

Product specification Superceded data of 1997 Sep 26 IC24 Data Handbook 1998 Jul 29

74LVC257A

FEATURES

- Wide supply voltage range of 1.2 to 3.6 V
- In accordance with JEDEC standard no. 8-1A
- CMOS lower power consumption
- Direct interface with TTL levels
- Output drive capability 50 Ω transmission lines at 85°C
- 5 Volt tolerant inputs/outputs, for interfacing with 5 Volt logic

DESCRIPTION

The 74LVC257A is a high-performance, low-power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families.

Inputs can be driven from either 3.3V or 5.0V devices. In 3-State operation, outputs can handle 5V. This feature allows the use of these devices as translators in a mixed 3.3V/5V environment.

The 74LVC257A is a quad 2-input multiplexer with 3-state outputs, which select 4 bits of data from two sources and are controlled by a common data select input (S). The data inputs from source 0 (1l₀ to 4l₀) are selected when input S is LOW and the data inputs from source 1 (1l₁ to 4l₁) are selected when S in HIGH. Data appears at the outputs (1Y to 4Y) in true (non-inverting) form from the selected inputs. The 74LVC257A is the logic implementation of a 4-pole, 2-position switch, where the position of the switch is determined by the logic levels applied to S. The outputs are forced to a high impedance OFF-state when \overline{OE} is HIGH.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay nl ₀ , nl ₁ to nY S to nY	$C_L = 50 \text{ pF};$ $V_{CC} = 3.3 \text{ V}$	3.9 3.5	ns
Cl	Input capacitance		5.0	pF
C _{PD}	Power dissipation capacitance per channel	$V_I = GND$ to V_{CC}^1	30	pF

NOTE:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW)

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; C_L = output load capacitance in pF;

 $f_o =$ output frequency in MHz; $V_{CC} =$ supply voltage in V;

 $\sum (C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
16-Pin Plastic SO	–40°C to +85°C	74LVC257A D	74LVC257A D	SOT109-1
16-Pin Plastic SSOP Type II	–40°C to +85°C	74LVC257A DB	74LVC257A DB	SOT338-1
16-Pin Plastic TSSOP Type I	–40°C to +85°C	74LVC257A PW	74LVC257APW DH	SOT403-1

PIN CONFIGURATION

LOGIC SYMBOL

74LVC257A

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	S	Common data select input
2, 5, 11, 14	$1I_0$ to $4I_0$	Data inputs from source 0
3, 6, 10, 13	11 ₁ to 41 ₁	Data outputs from source 1
4, 7, 9, 12	1Y to 4Y	3-State multiplexer outputs
8	GND	Ground (0 V)
15	ŌĒ	3-State output enable input (active LOW)
16	V _{CC}	Positive supply voltage

LOGIC SYMBOL (IEEE/IEC)

FUNCTIONAL DIAGRAM

FUNCTION TABLE

	OUTPUTS			
ŌĒ	S	nl ₀	nl ₁	nY
Н	Х	Х	Х	Z
L	Н	х	L	L
L	н	х	н	н
L	L	L	Х	L
L	L	Н	Х	н

NOTES:

H = HIGH voltage level LOW voltage level

L =

X = Z = don't care high impedance OFF-state

LOGIC DIAGRAM

74LVC257A

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PADAMETED	CONDITIONS	LIM			
STWIDOL		CONDITIONS	MIN	MAX	U	
Vee	DC supply voltage (for max. speed performance)		2.7	3.6	V	
V CC	DC supply voltage (for low-voltage applications)		1.2	3.6	v	
VI	DC input voltage range		0	5.5	V	
Va	DC input voltage range; output HIGH or LOW state		0	V _{CC}	V	
vo	DC output voltage range; output 3-State		0	5.5	v	
T _{amb}	Operating free-air temperature range		-40	+85	°C	
t _r , t _f	Input rise and fall times	$V_{CC} = 1.2 \text{ to } 2.7 \text{V}$ $V_{CC} = 2.7 \text{ to } 3.6 \text{V}$	0	20 10	ns/V	

ABSOLUTE MAXIMUM RATINGS¹

In accordance with the Absolute Maximum Rating System (IEC 134); Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +6.5	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
VI	DC input voltage	Note 2	-0.5 to +5.5	V
I _{ОК}	DC output diode current	$V_{O} > V_{CC} \text{ or } V_{O} < 0$	± 50	mA
V-	DC output voltage; output HIGH or LOW	Note 2	-0.5 to V _{CC} +0.5	V
v0	DC output voltage; output 3-State	Note 2	-0.5 to 6.5	v
Ι _Ο	DC output source or sink current	$V_{O} = 0$ to V_{CC}	±50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	500 500	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74LVC257A

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

			L	UNIT			
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = -				
			MIN	TYP ¹	MAX		
N		$V_{CC} = 1.2V$	V _{CC}			V	
VIH	nigh level linput voltage	V _{CC} = 2.7 to 3.6V	2.0			V	
V		$V_{CC} = 1.2V$			GND	V	
VIL	LOw level input voltage	V _{CC} = 2.7 to 3.6V			0.8	V	
	V _{OH} HIGH level output voltage	V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = -12mA	$V_{CC} - 0.5$				
V _{OH}		V_{CC} = 3.0V; V_I = V_{IH} or V_{IL} ; I_O = -100 μ A	$V_{CC} - 0.2$	V _{CC}			
		V_{CC} = 3.0V; V_I = V_{IH} or V_{IL} ; I_O = -18mA	$V_{CC} - 0.6$			v	
		V_{CC} = 3.0V; V_I = V_{IH} or $V_{IL;} I_O$ = -24mA	$V_{CC} - 0.8$				
		V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = 12mA			0.40		
V _{OL}	LOW level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		GND	0.20	v	
		V_{CC} = 3.0V; V_I = V_{IH} or V_{IL} ; I_O = 24mA			0.55		
ł _l	Input leakage current	$V_{CC} = 3.6V; V_1 = 5.5V \text{ or GND}$		±0.1	±5	μΑ	
I _{OZ}	3-State output OFF-state current	$V_{CC} = 3.6V$; $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND		0.1	±5	μΑ	
I _{OFF}	Power off leakage current	$V_{CC} = 0.0V; V_1 \text{ or } V_0 = 5.5V$		0.1	±10	μΑ	
I _{CC}	Quiescent supply current	$V_{CC} = 3.6V; V_{I} = V_{CC} \text{ or GND}; I_{O} = 0$		0.1	10	μA	
ΔI _{CC}	Additional quiescent supply current per input pin	$V_{CC} = 2.7V$ to 3.6V; $V_I = V_{CC} - 0.6V$; $I_O = 0$		5	500	μΑ	

NOTES:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

AC CHARACTERISTICS

GND = 0 V; t_r = t_f \le 2.5 ns; CL = 50 pF; RL = 500 Ω ; T_{amb} = -40°C to +85°C

			LIMITS							
SYMBOL	PARAMETER	ER WAVEFORM		VAVEFORM V _{CC} = 3.3V ±0.3V		V _{CC} = 2.7V			V _{CC} = 1.2V	UNIT
			MIN	TYP ¹	MAX	MIN	TYP ¹	MAX	TYP	
t _{PHL} /t _{PLH}	Propagation delay nl ₀ to nY nl ₁ to nY	Figures 1, 3	1.5	3.9	5.1	1.5	3.3	6.1	11	ns
t _{PHL} /t _{PLH}	Propagation delay S to nY	Figures 1, 3	1.5	3.5	6.4	1.5	4.3	7.5	14	ns
t _{PZH} /t _{PZL}	3-state output enable time OE to nY	Figures 2, 3	1.5	3.7	6.5	1.5	4.6	7.5	15	ns
t _{PHZ} /t _{PLZ}	3-state output disable time OE to nY	Figures 2, 3	1.5	3.2	5.2	1.5	3.5	6.2	12	ns

NOTE:

1. These typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

74LVC257A

AC WAVEFORMS

$$\begin{split} & \mathsf{V}_{\mathsf{M}} = 0.5 \times \mathsf{V}_{\mathsf{CC}} \text{ at } \mathsf{V}_{\mathsf{CC}} < 2.7 \; \mathsf{V} \\ & \mathsf{V}_{\mathsf{M}} = 1.5 \; \mathsf{V} \; \text{at } \mathsf{V}_{\mathsf{CC}} \geq 2.7 \; \mathsf{V} \\ & \mathsf{V}_{\mathsf{X}} = \mathsf{V}_{\mathsf{OL}} + 0.3 \; \mathsf{V} \; \text{at } \mathsf{V}_{\mathsf{CC}} \geq 2.7 \; \mathsf{V} \\ & \mathsf{V}_{\mathsf{X}} = \mathsf{V}_{\mathsf{OL}} + 0.1 \times \mathsf{V}_{\mathsf{CC}} \; \text{at } \mathsf{V}_{\mathsf{CC}} < 2.7 \; \mathsf{V} \\ & \mathsf{V}_{\mathsf{Y}} = \mathsf{V}_{\mathsf{OH}} - 0.3 \; \mathsf{V} \; \text{at } \mathsf{V}_{\mathsf{CC}} \geq 2.7 \; \mathsf{V} \\ & \mathsf{V}_{\mathsf{Y}} = \mathsf{V}_{\mathsf{OH}} - 0.1 \times \mathsf{V}_{\mathsf{CC}} \; \text{at } \mathsf{V}_{\mathsf{CC}} < 2.7 \; \mathsf{V} \\ & \mathsf{V}_{\mathsf{OL}} \; \text{and } \mathsf{V}_{\mathsf{OH}} \; \text{are the typical output voltage drop that occur with the output load. \end{split}$$

Figure 1. Input (S, nI_0 , nI_1) to output (nY) propagation delays.

TEST CIRCUIT

Figure 3. Load circuitry for switching times.

74LVC257A

Product specification

74LVC257A

OUTLINE	REFERENCES				EUROPEAN		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT338-1		MO-150AC				-94-01-14- 95-02-04	

74LVC257A

OUTLINE	REFERENCES			EUROPEAN		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT403-1		MO-153				-94-07-12 95-04-04

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Date of release: 08-98

Document order number:

Let's make things better.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com