Time	$\mathrm{I}_{\mathrm{c}}=3 \mathrm{~A} \quad \mathrm{~L}=6 \mathrm{mH} \quad$ (see fig.1)	15		40	$\mu \mathrm{s}$

* $I_{C L}$ is measured 1 ms after the maximum peak
** Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%
Note 1: After adjusting input signal (frequency and duty) to be $\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{~V}_{\text {in }}(\operatorname{Tr} \mathrm{ON})$ should be measured.
Note 2: The device is biased with 14 V on collector with respecto emitter. Then a voltage ramp (0 to 5 V) is put on input. $\mathrm{V}_{\text {inth }}$ is the input voltage when the device is in on-state with $\mathrm{I}_{\mathrm{c}}=5 \mathrm{~A}$

Fig. 1 Switching Time

Fig. 2 Coil Current Limit Spread

TO-247 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.7		5.3	0.185		0.209
D	2.2		2.6	0.087		0.102
E	0.4		0.8	0.016		0.031
F	1		1.4	0.039		0.055
F3	2		2.4	0.079		0.094
F4	3		3.4	0.118		0.134
G		10.9			0.429	
H	15.3		15.9	0.602		0.626
L	19.7		20.3	0.776		0.779
L3	14.2		14.8	0.559	0.413	0.582
L4		34.6			1.362	
L5		5.5			0.217	
M	2		3	0.079		0.118
Dia	3.55		3.65	0.140		0.144

P025P

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics
© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

