# TMS320VC5401 Fixed-Point Digital Signal Processor

## Data Manual

Literature Number: SPRS153C December 2000 – Revised February 2004

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

## **REVISION HISTORY**

This data sheet revision history highlights the technical changes made to the SPRS153B device-specific data sheet to make it an SPRS153C revision.

**Scope:** This document has been reviewed for technical accuracy; the technical content is up-to-date as of the specified release date with the following changes.

| PAGE(S)<br>NO. | ADDITIONS/CHANGES/DELETIONS                                                    |  |
|----------------|--------------------------------------------------------------------------------|--|
| Several        | Reformatted all register bit layouts.                                          |  |
| 16             | Updated HOLDA description in Table 2-2.                                        |  |
| 21             | Added ROM/RAM security restrictions to Section 3.1.3, On-Chip Memory Security. |  |
| 32             | Replaced "CLKOUT cycle" with "CPU clock cycle" in Section 3.6, Hardware Timer. |  |
| 42             | Added TRAP/INTR NUMBER (K) column to Table 3–15.                               |  |
| 45             | Added Section 4.1, Device and Development Tool Support Nomenclature.           |  |
| 80             | Updated GGU mechanical.                                                        |  |





## **Contents**

|   | ntrod        |            |                                             |
|---|--------------|------------|---------------------------------------------|
|   |              | uction     |                                             |
| 2 | 2.1          | Descripti  | on                                          |
|   | 2.2          | Pin Assig  | gnments                                     |
|   |              | 2.2.1      | Terminal Assignments for the GGU Package    |
|   |              | 2.2.2      | Pin Assignments for the PGE Package         |
| 2 | 2.3          | Signal De  | escriptions                                 |
| ı | Funct        | ional Ovei | rview                                       |
| 3 | 3.1          | Memory     |                                             |
|   |              | 3.1.1      | On-Chip ROM With Bootloader                 |
|   |              | 3.1.2      | On-Chip RAM                                 |
|   |              | 3.1.3      | On-Chip Memory Security                     |
| 3 | 3.2          | Memorv     | Map                                         |
|   |              | 3.2.1      | Relocatable Interrupt Vector Table          |
|   |              | 3.2.2      | Extended Program Memory                     |
| 3 | 3.3          | On-Chip    | Peripherals                                 |
|   |              | 3.3.1      | Software-Programmable Wait-State Generator  |
|   |              | 3.3.2      | Programmable Bank-Switching                 |
| 3 | 3.4          |            | /O Ports                                    |
|   |              | 3.4.1      | Enhanced 8-Bit Host-Port Interface (HPI8)   |
| 3 | 3.5          |            | nnel Buffered Serial Ports (McBSPs)         |
|   |              | 3.5.1      | Programmable McBSP Functions                |
|   |              | 3.5.2      | Enhanced McBSPs                             |
| 3 | 3.6          |            | e Timer                                     |
|   | 3.7          |            | enerator                                    |
|   | 3.8          |            | ntroller                                    |
|   |              | 3.8.1      | Features                                    |
|   |              | 3.8.2      | DMA Memory Map                              |
|   |              | 3.8.3      | DMA Priority Level                          |
|   |              | 3.8.4      | DMA Source/Destination Address Modification |
|   |              | 3.8.5      | DMA in Autoinitialization Mode              |
|   |              | 3.8.6      | DMA Transfer Counting                       |
|   |              | 3.8.7      | DMA Transfer in Doubleword Mode             |
|   |              | 3.8.8      | DMA Channel Index Registers                 |
|   |              | 3.8.9      | DMA Interrupts                              |
|   |              | 3.8.10     | DMA Controller Synchronization Events       |
|   |              | 3.8.11     | DMA Channel Interrupt Selection             |
| , | 3.9          |            | Mapped Registers                            |
|   | 3.10         |            | Control Registers and Subaddresses          |
|   | 3.10<br>3.11 |            | bbank Addressed Registers                   |
|   | 3.11<br>3.12 |            | S                                           |
| • | J. 1 Z       | memupis    | ,                                           |



| Se | ection                         |            |                                                                  | Page |  |  |  |
|----|--------------------------------|------------|------------------------------------------------------------------|------|--|--|--|
| 5  | Electr                         | ical Speci | ifications                                                       | 46   |  |  |  |
|    | 5.1                            | -          | Maximum Ratings                                                  | 46   |  |  |  |
|    | 5.2                            |            | nended Operating Conditions                                      | 46   |  |  |  |
|    | 5.3 Electrical Characteristics |            |                                                                  |      |  |  |  |
|    | 5.4                            |            | Thermal Resistance Characteristics                               | 48   |  |  |  |
|    | 5.5                            | •          | Parameter Symbology                                              | 48   |  |  |  |
|    | 5.6                            | •          | Oscillator With External Crystal                                 | 49   |  |  |  |
|    | 5.7                            |            | ptions                                                           | 50   |  |  |  |
|    |                                | 5.7.1      | Divide-By-Two Clock Option (PLL Disabled)                        | 50   |  |  |  |
|    |                                | 5.7.2      | Multiply-By-N Clock Option (PLL Enabled)                         | 51   |  |  |  |
|    | 5.8                            | Memory     | and Parallel I/O Interface Timing                                | 52   |  |  |  |
|    |                                | 5.8.1      | Memory Read                                                      | 52   |  |  |  |
|    |                                | 5.8.2      | Memory Write                                                     | 54   |  |  |  |
|    |                                | 5.8.3      | I/O Read                                                         | 56   |  |  |  |
|    |                                | 5.8.4      | I/O Write                                                        | 57   |  |  |  |
|    | 5.9                            | Ready T    | iming for Externally Generated Wait States                       | 58   |  |  |  |
|    | 5.10                           |            | nd HOLDA Timings                                                 | 62   |  |  |  |
|    | 5.11                           |            | BIO, Interrupt, and MP/MC Timings                                | 63   |  |  |  |
|    | 5.12                           |            | on Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings    | 65   |  |  |  |
|    | 5.13                           |            | Flag (XF) and TOUT Timings                                       | 66   |  |  |  |
|    | 5.14                           |            | nnel Buffered Serial Port (McBSP) Timing                         | 67   |  |  |  |
|    |                                | 5.14.1     | McBSP Transmit and Receive Timings                               | 67   |  |  |  |
|    |                                | 5.14.2     | McBSP General-Purpose I/O Timing                                 | 69   |  |  |  |
|    |                                | 5.14.3     | McBSP Transmit and Receive Timing Using CLKR/X as a Clock Source |      |  |  |  |
|    |                                |            | Input to the Sample Rate Generator (SRGR)                        | 70   |  |  |  |
|    |                                | 5.14.4     | McBSP as SPI Master or Slave Timing                              | 72   |  |  |  |
|    | 5.15                           | Host-Por   | rt Interface (HPI8) Timing                                       | 76   |  |  |  |
| 6  | Mecha                          | nical Dat  | a                                                                | 80   |  |  |  |
|    | 6.1                            | Ball Grid  | Array Mechanical Data                                            | 80   |  |  |  |
|    | 6.2                            | Low-Pro    | file Quad Flatpack Mechanical Data                               | 81   |  |  |  |



# **List of Figures**

| Figure |                                                                                   | Page |
|--------|-----------------------------------------------------------------------------------|------|
| 2–1    | 144-Ball GGU MicroStar BGA (Bottom View)                                          | 12   |
| 2–2    | 144-Pin PGE Low-Profile Quad Flatpack (Top View)                                  | 14   |
| 3–1    | TMS320VC5401 Functional Block Diagram                                             | 20   |
| 3–2    | Memory Map                                                                        | 22   |
| 3–3    | Processor Mode Status (PMST) Register                                             | 23   |
| 3–4    | Extended Program Memory                                                           | 25   |
| 3–5    | Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h] | 26   |
| 3–6    | Software Wait-State Control Register (SWCR) [MMR Address 002Bh]                   | 27   |
| 3–7    | Bank-Switching Control Register (BSCR), MMR Address 0029h                         | 27   |
| 3–8    | HPI8 Memory Map                                                                   | 29   |
| 3–9    | Pin Control Register (PCR)                                                        | 31   |
| 3–10   | DMA Memory Map                                                                    | 34   |
| 3–11   | IFR and IMR Registers                                                             | 43   |
| 5–1    | 3.3-V Test Load Circuit                                                           | 47   |
| 5–2    | Internal Oscillator With External Crystal                                         | 49   |
| 5–3    | External Divide-by-Two Clock Timing                                               | 50   |
| 5–4    | External Multiply-by-One Clock Timing                                             | 51   |
| 5–5    | Memory Read (MSTRB = 0)                                                           | 53   |
| 5–6    | Memory Write (MSTRB = 0)                                                          | 55   |
| 5–7    | Parallel I/O Port Read (IOSTRB = 0)                                               | 56   |
| 5–8    | Parallel I/O Port Write (IOSTRB = 0)                                              | 57   |
| 5–9    | Memory Read With Externally Generated Wait States                                 | 58   |
| 5–10   | Memory Write With Externally Generated Wait States                                | 59   |
| 5–11   | I/O Read With Externally Generated Wait States                                    | 60   |
| 5–12   | I/O Write With Externally Generated Wait States                                   | 61   |
| 5–13   | HOLD and HOLDA Timings (HM = 1)                                                   | 62   |
| 5–14   | Reset and BIO Timings                                                             | 63   |
| 5–15   | Interrupt Timing                                                                  | 64   |
| 5–16   | MP/MC Timing                                                                      | 64   |
| 5–17   | IAQ and IACK Timings                                                              | 65   |
| 5–18   | XF Timing                                                                         | 66   |
| 5–19   | TOUT Timing                                                                       | 66   |
| 5–20   | McBSP Receive Timings                                                             | 68   |
| 5–21   | McBSP Transmit Timings                                                            | 68   |
| 5–22   | McBSP General-Purpose I/O Timings                                                 | 69   |
| 5–23   | McBSP Sample Rate Generator Timings                                               | 71   |
|        |                                                                                   |      |



## Figures

| Figure |                                                                     | Page |
|--------|---------------------------------------------------------------------|------|
| 5-24   | McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0        | 72   |
| 5-25   | McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0        | 73   |
| 5–26   | McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1        | 74   |
| 5–27   | McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1        | 75   |
| 5–28   | Using HDS to Control Accesses (HCS Always Low)                      | 78   |
| 5–29   | Using HCS to Control Accesses                                       | 79   |
| 5–30   | HINT Timing                                                         | 79   |
| 5–31   | GPIOx Timings                                                       | 79   |
| 6–1    | TMS320VC5401 144-Ball MicroStar BGA Plastic Ball Grid Array Package | 80   |
| 6–2    | TMS320VC5401 144-Pin Low-Profile Quad Flatpack                      | 81   |



## **List of Tables**

| Table |                                                                                          | Page |
|-------|------------------------------------------------------------------------------------------|------|
| 2–1   | Terminal Assignments for the TMS320VC5401GGU (144-Pin BGA Package)                       | 13   |
| 2–2   | Signal Descriptions                                                                      | 15   |
| 3–1   | Standard On-Chip ROM Layout                                                              | 21   |
| 3–2   | Processor Mode Status (PMST) Register Bit Fields                                         | 23   |
| 3–3   | Software Wait-State Register (SWWSR) Bit Fields                                          | 26   |
| 3-4   | Software Wait-State Control Register (SWCR) Bit Fields                                   | 27   |
| 3–5   | Bank-Switching Control Register (BSCR) Fields                                            | 28   |
| 3–6   | Sample Rate Generator Clock Source Selection                                             | 32   |
| 3–7   | Clock Mode Settings at Reset                                                             | 33   |
| 3–8   | DMA Interrupts                                                                           | 36   |
| 3–9   | DMA Synchronization Events                                                               | 36   |
| 3–10  | DMA Channel Interrupt Selection                                                          | 36   |
| 3–11  | CPU Memory-Mapped Registers                                                              | 37   |
| 3–12  | Peripheral Memory-Mapped Registers                                                       | 38   |
| 3–13  | McBSP Control Registers and Subaddresses                                                 | 39   |
| 3–14  | DMA Subbank Addressed Registers                                                          | 40   |
| 3–15  | Interrupt Locations and Priorities                                                       | 42   |
| 3–16  | IFR and IMR Register Bit Fields                                                          | 43   |
| 5–1   | Thermal Resistance Characteristics                                                       | 48   |
| 5–2   | Input Clock Frequency Characteristics                                                    | 49   |
| 5–3   | Divide-By-2 Clock Option Timing Requirements                                             | 50   |
| 5-4   | Divide-By-2 Clock Option Switching Characteristics                                       | 50   |
| 5–5   | Multiply-By-N Clock Option Timing Requirements                                           | 51   |
| 5–6   | Multiply-By-N Clock Option Switching Characteristics                                     | 51   |
| 5–7   | Memory Read Timing Requirements                                                          | 52   |
| 5–8   | Memory Read Switching Characteristics                                                    | 52   |
| 5–9   | Memory Write Switching Characteristics                                                   | 54   |
| 5–10  | I/O Read Timing Requirements                                                             | 56   |
| 5–11  | I/O Read Switching Characteristics                                                       | 56   |
| 5–12  | I/O Write Switching Characteristics                                                      | 57   |
| 5–13  | Ready Timing Requirements for Externally Generated Wait States                           | 58   |
| 5–14  | Ready Switching Characteristics for Externally Generated Wait States                     | 58   |
| 5–15  | HOLD and HOLDA Timing Requirements                                                       | 62   |
| 5–16  | HOLD and HOLDA Switching Characteristics                                                 | 62   |
| 5–17  | Reset, BIO, Interrupt, and MP/MC Timing Requirements                                     | 63   |
| 5–18  | Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Switching Characteristics | 65   |
| 5–19  | External Flag (XF) and TOUT Switching Characteristics                                    | 66   |
| 5–20  | McBSP Transmit and Receive Timing Requirements                                           | 67   |
| 5–21  | McBSP Transmit and Receive Switching Characteristics                                     | 67   |
| 5–22  | McBSP General-Purpose I/O Timing Requirements                                            | 69   |
| 5–23  | McBSP General-Purpose I/O Switching Characteristics                                      | 69   |
| 5–24  | McBSP Sample Rate Generator Timing Requirements                                          | 70   |
| 5–25  | McBSP Sample Rate Generator Switching Characteristics                                    | 70   |



## Tables

| Table |                                                                                  | Page |
|-------|----------------------------------------------------------------------------------|------|
| 5–26  | McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)       | 72   |
| 5–27  | McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0) | 72   |
| 5–28  | McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)       | 73   |
| 5–29  | McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0) | 73   |
| 5–30  | McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)       | 74   |
| 5–31  | McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1) | 74   |
| 5–32  | McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)       | 75   |
| 5–33  | McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) | 75   |
| 5–34  | HPI8 Timing Requirements                                                         | 76   |
| 5-35  | HPI8 Switching Characteristics                                                   | 77   |

## 1 TMS320VC5401 Features

- Advanced Multibus Architecture With Three Separate 16-Bit Data Memory Buses and One Program Memory Bus
- 40-Bit Arithmetic Logic Unit (ALU), Including a 40-Bit Barrel Shifter and Two Independent 40-Bit Accumulators
- 17- x 17-Bit Parallel Multiplier Coupled to a 40-Bit Dedicated Adder for Non-Pipelined Single-Cycle Multiply/Accumulate (MAC) Operation
- Compare, Select, and Store Unit (CSSU) for the Add/Compare Selection of the Viterbi Operator
- Exponent Encoder to Compute an Exponent Value of a 40-Bit Accumulator Value in a Single Cycle
- Two Address Generators With Eight Auxiliary Registers and Two Auxiliary Register Arithmetic Units (ARAUs)
- Data Bus With a Bus-Holder Feature
- Extended Addressing Mode for 1M × 16-Bit Maximum Addressable External Program Space
- 4K x 16-Bit On-Chip ROM
- 8K x 16-Bit Dual-Access On-Chip RAM
- Single-Instruction-Repeat and Block-Repeat Operations for Program Code
- Block-Memory-Move Instructions for Efficient Program and Data Management
- Instructions With a 32-Bit Long Word Operand

- Instructions With Two- or Three-Operand Reads
- Arithmetic Instructions With Parallel Store and Parallel Load
- Conditional Store Instructions
- Fast Return From Interrupt
- On-Chip Peripherals
  - Software-Programmable Wait-State Generator and Programmable Bank Switching
  - On-Chip Phase-Locked Loop (PLL)
     Clock Generator With Internal Oscillator
     or External Clock Source
  - Two Multichannel Buffered Serial Ports (McBSPs)
  - Enhanced 8-Bit Parallel Host-Port Interface (HPI8)
  - Two 16-Bit Timers
  - Six-Channel Direct Memory Access (DMA) Controller
- Power Consumption Control With IDLE1, IDLE2, and IDLE3 Instructions With Power-Down Modes
- CLKOUT Off Control to Disable CLKOUT
- On-Chip Scan-Based Emulation Logic, IEEE Std 1149.1<sup>†</sup> (JTAG) Boundary Scan Logic
- 20-ns Single-Cycle Fixed-Point Instruction Execution Time (50 MIPS) for 3.3-V Power Supply (1.8-V Core)
- 144-Pin Plastic Low-Profile Quad Flatpack (LQFP) (PGE Suffix)
- 144-Ball MicroStar BGA™ (GGU Suffix)

<sup>&</sup>lt;sup>†</sup> IEEE Standard 1149.1-1990 Standard Test-Access Port and Boundary Scan Architecture. TMS320C54x and MicroStar BGA are trademarks of Texas Instruments. Other trademarks are the property of their respective owners.



## 2 Introduction

This section describes the main features of the TMS320VC5401, lists the pin assignments, and describes the function of each pin. This data manual also provides a detailed description section, electrical specifications, parameter measurement information, and mechanical data about the available packaging.

**NOTE:** This data manual is designed to be used in conjunction with the *TMS320C54x*™ *DSP Functional Overview* (literature number SPRU307).

## 2.1 Description

The TMS320VC5401 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5401 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set.

Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can be performed in a single machine cycle. In addition, the 5401 includes the control mechanisms to manage interrupts, repeated operations, and function calls.

## 2.2 Pin Assignments

Figure 2–1 illustrates the ball locations for the 144-pin ball grid array (BGA) package and is used in conjunction with Table 2–1 to locate signal names and ball grid numbers. Figure 2–2 provides the pin assignments for the 144-pin low-profile quad flatpack (LQFP) package.

## 2.2.1 Terminal Assignments for the GGU Package

Table 2–1 lists each signal name and BGA ball number for the 144-pin TMS320VC5401GGU package. Table 2–2 lists each terminal name, terminal function, and operating modes for the TMS320VC5401.

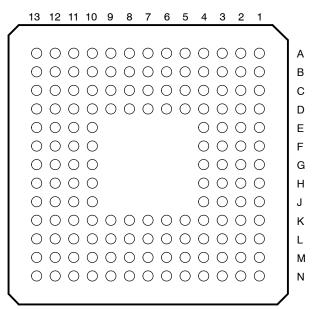



Figure 2–1. 144-Ball GGU MicroStar BGA™ (Bottom View)

Table 2–1. Terminal Assignments for the TMS320VC5401GGU (144-Pin BGA Package)  $^{\dagger\ddagger}$ 

| SIGNAL<br>NAME   | BGA BALL# |
|------------------|-----------|------------------|-----------|------------------|-----------|------------------|-----------|
| NC               | A1        | NC               | N13       | NC               | N1        | A19              | A13       |
| NC               | B1        | NC               | M13       | NC               | N2        | NC               | A12       |
| V <sub>SS</sub>  | C2        | DV <sub>DD</sub> | L12       | HCNTL0           | МЗ        | V <sub>SS</sub>  | B11       |
| $DV_DD$          | C1        | $V_{SS}$         | L13       | V <sub>SS</sub>  | N3        | $DV_DD$          | A11       |
| A10              | D4        | CLKMD1           | K10       | BCLKR0           | K4        | D6               | D10       |
| HD7              | D3        | CLKMD2           | K11       | BCLKR1           | L4        | D7               | C10       |
| A11              | D2        | CLKMD3           | K12       | BFSR0            | M4        | D8               | B10       |
| A12              | D1        | NC               | K13       | BFSR1            | N4        | D9               | A10       |
| A13              | E4        | HD2              | J10       | BDR0             | K5        | D10              | D9        |
| A14              | E3        | TOUT0            | J11       | HCNTL1           | L5        | D11              | C9        |
| A15              | E2        | EMU0             | J12       | BDR1             | M5        | D12              | B9        |
| NC               | E1        | EMU1/OFF         | J13       | BCLKX0           | N5        | HD4              | A9        |
| HAS              | F4        | TDO              | H10       | BCLKX1           | K6        | D13              | D8        |
| V <sub>SS</sub>  | F3        | TDI              | H11       | V <sub>SS</sub>  | L6        | D14              | C8        |
| NC               | F2        | TRST             | H12       | HINT/TOUT1       | M6        | D15              | B8        |
| CV <sub>DD</sub> | F1        | TCK              | H13       | CV <sub>DD</sub> | N6        | HD5              | A8        |
| HCS              | G2        | TMS              | G12       | BFSX0            | M7        | CV <sub>DD</sub> | B7        |
| HR/W             | G1        | NC               | G13       | BFSX1            | N7        | NC               | A7        |
| READY            | G3        | CV <sub>DD</sub> | G11       | HRDY             | L7        | HDS1             | C7        |
| PS               | G4        | HPIENA           | G10       | DV <sub>DD</sub> | K7        | V <sub>SS</sub>  | D7        |
| DS               | H1        | V <sub>SS</sub>  | F13       | V <sub>SS</sub>  | N8        | HDS2             | A6        |
| ĪS               | H2        | CLKOUT           | F12       | HD0              | M8        | DV <sub>DD</sub> | B6        |
| R/W              | НЗ        | HD3              | F11       | BDX0             | L8        | A0               | C6        |
| MSTRB            | H4        | X1               | F10       | BDX1             | K8        | A1               | D6        |
| IOSTRB           | J1        | X2/CLKIN         | E13       | ĪACK             | N9        | A2               | A5        |
| MSC              | J2        | RS               | E12       | HBIL             | M9        | А3               | B5        |
| XF               | J3        | D0               | E11       | NMI              | L9        | HD6              | C5        |
| HOLDA            | J4        | D1               | E10       | ĪNT0             | K9        | A4               | D5        |
| ĪAQ              | K1        | D2               | D13       | ĪNT1             | N10       | A5               | A4        |
| HOLD             | K2        | D3               | D12       | ĪNT2             | M10       | A6               | B4        |
| BIO              | K3        | D4               | D11       | ĪNT3             | L10       | A7               | C4        |
| MP/MC            | L1        | D5               | C13       | CV <sub>DD</sub> | N11       | A8               | А3        |
| DV <sub>DD</sub> | L2        | A16              | C12       | HD1              | M11       | A9               | В3        |
| V <sub>SS</sub>  | L3        | V <sub>SS</sub>  | C11       | V <sub>SS</sub>  | L11       | CV <sub>DD</sub> | СЗ        |
| NC               | M1        | A17              | B13       | NC               | N12       | NC               | A2        |
| NC               | M2        | A18              | B12       | NC               | M12       | NC               | B2        |

 $<sup>^{\</sup>dagger}$  DV<sub>DD</sub> is the power supply for the I/O pins while CV<sub>DD</sub> is the power supply for the core CPU. V<sub>SS</sub> is the ground for both the I/O pins and the core CPU.



<sup>&</sup>lt;sup>‡</sup> NC = No internal connection

## 2.2.2 Pin Assignments for the PGE Package

The TMS320VC5401PGE 144-pin low-profile quad flatpack (LQFP) is footprint- and pin-compatible with the 5402.

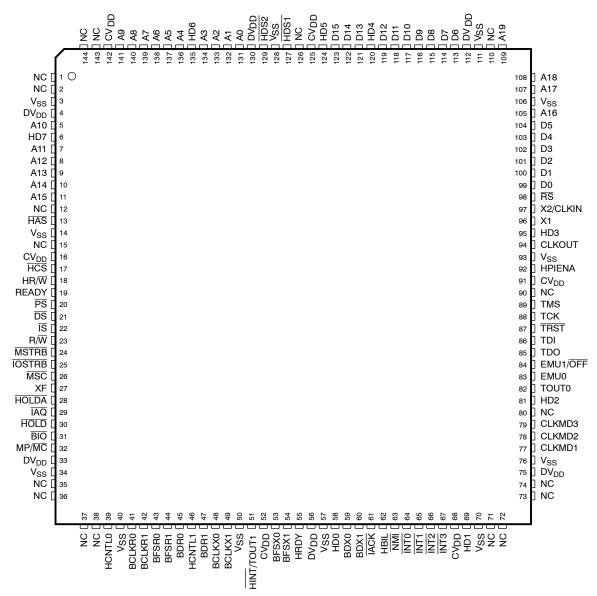



Figure 2-2. 144-Pin PGE Low-Profile Quad Flatpack (Top View)

## 2.3 Signal Descriptions

Table 2–2 lists each signal, function, and operating mode(s) grouped by function. See Section 2.2 for exact pin locations based on package type.

Table 2-2. Signal Descriptions

| TYPE <sup>†</sup>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                 | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                 | DATA SIGNALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| O/Z                                             | Parallel address bus A19 [most significant bit (MSB)] through A0 [least significant bit (LSB)]. The lower sixteen address pins (A0 to A15) are multiplexed to address all external memory (program, data) or I/O, while the upper four address pins (A16 to A19) are only used to address external program space. These pins are placed in the high-impedance state when the hold mode is enabled, or when OFF is low.                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| I/O/Z                                           | Parallel data bus D15 (MSB) through D0 (LSB). The sixteen data pins (D0 to D15) are multiplexed to transfer data between the core CPU and external data/program memory or I/O devices. The data bus is placed in the high-impedance state when not outputting or when RS or HOLD is asserted. The data bus also goes into the high-impedance state when OFF is low.  The data bus has bus holders to reduce the static power dissipation caused by floating, unused pins. These bus holders also eliminate the need for external bias resistors on unused pins. When the data bus is not being driven by the 5401, the bus holders keep the pins at the previous logic level. The data bus holders on the 5401 are disabled at reset and can be enabled/disabled via the BH bit of the bank-switching control register (BSCR). |  |  |  |  |
| INITIALIZATION, INTERRUPT, AND RESET OPERATIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| O/Z                                             | Interrupt acknowledge signal. IACK Indicates receipt of an interrupt and that the program counter is fetching the interrupt vector location designated by A15–A0. IACK also goes into the high-impedance state when OFF is low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| I                                               | External user interrupts. INT0-INT3 are prioritized and are maskable by the interrupt mask register (IMR) and the interrupt mode bit. INT0 -INT3 can be polled and reset by way of the interrupt flag register (IFR).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| I                                               | Nonmaskable interrupt. $\overline{\text{NMI}}$ is an external interrupt that cannot be masked by way of the INTM or the IMR. When $\overline{\text{NMI}}$ is activated, the processor traps to the appropriate vector location.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                 | I/O/Z O/Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |

 $<sup>^{\</sup>dagger}$  I = input, O = output, Z = high impedance, S = supply

<sup>&</sup>lt;sup>‡</sup> All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8-V power supply (CV<sub>DD</sub>), rather than the 3-V I/O supply (DV<sub>DD</sub>). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.



Table 2-2. Signal Descriptions (Continued)

| TERMINAL<br>NAME | TYPE† | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |       | INITIALIZATION, INTERRUPT, AND RESET OPERATIONS (CONTINUED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RS               | ı     | Reset. $\overline{\text{RS}}$ causes the digital signal processor (DSP) to terminate execution and causes a reinitialization of the CPU and peripherals. When $\overline{\text{RS}}$ is brought to a high level, execution begins at location 0FF80h of program memory. $\overline{\text{RS}}$ affects various registers and status bits.                                                                                                                                                                                                                              |
| MP/MC            | 1     | Microprocessor/microcomputer mode select. If active low at reset, microcomputer mode is selected, and the internal program ROM is mapped into the upper 4K words of program memory space. If the pin is driven high during reset, microprocessor mode is selected, and the on-chip ROM is removed from program space. This pin is only sampled at reset, and the MP/MC bit of the processor mode status (PMST) register can override the mode that is selected at reset.                                                                                               |
|                  |       | MULTIPROCESSING SIGNALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BIO              | ı     | Branch control. A branch can be conditionally executed when $\overline{\text{BIO}}$ is active. If low, the processor executes the conditional instruction. For the XC instruction, the $\overline{\text{BIO}}$ condition is sampled during the decode phase of the pipeline; all other instructions sample $\overline{\text{BIO}}$ during the read phase of the pipeline.                                                                                                                                                                                              |
| XF               | O/Z   | External flag output (latched software-programmable signal). XF is set high by the SSBX XF instruction, set low by the RSBX XF instruction or by loading ST1. XF is used for signaling other processors in multiprocessor configurations or used as a general-purpose output pin. XF goes into the high-impedance state when OFF is low, and is set high at reset.                                                                                                                                                                                                     |
|                  |       | MEMORY CONTROL SIGNALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DS<br>PS<br>IS   | O/Z   | Data, program, and I/O space select signals. $\overline{DS}$ , $\overline{PS}$ , and $\overline{IS}$ are always high unless driven low for accessing a particular external memory space. Active period corresponds to valid address information. $\overline{DS}$ , $\overline{PS}$ , and $\overline{IS}$ are placed into the high-impedance state in the hold mode; the signals also go into the high-impedance state when $\overline{OFF}$ is low.                                                                                                                    |
| MSTRB            | O/Z   | Memory strobe signal. MSTRB is always high unless low-level asserted to indicate an external bus access to data or program memory. MSTRB is placed in the high-impedance state in the hold mode; it also goes into the high-impedance state when OFF is low.                                                                                                                                                                                                                                                                                                           |
| READY            | I     | Data ready. READY indicates that an external device is prepared for a bus transaction to be completed. If the device is not ready (READY is low), the processor waits one cycle and checks READY again. Note that the processor performs ready detection if at least two software wait states are programmed. The READY signal is not sampled until the completion of the software wait states.                                                                                                                                                                        |
| R/W              | O/Z   | Read/write signal. $R/\overline{W}$ indicates transfer direction during communication to an external device. $R/\overline{W}$ is normally in the read mode (high), unless it is asserted low when the DSP performs a write operation. $R/\overline{W}$ is placed in the high-impedance state in hold mode; it also goes into the high-impedance state when $\overline{OFF}$ is low.                                                                                                                                                                                    |
| IOSTRB           | O/Z   | I/O strobe signal. $\overline{\text{IOSTRB}}$ is always high unless low-level asserted to indicate an external bus access to an I/O device. $\overline{\text{IOSTRB}}$ is placed in the high-impedance state in the hold mode; it also goes into the high-impedance state when $\overline{\text{OFF}}$ is low.                                                                                                                                                                                                                                                         |
| HOLD             | I     | Hold. HOLD is asserted to request control of the address, data, and control lines. When acknowledged by the C54x™ DSP, these lines go into the high-impedance state.                                                                                                                                                                                                                                                                                                                                                                                                   |
| HOLDA            | O/Z   | Hold acknowledge. HOLDA indicates that the 5401 is in a hold state and that the address, data, and control lines are in the high-impedance state, allowing the external memory interface to be accessed by other devices. HOLDA also goes into the high-impedance state when OFF is low. This pin is driven high during reset.                                                                                                                                                                                                                                         |
| MSC              | O/Z   | Microstate complete. $\overline{\text{MSC}}$ indicates completion of all software wait states. When two or more software wait states are enabled, the $\overline{\text{MSC}}$ pin goes active at the beginning of the first software wait state and goes inactive high at the beginning of the last software wait state. If connected to the READY input, $\overline{\text{MSC}}$ forces one external wait state after the last internal wait state is completed. $\overline{\text{MSC}}$ also goes into the high-impedance state when $\overline{\text{OFF}}$ is low. |
| ĪĀQ              | O/Z   | Instruction acquisition signal. $\overline{IAQ}$ is asserted (active low) when there is an instruction address on the address bus. $\overline{IAQ}$ goes into the high-impedance state when $\overline{OFF}$ is low.                                                                                                                                                                                                                                                                                                                                                   |

 $<sup>^{\</sup>dagger}$  I = input, O = output, Z = high impedance, S = supply

C54x is a trademark of Texas Instruments.



<sup>&</sup>lt;sup>‡</sup> All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8-V power supply (CV<sub>DD</sub>), rather than the 3-V I/O supply (DV<sub>DD</sub>). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.

Table 2-2. Signal Descriptions (Continued)

| Table 2-2. Signal Descriptions (Continued) |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|--------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| TERMINAL<br>NAME                           | TYPE†                    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                            | OSCILLATOR/TIMER SIGNALS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| CLKOUT                                     | O/Z                      | Master clock output signal. CLKOUT cycles at the machine-cycle rate of the CPU. The internal machine cycle is bounded by rising edges of this signal. CLKOUT also goes into the high-impedance state when OFF is low.                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| CLKMD1<br>CLKMD2<br>CLKMD3                 | 1                        | Clock mode select signals. These inputs select the mode that the clock generator is initialized to after reset. The logic levels of CLKMD1–CLKMD3 are latched when the reset pin is low, and the clock mode register is initialized to the selected mode. After reset, the clock mode can be changed through software, but the clock mode select signals have no effect until the device is reset again.                                                                                                                                                                                                                                       |  |  |  |
| X2/CLKIN                                   | 1                        | Oscillator input. This is the input to the on-chip oscillator.  If the internal oscillator is not used, X2/CLKIN functions as the clock input, and can be driven by an external clock source. <sup>‡</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| X1                                         | 0                        | Output pin from the internal oscillator for the crystal.  If the internal oscillator is not used, X1 should be left unconnected. X1 does not go into the high-impedance state when OFF is low.‡                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| TOUT0                                      | O/Z                      | Timer0 output. TOUT0 signals a pulse when the on-chip timer 0 counts down past zero. The pulse is a CLKOUT cycle wide. TOUT0 also goes into the high-impedance state when $\overline{\text{OFF}}$ is low.                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| TOUT1                                      | O/Z                      | Timer1 output. TOUT1 signals a pulse when the on-chip timer1 counts down past zero. The pulse is one CLKOUT cycle wide. The TOUT1 output is multiplexed with the HINT pin of the HPI and is only available when the HPI is disabled. TOUT1 also goes into the high-impedance state when $\overline{\text{OFF}}$ is low.                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                            |                          | MULTICHANNEL BUFFERED SERIAL PORT SIGNALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| BCLKR0<br>BCLKR1                           | I/O/Z                    | Receive clock input. BCLKR can be configured as an input or an output; it is configured as an input following reset. BCLKR serves as the serial shift clock for the buffered serial port receiver.                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| BDR0<br>BDR1                               | I                        | Serial data receive input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| BFSR0<br>BFSR1                             | I/O/Z                    | Frame synchronization pulse for receive input. BFSR can be configured as an input or an output; it is configured as an input following reset. The BFSR pulse initiates the receive data process over BDR.                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| BCLKX0<br>BCLKX1                           | I/O/Z                    | Transmit clock. BCLKX serves as the serial shift clock for the McBSP transmitter. BCLKX can be configured as an input or an output; it is configured as an input following reset. BCLKX enters the high-impedance state when OFF goes low.                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| BDX0<br>BDX1                               | O/Z                      | Serial data transmit output. BDX is placed in the high-impedance state when not transmitting, when $\overline{\text{RS}}$ is asserted, or when $\overline{\text{OFF}}$ is low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| BFSX0<br>BFSX1                             | I/O/Z                    | Frame synchronization pulse for transmit input/output. The BFSX pulse initiates the transmit data process. BFSX can be configured as an input or an output; it is configured as an input following reset. BFSX goes into the high-impedance state when $\overline{\text{OFF}}$ is low.                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                            |                          | MISCELLANEOUS SIGNAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| NC                                         |                          | No connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                            |                          | HOST-PORT INTERFACE SIGNALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| HD0-HD7                                    | I/O/Z                    | Parallel bidirectional data bus. The HPI data bus is used by a host device bus to exchange information with the HPI registers. These pins can also be used as general-purpose I/O pins. HD0–HD7 is placed in the high-impedance state when not outputting data or when $\overline{\text{OFF}}$ is low. The HPI data bus includes bus holders to reduce the static power dissipation caused by floating, unused pins. When the HPI data bus is not being driven by the 5401, the bus holders keep the pins at the previous logic level. The HPI data bus holders are disabled at reset and can be enabled/disabled via the HBH bit of the BSCR. |  |  |  |
| HCNTL0<br>HCNTL1                           | I                        | Control. HCNTL0 and HCNTL1 select a host access to one of the three HPI registers. The control inputs have internal pullup resistors that are only enabled when HPIENA = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

 $<sup>^{\</sup>dagger}$  I = input, O = output, Z = high impedance, S = supply

<sup>&</sup>lt;sup>‡</sup> All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8-V power supply (CV<sub>DD</sub>), rather than the 3-V I/O supply (DV<sub>DD</sub>). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.



Table 2-2. Signal Descriptions (Continued)

| TERMINAL<br>NAME                                                                                                             | TYPE†                                                                                                                                                                                                                                                                                              | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| HOST-PORT INTERFACE SIGNALS (CONTINUED)                                                                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| HBIL                                                                                                                         | 1                                                                                                                                                                                                                                                                                                  | Byte identification. HBIL identifies the first or second byte of transfer. The HBIL input has an internal pullup resistor that is only enabled when HPIENA = 0.                                                                                                                                                                                                          |  |  |  |  |  |
| HCS                                                                                                                          | 1                                                                                                                                                                                                                                                                                                  | Chip select. HCS is the select input for the HPI and must be driven low during accesses. The chip-select input has an internal pullup resistor that is only enabled when HPIENA = 0.                                                                                                                                                                                     |  |  |  |  |  |
| HDS1<br>HDS2                                                                                                                 | I                                                                                                                                                                                                                                                                                                  | Data strobe. HDS1 and HDS2 are driven by the host read and write strobes to control transfers. The strobe inputs have internal pullup resistors that are only enabled when HPIENA = 0.                                                                                                                                                                                   |  |  |  |  |  |
| HAS                                                                                                                          | I                                                                                                                                                                                                                                                                                                  | Address strobe. Hosts with multiplexed address and data pins require HAS to latch the address in the HPIA register. HAS has an internal pullup resistor that is only enabled when HPIENA = 0.                                                                                                                                                                            |  |  |  |  |  |
| HR/W                                                                                                                         | I                                                                                                                                                                                                                                                                                                  | Read/write. $HR/\overline{W}$ controls the direction of an HPI transfer. $R/\overline{W}$ has an internal pullup resistor that is only enabled when HPIENA = 0.                                                                                                                                                                                                          |  |  |  |  |  |
| HRDY                                                                                                                         | O/Z                                                                                                                                                                                                                                                                                                | Ready. The ready output informs the host when the HPI is ready for the next transfer. HRDY goes into the high-impedance state when $\overline{\text{OFF}}$ is low.                                                                                                                                                                                                       |  |  |  |  |  |
| HINT                                                                                                                         | O/Z                                                                                                                                                                                                                                                                                                | Host interrupt. This output is used to interrupt the host. When the DSP is in reset, HINT is driven high. HINT can also be configured as the timer 1 output (TOUT1), when the HPI is disabled. The signal goes into the high-impedance state when $\overline{\text{OFF}}$ is low.                                                                                        |  |  |  |  |  |
| HPIENA                                                                                                                       | I                                                                                                                                                                                                                                                                                                  | HPI module select. HPIENA must be driven high during reset to enable the HPI. An internal pulldown resistor is always active and the HPIENA pin is sampled on the rising edge of RS. If HPIENA is left open or is driven low during reset, the HPI module is disabled. Once the HPI is disabled, the HPIENA pin has no effect until the 5401 is reset.                   |  |  |  |  |  |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                    | SUPPLY PNS                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| CV <sub>DD</sub>                                                                                                             | S                                                                                                                                                                                                                                                                                                  | +V <sub>DD</sub> . Dedicated 1.8-V power supply for the core CPU                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| $DV_DD$                                                                                                                      | S                                                                                                                                                                                                                                                                                                  | +V <sub>DD</sub> . Dedicated 3.3-V power supply for the I/O pins                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| V <sub>SS</sub>                                                                                                              | S                                                                                                                                                                                                                                                                                                  | Ground                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                    | TEST PINS                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| TCK I O                                                                                                                      |                                                                                                                                                                                                                                                                                                    | IEEE standard 1149.1 test clock. TCK is normally a free-running clock signal with a 50% duty cycle. The changes on the test access port (TAP) of input signals TMS and TDI are clocked into the TAP controller, instruction register, or selected test data register on the rising edge of TCK. Changes at the TAP output signal (TDO) occur on the falling edge of TCK. |  |  |  |  |  |
| TDI I IEEE standard 1149.1 test data input pin with internal pullup device. T (instruction or data) on a rising edge of TCK. |                                                                                                                                                                                                                                                                                                    | IEEE standard 1149.1 test data input pin with internal pullup device. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK.                                                                                                                                                                                                           |  |  |  |  |  |
| TDO                                                                                                                          | DO O/Z  IEEE standard 1149.1 test data output. The contents of the selected register (instruction or data) are shift of TDO on the falling edge of TCK. TDO is in the high-impedance state except when the scanning of data progress. TDO also goes into the high-impedance state when OFF is low. |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| TMS                                                                                                                          | IEEE standard 1149.1 test mode select. Pin with internal pullup device. This serial control input is clocked TAP controller on the rising edge of TCK.                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| TRST                                                                                                                         | IEEE standard 1149.1 test reset. TRST, when high, gives the IEEE standard 1149.1 scan system control of                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |

 $<sup>^{\</sup>dagger}$  I = input, O = output, Z = high impedance, S = supply

<sup>&</sup>lt;sup>‡</sup> All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8-V power supply (CV<sub>DD</sub>), rather than the 3-V I/O supply (DV<sub>DD</sub>). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.

Table 2-2. Signal Descriptions (Continued)

| TERMINAL<br>NAME | TYPE† | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |       | TEST PINS (CONTINUED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EMU0             | I/O/Z | Emulator 0 pin. When TRST is driven low, EMU0 must be high for activation of the OFF condition. When TRST is driven high, EMU0 is used as an interrupt to or from the emulator system and is defined as input/output by way of the IEEE standard 1149.1 scan system.                                                                                                                                                                                                                                                                                                                 |
| EMU1/OFF         | I/O/Z | Emulator 1 pin/disable all outputs. When TRST is driven high, EMU1/OFF is used as an interrupt to or from the emulator system and is defined as input/output by way of the IEEE standard 1149.1 scan system. When TRST is driven low, EMU1/OFF is configured as OFF. The EMU1/OFF signal, when active low, puts all output drivers into the high-impedance state. Note that OFF is used exclusively for testing and emulation purposes (not for multiprocessing applications). The OFF feature is selected by the following pin combinations:  TRST = low EMU0 = high EMU1/OFF = low |

<sup>†</sup> I = input, O = output, Z = high impedance, S = supply



<sup>&</sup>lt;sup>‡</sup> All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8-V power supply (CV<sub>DD</sub>), rather than the 3-V I/O supply (DV<sub>DD</sub>). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.

## 3 Functional Overview

The following functional overview is based on the block diagram in Figure 3-1.

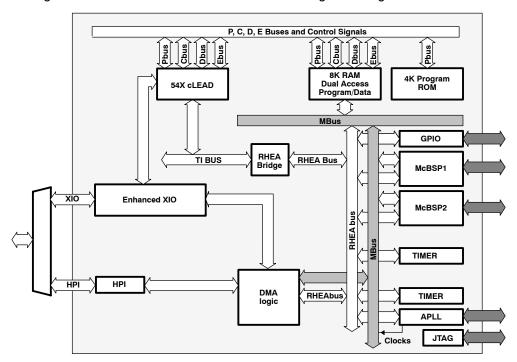



Figure 3-1. TMS320VC5401 Functional Block Diagram

## 3.1 Memory

The 5401 device provides both on-chip ROM and RAM memories to aid in system performance and integration.

## 3.1.1 On-Chip ROM With Bootloader

The 5401 features a 4K-word  $\times$  16-bit on-chip maskable ROM. Customers can arrange to have the ROM of the 5401 programmed with contents unique to any particular application. A security option is available to protect a custom ROM. This security option is described in the *TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals* (literature number SPRU131). Note that only the ROM security option, and not the ROM/RAM option, is available on the 5401.

A bootloader is available in the standard 5401 on-chip ROM. This bootloader can be used to automatically transfer user code from an external source to anywhere in the program memory at power up. If the MP/MC pin is sampled low during a hardware reset, execution begins at location FF80h of the on-chip ROM. This location contains a branch instruction to the start of the bootloader program. The standard 5401 bootloader provides different ways to download the code to accommodate various system requirements:

- Parallel from 8-bit or 16-bit-wide EPROM
- Parallel from I/O space 8-bit or 16-bit mode
- Serial boot from serial ports 8-bit or 16-bit mode
- Host-port interface boot

The standard on-chip ROM layout is shown in Table 3-1.



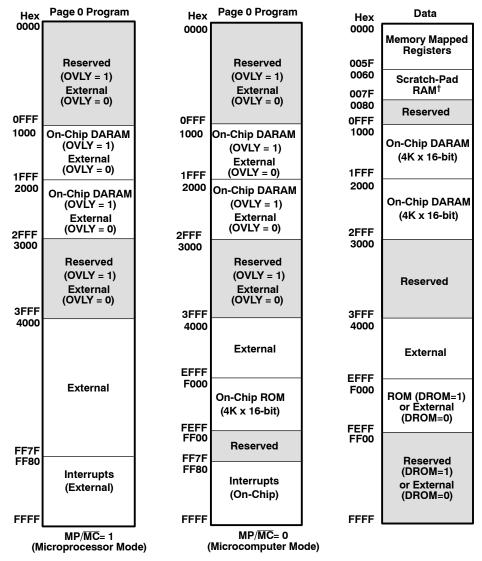
Table 3-1. Standard On-Chip ROM Layout<sup>†</sup>

| ADDRESS RANGE | DESCRIPTION            |
|---------------|------------------------|
| F000h – F7FFh | Reserved               |
| F800h – FBFFh | Bootloader             |
| FC00h - FCFFh | μ-law expansion table  |
| FD00h – FDFFh | A-law expansion table  |
| FE00h – FEFFh | Sine look-up table     |
| FF00h – FF7Fh | Reserved               |
| FF80h – FFFFh | Interrupt vector table |

<sup>&</sup>lt;sup>†</sup> In the 5401 ROM, 128 words are reserved for factory device-testing purposes. Application code to be implemented in on-chip ROM must reserve these 128 words at addresses FF00h–FF7Fh in program space.

## 3.1.2 On-Chip RAM

The 5401 device contains  $8K \times 16$ -bit of on-chip dual-access RAM (DARAM). The DARAM is composed of two blocks of 4K words each. Each DARAM block can support two reads in one cycle, or a read and a write in one cycle. This allows code to be executed out of one block while two data values are read out of the other block without incurring a cycle penalty. The first DARAM block occupies two address ranges: 0060h-007Fh and 1000h-1FFFh in data space. The second DARAM block occupies 2000h-2FFFh in data space. In program space, each block occupies the same address ranges with the exception of 0060h-007Fh, which are not available.


## 3.1.3 On-Chip Memory Security

The 5401 features a 16K-word × 16-bit on-chip maskable ROM.

Customers can arrange to have the ROM of the 5401 programmed with contents unique to any particular application. A security option is available to protect a custom ROM. The ROM and ROM/RAM security options are available on the 5401. These security options are described in the *TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals* (literature number SPRU131). When the security options are enabled, JTAG emulation is inhibited or nonfunctional.

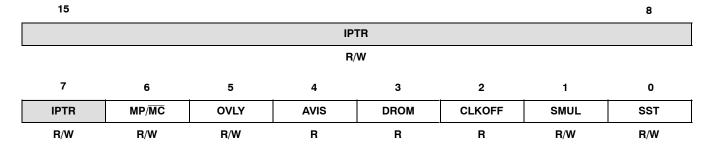


## 3.2 Memory Map



<sup>&</sup>lt;sup>†</sup> The scratch-pad RAM area is physically a part of the DARAM block starting at address 1000h. Physical location can affect multiple access performance. (See Section 3.1.2.)

Figure 3-2. Memory Map


## 3.2.1 Relocatable Interrupt Vector Table

The reset, interrupt, and trap vectors are addressed in program space. These vectors are soft — meaning that the processor, when taking the trap, loads the program counter (PC) with the trap address and executes the code at the vector location. Four words are reserved at each vector location to accommodate a delayed branch instruction, either two 1-word instructions or one 2-word instruction, which allows branching to the appropriate interrupt service routine with minimal overhead.

At device reset, the reset, interrupt, and trap vectors are mapped to address FF80h in program space. However, these vectors can be remapped to the beginning of any 128-word page in program space after device reset. This is done by loading the interrupt vector pointer (IPTR) bits in the PMST register (see Figure 3–3) with the appropriate 128-word page boundary address. After loading IPTR, any user interrupt or trap vector is mapped to the new 128-word page.



NOTE: The hardware reset (RS) vector cannot be remapped because a hardware reset loads the IPTR with 1s. Therefore, the reset vector is always fetched at location FF80h in program space.



**LEGEND:** R = Read, W = Write, *n* = value present after reset

Figure 3-3. Processor Mode Status (PMST) Register
Table 3-2. Processor Mode Status (PMST) Register Bit Fields

| BIT R |        | RESET        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-------|--------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NO.   | NAME   | VALUE        | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 15-7  | IPTR   | 1FFh         | Interrupt vector pointer. The 9-bit IPTR field points to the 128-word program page where the interrupt vectors reside. The interrupt vectors can be remapped to RAM for boot-loaded operations. At reset, these bits are all set to 1; the reset vector always resides at address FF80h in program memory space. The RESET instruction does not affect this field.                                                                                                                                                                                                                             |  |  |  |
| 6     | MP/MC  | MP/MC<br>pin | Microprocessor/microcomputermode. MP/MC enables/disables the on-chip ROM to be addressable in program memory space.  MP/MC = 0: The on-chip ROM is enabled and addressable.  MP/MC = 1: The on-chip ROM is not available.  MP/MC is set to the value corresponding to the logic level on the MP/MC pin when sampled at reset. This pin is not sampled again until the next reset. The RESET instruction does not affect this bit. This bit can also be set or cleared by software.                                                                                                             |  |  |  |
| 5     | OVLY   | 0            | RAM overlay. OVLY enables on-chip dual-access data RAM blocks to be mapped into program space. The values for the OVLY bit are:  OVLY = 0: The on-chip RAM is addressable in data space but not in program space.  OVLY = 1: The on-chip RAM is mapped into program space and data space. Data page 0 (addresses 0h to 7Fh), however, is not mapped into program space.                                                                                                                                                                                                                        |  |  |  |
| 4     | AVIS   | 0            | Address visibility mode. AVIS enables/disables the internal program address to be visible at the address pins.  AVIS = 0: The external address lines do not change with the internal program address. Control and data lines are not affected and the address bus is driven with the last address on the bus.  AVIS = 1: This mode allows the internal program address to appear at the pins of the 5410A so that the internal program address can be traced. Also, it allows the interrupt vector to be decoded in conjunction with IACK when the interrupt vectors reside on on-chip memory. |  |  |  |
| 3     | DROM   | 0            | Data ROM. DROM enables on-chip ROM to be mapped into data space. The values for the DROM bit are:  DROM = 0: The on-chip ROM is not mapped into data space.  DROM = 1: A portion of the on-chip RAM is mapped into data space.                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 2     | CLKOFF | 0            | CLOCKOUT off. When the CLKOFF bit is 1, the output of CLKOUT is disabled and remains at a high level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 1     | SMUL   | 0            | Saturation on multiplication. When SMUL = 1, saturation of a multiplication result occurs before performing the accumulation in a MAC of MAS instruction. The SMUL bit applies only when OVM = 1 and FRCT = 1.                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 0     | SST    | 0            | Saturation on store. When SST = 1, saturation of the data from the accumulator is enabled before storing in memory. The saturation is performed after the shift operation.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |

## 3.2.2 Extended Program Memory

The 5401 uses a paged extended memory scheme in program space to allow access of up to 1024K program memory locations. In order to implement this scheme, the 5401 includes several features that are also present on the 548/549 devices:

- Twenty address lines, instead of sixteen
- An extra memory-mapped register, the XPC register, defines the page selection. This register is memory-mapped into data space to address 001Eh. At a hardware reset, the XPC is initialized to 0.
- Six extra instructions for addressing extended program space. These six instructions affect the XPC.
  - FB[D] pmad (20 bits) Far branch
  - FBACC[D] Accu[19:0] Far branch to the location specified by the value in accumulator A or accumulator B
  - FCALL[D] pmad (20 bits) Far call
  - FCALA[D] Accu[19:0] Far call to the location specified by the value in accumulator A or accumulator B
  - FRET[D] Far return
  - FRETE[D] Far return with interrupts enabled
- In addition to these new instructions, two 54x instructions are extended to use 20 bits in the 5401:
  - READA data\_memory (using 20-bit accumulator address)
  - WRITA data memory (using 20-bit accumulator address)

All other instructions, software interrupts and hardware interrupts do not modify the XPC register and access only memory within the current page.

Program memory in the 5401 is organized into 16 pages that are each 64K in length, as shown in Figure 3-4.



| 0 0000 |                         | 1 0000<br>1 3FFF | Page 1<br>Lower<br>16K‡<br>External | 2 0000<br>2 3FFF | Page 2<br>Lower<br>16K‡<br>External | <br>F 0000 | Page 15<br>Lower<br>16K‡<br>External |
|--------|-------------------------|------------------|-------------------------------------|------------------|-------------------------------------|------------|--------------------------------------|
|        |                         | 1 4000           |                                     | 2 4000           |                                     | <br>F 4000 |                                      |
|        | Page 0<br>64K<br>Words† |                  | Page 1<br>Upper<br>48K<br>External  |                  | Page 2<br>Upper<br>48K<br>External  |            | Page 15<br>Upper<br>48K<br>External  |
| 0 FFFF |                         | 1 FFFF           |                                     | 2 FFFF           |                                     | <br>F FFFF |                                      |

<sup>†</sup> See Figure 3-2.

Figure 3-4. Extended Program Memory

## 3.3 On-Chip Peripherals

The 5401 device has the following peripherals:

- Software-programmable wait-state generator with programmable bank-switching wait states
- An enhanced 8-bit host-port interface (HPI8)
- Two multichannel buffered serial ports (McBSPs)
- Two hardware timers
- A clock generator with a phase-locked loop (PLL)
- A direct memory access (DMA) controller

## 3.3.1 Software-Programmable Wait-State Generator

The software wait-state generator of the 5401 can extend external bus cycles by up to fourteen machine cycles. Devices that require more than fourteen wait states can be interfaced using the hardware READY line. When all external accesses are configured for zero wait states, the internal clocks to the wait-state generator are automatically disabled. Disabling the wait-state generator clocks reduces the power consumption of the 5401.

The software wait-state register (SWWSR) controls the operation of the wait-state generator. The 14 LSBs of the SWWSR specify the number of wait states (0 to 7) to be inserted for external memory accesses to five separate address ranges. This allows a different number of wait states for each of the five address ranges. Additionally, the software wait-state multiplier (SWSM) bit of the software wait-state control register (SWCR) defines a multiplication factor of 1 or 2 for the number of wait states. At reset, the wait-state generator is initialized to provide seven wait states on all external memory accesses. The SWWSR bit fields are shown in Figure 3–5 and described in Table 3–3.



<sup>&</sup>lt;sup>‡</sup> The lower 16K words of pages 1 through 15 are available only when the OVLY bit is cleared to 0. If the OVLY bit is set to 1, the on-chip RAM and reserved addresses are mapped to the lower 16K words of all program space pages.

| 15    | 14   |         | 12      | 11 |         | 9       | 8       |
|-------|------|---------|---------|----|---------|---------|---------|
| XPA   |      | I/O     |         |    | DATA    |         | DATA    |
| R/W-0 |      | R/W-111 |         |    | R/W-111 |         | R/W-111 |
| 7     | 6    | 5       |         | 3  | 2       |         | 0       |
| DA    | TA   |         | PROGRAM |    |         | PROGRAM |         |
| B/W   | -111 | •       | R/W-111 |    | •       | R/W-111 |         |

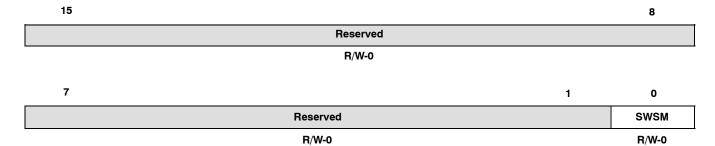

**LEGEND:** R = Read, W = Write, n = value present after reset

Figure 3-5. Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h]

Table 3-3. Software Wait-State Register (SWWSR) Bit Fields

|       | BIT        |       | FUNCTION                                                                                                                                                                                                                                                   |  |  |  |
|-------|------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NO.   | NAME       | VALUE | FUNCTION                                                                                                                                                                                                                                                   |  |  |  |
| 15    | XPA        | 0     | Extended program address control bit. XPA is used in conjunction with the program space fields (bits 0 through 5) to select the address range for program space wait states.                                                                               |  |  |  |
| 14–12 | I/O        | 1     | I/O space. The field value (0–7) corresponds to the base number of wait states for I/O space accesses within addresses 0000–FFFFh. The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.                  |  |  |  |
| 11-9  | Data       | 1     | Upper data space. The field value (0–7) corresponds to the base number of wait states for external data space accesses within addresses 8000–FFFFh. The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states. |  |  |  |
| 8–6   | Data       | 1     | Lower data space. The field value (0–7) corresponds to the base number of wait states for external data space accesses within addresses 0000–7FFFh. The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states. |  |  |  |
| 5–3   | Program    | 1     | Upper program space. The field value (0–7) corresponds to the base number of wait states for external program space accesses within the following addresses:  XPA = 0: x8000 – xFFFFh                                                                      |  |  |  |
|       | <b>. 9</b> |       | <ul> <li>XPA = 1: The upper program space bit field has no effect on wait states.</li> <li>The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.</li> </ul>                                               |  |  |  |
| 2-0   | Program    | 1     | Program space. The field value (0–7) corresponds to the base number of wait states for external program space accesses within the following addresses:                                                                                                     |  |  |  |
|       |            |       | XPA = 1: 00000-FFFFFh  The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.                                                                                                                              |  |  |  |

The software wait-state multiplier bit of the software wait-state control register (SWCR) is used to extend the base number of wait states selected by the SWWSR. The SWCR bit fields are shown in Figure 3–6 and described in Table 3–4.



**LEGEND:** R = Read, W = Write, n = value present after reset

Figure 3-6. Software Wait-State Control Register (SWCR) [MMR Address 002Bh]

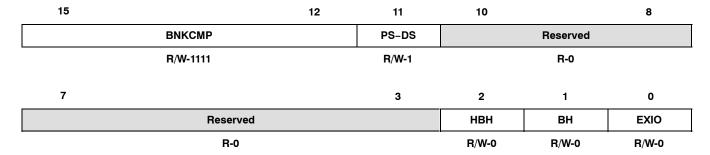

PIN RESET **FUNCTION VALUE** NO. NAME 15-1 Reserved These bits are reserved and are unaffected by writes. Software wait-state multiplier. Used to multiply the number of wait states defined in the SWWSR by a factor of 1 or 2. 0 **SWSM** 0 SWSM = 0: wait-state base values are unchanged (multiplied by 1). SWSM = 1: wait-state base values are multiplied by 2 for a maximum of 14 wait states.

Table 3-4. Software Wait-State Control Register (SWCR) Bit Fields

## 3.3.2 Programmable Bank-Switching

The programmable bank-switching logic of the 5401 is functionally equivalent to that of the 548/549 devices. This feature automatically inserts one cycle when accesses cross memory-bank boundaries within program or data memory space. A bank-switching wait state can also be automatically inserted when accesses cross the data space boundary into program space.

The bank-switching control register (BSCR) defines the bank size for bank-switching wait states. Figure 3–7 shows the BSCR and its bits are described in Table 3–5.



**LEGEND:** R = Read, W = Write, n = value present after reset

Figure 3-7. Bank-Switching Control Register (BSCR), MMR Address 0029h



Table 3-5. Bank-Switching Control Register (BSCR) Fields

| NO.   | BIT<br>NAME | RESET<br>VALUE | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 15–12 | BNKCMP      | 1111           | Bank compare. Determines the external memory-bank size. BNKCMP is used to mask the four MSBs of an address. For example, if BNKCMP = 1111b, the four MSBs (bits 12–15) are compared, resulting in a bank size of 4K words. Bank sizes of 4K words to 64K words are allowed.                                                                                                                |  |  |  |
| 11    | PS - DS     | 1              | Program read – data read access. Inserts an extra cycle between consecutive accesses of program read and data read or data read and program read.  PS-DS = 0 No extra cycles are inserted by this feature.  PS-DS = 1 One extra cycle is inserted between consecutive data and program reads.                                                                                              |  |  |  |
| 10–3  | Reserved    | 0              | These bits are reserved and are unaffected by writes.                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 2     | НВН         | 0              | HPI Bus holder. Controls the HPI bus holder feature. HBH is cleared to 0 at reset.  HBH = 0  The bus holder is disabled.  HBH = 1  The bus holder is enabled. When not driven, the HPI data bus (HD[7:0]) is held in the previous logic level.                                                                                                                                             |  |  |  |
| 1     | ВН          | 0              | Bus holder. Controls the data bus holder feature. BH is cleared to 0 at reset.  BH = 0 The bus holder is disabled.  BH = 1 The bus holder is enabled. When not driven, the data bus (D[15:0]) is held in the previous logic level.                                                                                                                                                         |  |  |  |
| 0     | EXIO        | 0              | External bus interface off. The EXIO bit controls the external bus-off function.  EXIO = 0  The external bus interface functions as usual.  EXIO = 1  The address bus, data bus, and control signals become inactive after completing the current bus cycle. Note that the DROM, MP/MC, and OVLY bits in the PMST and the HM bit of ST1 cannot be modified when the interface is disabled. |  |  |  |

## 3.4 Parallel I/O Ports

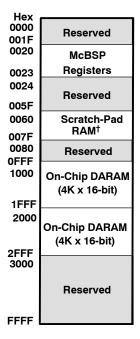
The 5401 has a total of 64K I/O ports. These ports can be addressed by the PORTR instruction or the PORTW instruction. The  $\overline{\text{IS}}$  signal indicates a read/write operation through an I/O port. The 5401 can interface easily with external devices through the I/O ports while requiring minimal off-chip address-decoding circuits.

## 3.4.1 Enhanced 8-Bit Host-Port Interface (HPI8)

The 5401 host-port interface, also referred to as the HPI8, is an enhanced version of the standard 8-bit HPI found on earlier 54x DSPs (542, 545, 548, and 549). The HPI8 is an 8-bit parallel port for interprocessor communication. The features of the HPI8 include:

#### Standard features:

- Sequential transfers (with autoincrement) or random-access transfers
- Host interrupt and 54x interrupt capability
- Multiple data strobes and control pins for interface flexibility


#### Enhanced features of the 5401 HPI8:

- · Access to entire on-chip RAM through DMA bus
- Capability to continue transferring during emulation stop

The HPI8 functions as a slave and enables the host processor to access the on-chip memory of the 5401. A major enhancement to the 5401 HPI over previous versions is that it allows host access to the entire on-chip memory range of the DSP. The HPI8 memory map (see Figure 3–8) is identical to that of the DMA controller shown in Figure 3–10. The host and the DSP both have access to the on-chip RAM at all times and host accesses are always synchronized to the DSP clock. If the host and the DSP contend for access to the same location, the host has priority, and the DSP waits for one HPI8 cycle. Note that since host accesses are always synchronized to the 5401 clock, an active input clock (CLKIN) is required for HPI8 accesses during IDLE states, and host accesses are not allowed while the 5401 reset pin is asserted.



The HPI8 interface consists of an 8-bit bidirectional data bus and various control signals. Sixteen-bit transfers are accomplished in two parts with the HBIL input designating high or low byte. The host communicates with the HPI8 through three dedicated registers — HPI address register (HPIA), HPI data register (HPID), and an HPI control register (HPIC). The HPIA and HPID registers are only accessible by the host, and the HPIC register is accessible by both the host and the 5401.



<sup>&</sup>lt;sup>†</sup> The scratch-pad RAM area is physically a part of the DARAM block starting at address 1000h. Physical location can affect multiple access performance. (See Section 3.1.2)

Figure 3-8. HPI8 Memory Map

## 3.5 Multichannel Buffered Serial Ports (McBSPs)

The 5401 device includes two high-speed, full-duplex multichannel buffered serial ports (McBSPs) that allow direct interface to other C54x/LC54x devices, codecs, and other devices in a system. The McBSPs are based on the standard serial port interface found on other 54x devices. Like its predecessors, the McBSP provides:

- Full-duplex communication
- Double-buffered data registers, which allow a continuous data stream
- · Independent framing and clocking for receive and transmit

In addition, the McBSP has the following capabilities:

- Direct interface to:
  - T1/E1 framers
  - MVIP switching compatible and ST-BUS compliant devices
  - IOM-2 compliant devices
  - Serial peripheral interface devices
- Multichannel transmit and receive of up to 128 channels
- A wide selection of data sizes including 8, 12, 16, 20, 24, or 32 bits
- μ-law and A-law companding
- · Programmable polarity for both frame synchronization and data clocks
- Programmable internal clock and frame generation

The McBSPs consist of separate transmit and receive channels that operate independently. The external interface of each McBSP consists of the following pins:

BCLKX Transmit reference clock

BDX Transmit data

• BFSX Transmit frame synchronization

BCLKR Receive reference clock

BDR Receive data

BFSR Receive frame synchronization

The six pins listed are functionally equivalent to previous serial port interface pins in the TMS320C5000<sup>™</sup> platform of DSPs. On the transmitter, transmit frame synchronization and clocking are indicated by the BFSX and BCLKX pins, respectively. The CPU or DMA can initiate transmission of data by writing to the data transmit register (DXR). Data written to DXR is shifted out on the BDX pin through a transmit shift register (XSR). This structure allows DXR to be loaded with the next word to be sent while the transmission of the current word is in progress.

On the receiver, receive frame synchronization and clocking are indicated by the BFSR and BCLKR pins, respectively. The CPU or DMA can read received data from the data receive register (DRR). Data received on the BDR pin is shifted into a receive shift register (RSR) and then buffered in the receive buffer register (RBR). If the DRR is empty, the RBR contents are copied into the DRR. If not, the RBR holds the data until the DRR is available. This structure allows storage of the two previous words while the reception of the current word is in progress.

The CPU and DMA can move data to and from the McBSPs and can synchronize transfers based on McBSP interrupts, event signals, and status flags. The DMA is capable of handling data movement between the McBSPs and memory with no intervention from the CPU.

TMS320C5000 is a trademark of Texas Instruments.



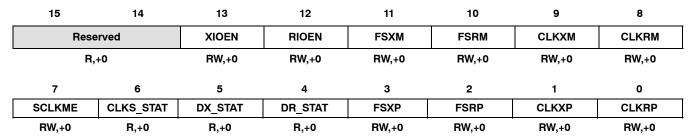
## 3.5.1 Programmable McBSP Functions

In addition to the standard serial port functions, the McBSP provides programmable clock and frame synchronization signals. The programmable functions include:

- Frame synchronization pulse width
- Frame period
- Frame synchronization delay
- Clock reference (internal vs. external)
- Clock division
- Clock and frame synchronization polarity

The on-chip companding hardware allows compression and expansion of data in either  $\mu$ -law or A-law format. When companding is used, transmit data is encoded according to specified companding law and received data is decoded to 2s complement format.

The McBSP allows the multiple channels to be independently selected for the transmitter and receiver. When multiple channels are selected, each frame represents a time-division multiplexed (TDM) data stream. In using TDM data streams, the CPU may only need to process a few of them. Thus, to save memory and bus bandwidth, multichannel selection allows independent enabling of particular channels for transmission and reception. Up to 32 channels in a stream of up to 128 channels can be enabled.


The clock-stop mode (CLKSTP) in the McBSP provides compatibility with the serial peripheral interface (SPI) protocol. The word sizes supported by the McBSP are programmable for 8-, 12-, 16-, 20-, 24-, or 32-bit operation. When the McBSP is configured to operate in SPI mode, both the transmitter and the receiver operate together as a master or as a slave.

The McBSP is fully static and operates at arbitrarily low clock frequencies. The maximum frequency is CPU clock frequency divided by 2.

## 3.5.2 Enhanced McBSPs

The 5401 McBSPs have been enhanced to provide more flexibility in the choice of the sample rate generator input clock source. On previous C5000™ DSP platform devices, the McBSP sample rate input clock can be driven from one of two possible choices: the internal CPU clock, or the external CLKS pin. However, most C5000™ DSP devices have only the internal CPU clock as a possible source because the CLKS pin is not implemented on most device packages.

To accommodate applications that require an external reference clock for the sample rate generator, the 5401 McBSPs allow either the receive clock pin (BCLKR) or the transmit clock pin (BCLKX) to be configured as the input clock to the sample rate generator. This enhancement is enabled through two register bits: pin control register (PCR) bit 7 − enhanced sample clock mode (SCLKME), and sample rate generator register 2 (SRGR2) bit 13 − McBSP sample rate generator clock mode (CLKSM). SCLKME is an addition to the PCR contained in the McBSPs on previous C5000™ DSP devices. The new bit layout of the PCR is shown in Figure 3−9. For a description of the remaining bits, see *TMS320C54x DSP Reference Set, Volume 5: Enhanced Peripherals* (literature number SPRU302).



**LEGEND:** R = Read, W = Write, n = value present after reset

Figure 3-9. Pin Control Register (PCR)

C5000 is a trademark of Texas Instruments.



The selection of the sample rate generator (SRG) clock input source is made by the combination of the CLKSM and SCLKME bit values as shown in Table 3–6.

|        | •     |                                       |
|--------|-------|---------------------------------------|
| SCLKME | CLKSM | SRG Clock Source                      |
| 0      | 0     | CLKS (not available as a pin on 5401) |
| 0      | 1     | CPU clock                             |
| 1      | 0     | BCLKR pin                             |
| 1      | 1     | BCLKX pin                             |

Table 3-6. Sample Rate Generator Clock Source Selection

When either of the bidirectional pins, BCLKR or BCLKX, is configured as the clock input, its output buffer is automatically disabled. For example, with SCLKME = 1 and CLKSM = 0, the BCLKR pin is configured as the SRG input. In this case, both the transmitter and receiver circuits can be synchronized to the SRG output by setting the PCR bits (9:8) for CLKXM = 1 and CLKRM = 1. However, the SRG output is only driven onto the BCLKX pin because the BCLKR output is automatically disabled.

The McBSP supports independent selection of multiple channels for the transmitter and receiver. When multiple channels are selected, each frame represents a time-division multiplexed (TDM) data stream. In using time-division multiplexed data streams, the CPU may only need to process a few of them. Thus, to save memory and bus bandwidth, multichannel selection allows independent enabling of particular channels for transmission and reception. Up to a maximum of 128 channels in a bit stream can be enabled or disabled.

#### 3.6 Hardware Timer

The 5401 device features one 16-bit timing circuit with a 4-bit prescaler. The main counter of each timer is decremented by one every CPU clock cycle. Each time the counter decrements to 0, a timer interrupt is generated. The timer can be stopped, restarted, reset, or disabled by specific control bits.

#### 3.7 Clock Generator

The clock generator provides clocks to the 5401 device, and consists of an internal oscillator and a phase-locked loop (PLL) circuit. The clock generator requires a reference clock input, which can be provided by using a crystal resonator with the internal oscillator, or from an external clock source.

**NOTE:** All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8 V power supply (CV<sub>DD</sub>), rather than the 3 V I/O supply (DV<sub>DD</sub>). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.

The reference clock input is then divided by two (DIV mode) to generate clocks for the 5401 device, or the PLL circuit can be used (PLL mode) to generate the device clock by multiplying the reference clock frequency by a scale factor, allowing use of a clock source with a lower frequency than that of the CPU. The PLL is an adaptive circuit that, once synchronized, locks onto and tracks an input clock signal.

When the PLL is initially started, it enters a transitional mode during which the PLL acquires lock with the input signal. Once the PLL is locked, it continues to track and maintain synchronization with the input signal. Then, other internal clock circuitry allows the synthesis of new clock frequencies for use as master clock for the 5401 device.

This clock generator allows system designers to select the clock source. The sources that drive the clock generator are:

- A crystal resonator circuit. The crystal resonator circuit is connected across the X1 and X2/CLKIN pins
  of the 5401 to enable the internal oscillator.
- An external clock. The external clock source is directly connected to the X2/CLKIN pin, and X1 is left unconnected.



**NOTE:** All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8 V power supply (CV<sub>DD</sub>), rather than the 3 V I/O supply (DV<sub>DD</sub>). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.

The software-programmable PLL features a high level of flexibility, and includes a clock scaler that provides various clock multiplier ratios, capability to directly enable and disable the PLL, and a PLL lock timer that can be used to delay switching to PLL clocking mode of the device until lock is achieved. Devices that have a built-in software-programmable PLL can be configured in one of two clock modes:

- PLL mode. The input clock (X2/CLKIN) is multiplied by 1 of 31 possible ratios. These ratios are achieved using the PLL circuitry.
- DIV (divider) mode. The input clock is divided by 2 or 4. Note that when DIV mode is used, the PLL can
  be completely disabled in order to minimize power dissipation.

The software-programmable PLL is controlled using the 16-bit memory-mapped (address 0058h) clock mode register (CLKMD). The CLKMD register is used to define the configuration of the PLL clock module. Upon reset, the CLKMD register is initialized with a predetermined value dependent only upon the state of the CLKMD1 – CLKMD3 pins as shown in Table 3–7.

| CLKMD1 | CLKMD2 | CLKMD3 | CLKMD<br>RESET VALUE | CLOCK MODE             |
|--------|--------|--------|----------------------|------------------------|
| 0      | 0      | 0      | E007h                | PLL x 15               |
| 0      | 0      | 1      | 9007h                | PLL x 10               |
| 0      | 1      | 0      | 4007h                | PLL x 5                |
| 1      | 0      | 0      | 1007h                | PLL x 2                |
| 1      | 1      | 0      | F007h                | PLL x 1                |
| 1      | 1      | 1      | 0000h                | 1/2 (PLL disabled)     |
| 1      | 0      | 1      | F000h                | 1/4 (PLL disabled)     |
| 0      | 1      | 1      | _                    | Reserved (bypass mode) |

Table 3-7. Clock Mode Settings at Reset

## 3.8 DMA Controller

The 5401 direct memory access (DMA) controller transfers data between points in the memory map without intervention by the CPU. The DMA controller allows movements of data to and from internal program/data memory or internal peripherals (such as the McBSPs) to occur in the background of CPU operation. The DMA has six independent programmable channels allowing six different contexts for DMA operation.



#### 3.8.1 Features

The DMA has the following features:

- The DMA operates independently of the CPU.
- The DMA has six channels. The DMA can keep track of the contexts of six independent block transfers.
- The DMA has higher priority than the CPU for internal accesses.
- Each channel has independently programmable priorities.
- Each channels source and destination address registers can have configurable indexes through memory on each read and write transfer, respectively. The address may remain constant, be post-incremented, post-decremented, or be adjusted by a programmable value.
- Each read or write transfer may be initialized by selected events.
- Upon completion of a half-block or an entire-block transfer, each DMA channel may send an interrupt to the CPU.
- The DMA can perform double-word transfers (a 32-bit transfer of two 16-bit words).

## 3.8.2 DMA Memory Map

The DMA memory map is shown in Figure 3–10 to allow DMA transfers to be unaffected by the status of the MPMC, DROM, and OVLY bits.



<sup>&</sup>lt;sup>†</sup> The scratch-pad RAM area is physically a part of the DARAM block starting at address 1000h. Physical location can affect multiple access performance. (See Section 3.1.2.)

Figure 3-10. DMA Memory Map

## 3.8.3 DMA Priority Level

Each DMA channel can be independently assigned high priority or low priority relative to each other. Multiple DMA channels that are assigned to the same priority level are handled in a round-robin manner.

## 3.8.4 DMA Source/Destination Address Modification

The DMA provides flexible address-indexing modes for easy implementation of data management schemes such as autobuffering and circular buffers. Source and destination addresses can be indexed separately and can be post-incremented, post-decremented, or post-incremented with a specified index offset.



## 3.8.5 DMA in Autoinitialization Mode

The DMA can automatically reinitialize itself after completion of a block transfer. Some of the DMA registers can be preloaded for the next block transfer through the DMA global reload registers (DMGSA, DMGDA, and DMGCR). Autoinitialization allows:

- Continuous operation: Normally, the CPU would have to reinitialize the DMA immediately after the
  completion of the current block transfer; but with the global reload registers, it can reinitialize these values
  for the next block transfer any time after the current block transfer begins.
- Repetitive operation: The CPU does not preload the global reload register with new values for each block transfer but only loads them on the first block transfer.

## 3.8.6 DMA Transfer Counting

The DMA channel element count register (DMCTRx) and the frame count register (DMSFCx) contain bit fields that represent the number of frames and the number of elements per frame to be transferred.

- Frame count. This 8-bit value defines the total number of frames in the block transfer. The maximum number of frames per block transfer is 128 (FRAME COUNT= 0ffh). The counter is decremented upon the last read transfer in a frame transfer. Once the last frame is transferred, the selected 8-bit counter is reloaded with the DMA global frame reload register (DMGFR) if the AUTOINIT bit is set to 1. A frame count of 0 (default value) means the block transfer contains a single frame.
- Element count. This 16-bit value defines the number of elements per frame. This counter is decremented
  after the read transfer of each element. The maximum number of elements per frame is 65536
  (DMCTRn = 0FFFFh). In autoinitialization mode, once the last frame is transferred, the counter is
  reloaded with the DMA global count reload register (DMGCR).

#### 3.8.7 DMA Transfer in Doubleword Mode

Doubleword mode allows the DMA to transfer 32-bit words in any index mode. In doubleword mode, two consecutive 16-bit transfers are initiated and the source and destination addresses are automatically updated following each transfer. In this mode, each 32-bit word is considered to be one element.

## 3.8.8 DMA Channel Index Registers

The particular DMA channel index register is selected by way of the SIND and DIND field in the DMA mode control register (DMMCRx). Unlike basic address adjustment, in conjunction with the frame index DMFRI0 and DMFRI1, the DMA allows different adjustment amounts depending on whether or not the element transfer is the last in the current frame. The normal adjustment value (element index) is contained in the element index registers DMIDX0 and DMIDX1. The adjustment value (frame index) for the end of the frame, is determined by the selected DMA frame index register, either DMFRI0 or DMFRI1.

The element index and the frame index affect address adjustment as follows:

- Element index: For all except the last transfer in the frame, the element index determines the amount to be added to the DMA channel for the source/destination address register (DMSRCx/DMDSTx) as selected by the SIND/DIND bits.
- Frame index: If the transfer is the last in a frame, the frame index is used for address adjustment as selected by the SIND/DIND bits. This occurs in both single-frame and multi-frame transfer.

## 3.8.9 DMA Interrupts

The ability of the DMA to interrupt the CPU based on the status of the data transfer is configurable and is determined by the IMOD and DINM bits in the DMA channel mode control register (DMMCRn). The available modes are shown in Table 3–8.



| MODE                | DINM | IMOD | INTERRUPT                                              |
|---------------------|------|------|--------------------------------------------------------|
| ABU (non-decrement) | 1    | 0    | At full buffer only                                    |
| ABU (non-decrement) | 1    | 1    | At half buffer and full buffer                         |
| Multi-Frame         | 1    | 0    | At block transfer complete (DMCTRn = DMSEFCn[7:0] = 0) |
| Multi-Frame         | 1    | 1    | At end of frame and end of block (DMCTRn = 0)          |
| Either              | 0    | Х    | No interrupt generated                                 |
| Either              | 0    | Х    | No interrupt generated                                 |

## 3.8.10 DMA Controller Synchronization Events

The transfers associated with each DMA channel can be synchronized to one of several events. The DSYN bit field of the DMA channel x sync select and frame count (DMSFCx) register selects the synchronization event for a channel. The list of possible events and the DSYN values are shown in Table 3–9.

**DSYN VALUE DMA SYNCHRONIZATION EVENT** No synchronization used 0000b McBSP0 receive event 0001b McBSP0 transmit event 0010b 0011-0100b Reserved 0101b McBSP1 receive event 0110b McBSP1 transmit event 0111b-0110b Reserved 1101b Timer0 interrupt 1110b External interrupt 3 1111b Timer1 interrupt

Table 3-9. DMA Synchronization Events

## 3.8.11 DMA Channel Interrupt Selection

The DMA controller can generate a CPU interrupt for each of the six channels. However, the interrupt sources for channels 0,1, 2, and 3 are multiplexed with other interrupt sources. DMA channels 2 and 3 share an interrupt line with the receive and transmit portions of McBSP1 (IMR/IFR bits 10 and 11), and DMA channel 1 shares an interrupt line with timer 1 (IMR/IFR bit 7). The interrupt source for DMA channel 0 is shared with a reserved interrupt source. When the 5401 is reset, the interrupts from these four DMA channels are deselected. The INTSEL bit field in the DMA channel priority and enable control (DMPREC) register can be used to select these interrupts, as shown in Table 3–10.

|              | •          |            |             |             |
|--------------|------------|------------|-------------|-------------|
| INTSEL Value | IMR/IFR[6] | IMR/IFR[7] | IMR/IFR[10] | IMR/IFR[11] |
| 00b (reset)  | Reserved   | TINT1      | BRINT1      | BXINT1      |
| 01b          | Reserved   | TINT1      | DMAC2       | DMAC3       |
| 10b          | DMAC0      | DMAC1      | DMAC2       | DMAC3       |
| 11b          | Reserved   |            |             |             |

Table 3-10. DMA Channel Interrupt Selection

## 3.9 Memory-Mapped Registers

The 5401 has 27 memory-mapped CPU registers, which are mapped in data memory space addresses 0h to 1Fh. Table 3–11 gives a list of CPU memory-mapped registers (MMRs) available on 5401. The device also has a set of memory-mapped registers associated with peripherals. Table 3–12, Table 3–13, and Table 3–14 show additional peripheral MMRs associated with the 5401.



Table 3-11. CPU Memory-Mapped Registers

|      | ADDRESS |     |                                       |
|------|---------|-----|---------------------------------------|
| NAME | DEC     | HEX | DESCRIPTION                           |
| IMR  | 0       | 0   | Interrupt mask register               |
| IFR  | 1       | 1   | Interrupt flag register               |
| _    | 2–5     | 2–5 | Reserved for testing                  |
| ST0  | 6       | 6   | Status register 0                     |
| ST1  | 7       | 7   | Status register 1                     |
| AL   | 8       | 8   | Accumulator A low word (15–0)         |
| AH   | 9       | 9   | Accumulator A high word (31–16)       |
| AG   | 10      | Α   | Accumulator A guard bits (39–32)      |
| BL   | 11      | В   | Accumulator B low word (15–0)         |
| ВН   | 12      | С   | Accumulator B high word (31–16)       |
| BG   | 13      | D   | Accumulator B guard bits (39–32)      |
| TREG | 14      | E   | Temporary register                    |
| TRN  | 15      | F   | Transition register                   |
| AR0  | 16      | 10  | Auxiliary register 0                  |
| AR1  | 17      | 11  | Auxiliary register 1                  |
| AR2  | 18      | 12  | Auxiliary register 2                  |
| AR3  | 19      | 13  | Auxiliary register 3                  |
| AR4  | 20      | 14  | Auxiliary register 4                  |
| AR5  | 21      | 15  | Auxiliary register 5                  |
| AR6  | 22      | 16  | Auxiliary register 6                  |
| AR7  | 23      | 17  | Auxiliary register 7                  |
| SP   | 24      | 18  | Stack pointer register                |
| BK   | 25      | 19  | Circular buffer size register         |
| BRC  | 26      | 1A  | Block repeat counter                  |
| RSA  | 27      | 1B  | Block repeat start address            |
| REA  | 28      | 1C  | Block repeat end address              |
| PMST | 29      | 1D  | Processor mode status (PMST) register |
| XPC  | 30      | 1E  | Extended program page register        |
| -    | 31      | 1F  | Reserved                              |

Table 3-12. Peripheral Memory-Mapped Registers

| NAME   | ADDRESS | DESCRIPTION                                               | TYPE        |
|--------|---------|-----------------------------------------------------------|-------------|
| DRR20  | 20h     | McBSP0 data receive register 2                            | McBSP #0    |
| DRR10  | 21h     | McBSP0 data receive register 1                            | McBSP #0    |
| DXR20  | 22h     | McBSP0 data transmit register 2                           | McBSP #0    |
| DXR10  | 23h     | McBSP0 data transmit register 1                           | McBSP #0    |
| TIM    | 24h     | Timer0 register                                           | Timer0      |
| PRD    | 25h     | Timer0 period counter                                     | Timer0      |
| TCR    | 26h     | Timer0 control register                                   | Timer0      |
| -      | 27h     | Reserved                                                  |             |
| SWWSR  | 28h     | Software wait-state register                              | External Bu |
| BSCR   | 29h     | Bank-switching control register                           | External Bu |
| _      | 2Ah     | Reserved                                                  |             |
| SWCR   | 2Bh     | Software wait-state control register                      | External Bu |
| HPIC   | 2Ch     | HPI control register                                      | HPI         |
| _      | 2Dh-2Fh | Reserved                                                  |             |
| TIM1   | 30h     | Timer1 register                                           | Timer1      |
| PRD1   | 31h     | Timer1 period counter                                     | Timer1      |
| TCR1   | 32h     | Timer1 control register                                   | Timer1      |
| _      | 33h-37h | Reserved                                                  |             |
| SPSA0  | 38h     | McBSP0 subbank address register <sup>†</sup>              | McBSP #0    |
| SPSD0  | 39h     | McBSP0 subbank data register <sup>†</sup>                 | McBSP #0    |
| _      | 3Ah-3Bh | Reserved                                                  |             |
| GPIOCR | 3Ch     | General-purpose I/O pins control register                 | GPIO        |
| GPIOSR | 3Dh     | General-purpose I/O pins status register                  | GPIO        |
| _      | 3Eh-3Fh | Reserved                                                  |             |
| DRR21  | 40h     | McBSP1 data receive register 2                            | McBSP #1    |
| DRR11  | 41h     | McBSP1 data receive register 1                            | McBSP #1    |
| DXR21  | 42h     | McBSP1 data transmit register 2                           | McBSP #1    |
| DXR11  | 43h     | McBSP1 data transmit register 1                           | McBSP #1    |
| _      | 44h-47h | Reserved                                                  |             |
| SPSA1  | 48h     | McBSP1 subbank address register <sup>†</sup>              | McBSP #1    |
| SPSD1  | 49h     | McBSP1 subbank data register <sup>†</sup>                 | McBSP #1    |
| _      | 4Ah-53h | Reserved                                                  |             |
| DMPREC | 54h     | DMA channel priority and enable control register          | DMA         |
| DMSA   | 55h     | DMA subbank address register <sup>‡</sup>                 | DMA         |
| DMSDI  | 56h     | DMA subbank data register with autoincrement <sup>‡</sup> | DMA         |
| DMSDN  | 57h     | DMA subbank data register <sup>‡</sup>                    | DMA         |
| CLKMD  | 58h     | Clock mode register                                       | PLL         |
| =      | 59h-5Fh | Reserved                                                  |             |

 $<sup>^\</sup>dagger$  See Table 3–13 for a detailed description of the McBSP control registers and their sub-addresses.

<sup>&</sup>lt;sup>‡</sup> See Table 3–14 for a detailed description of the DMA subbank addressed registers.

#### 3.10 McBSP Control Registers and Subaddresses

The control registers for the multichannel buffered serial port (McBSP) are accessed using the subbank addressing scheme. This allows a set or subbank of registers to be accessed through a single memory location. The serial port subbank address (SPSA) register is used as a pointer to select a particular register within the subbank. The serial port subbank data (SPSD) register is used to access (read or write) the selected register. Table 3–13 shows the McBSP control registers and their corresponding sub-addresses.

Table 3–13. McBSP Control Registers and Subaddresses

| McB    | SP0     | МсВ    | SP1     | SUB-    |                                              |
|--------|---------|--------|---------|---------|----------------------------------------------|
| NAME   | ADDRESS | NAME   | ADDRESS | ADDRESS | DESCRIPTION                                  |
| SPCR10 | 39h     | SPCR11 | 49h     | 00h     | Serial port control register 1               |
| SPCR20 | 39h     | SPCR21 | 49h     | 01h     | Serial port control register 2               |
| RCR10  | 39h     | RCR11  | 49h     | 02h     | Receive control register 1                   |
| RCR20  | 39h     | RCR21  | 49h     | 03h     | Receive control register 2                   |
| XCR10  | 39h     | XCR11  | 49h     | 04h     | Transmit control register 1                  |
| XCR20  | 39h     | XCR21  | 49h     | 05h     | Transmit control register 2                  |
| SRGR10 | 39h     | SRGR11 | 49h     | 06h     | Sample rate generator register 1             |
| SRGR20 | 39h     | SRGR21 | 49h     | 07h     | Sample rate generator register 2             |
| MCR10  | 39h     | MCR11  | 49h     | 08h     | Multichannel register 1                      |
| MCR20  | 39h     | MCR21  | 49h     | 09h     | Multichannel register 2                      |
| RCERA0 | 39h     | RCERA1 | 49h     | 0Ah     | Receive channel enable register partition A  |
| RCERB0 | 39h     | RCERB1 | 49h     | 0Bh     | Receive channel enable register partition B  |
| XCERA0 | 39h     | XCERA1 | 49h     | 0Ch     | Transmit channel enable register partition A |
| XCERB0 | 39h     | XCERB1 | 49h     | 0Dh     | Transmit channel enable register partition B |
| PCR0   | 39h     | PCR1   | 49h     | 0Eh     | Pin control register                         |

#### 3.11 DMA Subbank Addressed Registers

The direct memory access (DMA) controller has several control registers associated with it. The main control register (DMPREC) is a standard memory-mapped register. However, the other registers are accessed using the subbank addressing scheme. This allows a set or subbank of registers to be accessed through a single memory location. The DMA subbank address (DMSA) register is used as a pointer to select a particular register within the subbank, while the DMA subbank data (DMSDN) register or the DMA subbank data register with autoincrement (DMSDI) is used to access (read or write) the selected register.

When the DMSDI register is used to access the subbank, the subbank address is automatically post-incremented so that a subsequent access affects the next register within the subbank. This autoincrement feature is intended for efficient, successive accesses to several control registers. If the autoincrement feature is not required, the DMSDN register should be used to access the subbank. Table 3–14 shows the DMA controller subbank addressed registers and their corresponding subaddresses.

Table 3-14. DMA Subbank Addressed Registers

| DM     | DMA     |         |                                                    |
|--------|---------|---------|----------------------------------------------------|
| NAME   | ADDRESS | ADDRESS | DESCRIPTION                                        |
| DMSRC0 | 56h/57h | 00h     | DMA channel 0 source address register              |
| DMDST0 | 56h/57h | 01h     | DMA channel 0 destination address register         |
| DMCTR0 | 56h/57h | 02h     | DMA channel 0 element count register               |
| DMSFC0 | 56h/57h | 03h     | DMA channel 0 sync select and frame count register |
| DMMCR0 | 56h/57h | 04h     | DMA channel 0 transfer mode control register       |
| DMSRC1 | 56h/57h | 05h     | DMA channel 1 source address register              |
| DMDST1 | 56h/57h | 06h     | DMA channel 1 destination address register         |
| DMCTR1 | 56h/57h | 07h     | DMA channel 1 element count register               |
| DMSFC1 | 56h/57h | 08h     | DMA channel 1 sync select and frame count register |
| DMMCR1 | 56h/57h | 09h     | DMA channel 1 transfer mode control register       |
| DMSRC2 | 56h/57h | 0Ah     | DMA channel 2 source address register              |
| DMDST2 | 56h/57h | 0Bh     | DMA channel 2 destination address register         |
| DMCTR2 | 56h/57h | 0Ch     | DMA channel 2 element count register               |
| DMSFC2 | 56h/57h | 0Dh     | DMA channel 2 sync select and frame count register |
| DMMCR2 | 56h/57h | 0Eh     | DMA channel 2 transfer mode control register       |
| DMSRC3 | 56h/57h | 0Fh     | DMA channel 3 source address register              |
| DMDST3 | 56h/57h | 10h     | DMA channel 3 destination address register         |
| DMCTR3 | 56h/57h | 11h     | DMA channel 3 element count register               |
| DMSFC3 | 56h/57h | 12h     | DMA channel 3 sync select and frame count register |
| DMMCR3 | 56h/57h | 13h     | DMA channel 3 transfer mode control register       |
| DMSRC4 | 56h/57h | 14h     | DMA channel 4 source address register              |
| DMDST4 | 56h/57h | 15h     | DMA channel 4 destination address register         |
| DMCTR4 | 56h/57h | 16h     | DMA channel 4 element count register               |
| DMSFC4 | 56h/57h | 17h     | DMA channel 4 sync select and frame count register |
| DMMCR4 | 56h/57h | 18h     | DMA channel 4 transfer mode control register       |
| DMSRC5 | 56h/57h | 19h     | DMA channel 5 source address register              |
| DMDST5 | 56h/57h | 1Ah     | DMA channel 5 destination address register         |
| DMCTR5 | 56h/57h | 1Bh     | DMA channel 5 element count register               |
| DMSFC5 | 56h/57h | 1Ch     | DMA channel 5 sync select and frame count register |
| DMMCR5 | 56h/57h | 1Dh     | DMA channel 5 transfer mode control register       |
| DMSRCP | 56h/57h | 1Eh     | DMA source program page address (common channel)   |

Table 3-14. DMA Subbank Addressed Registers (Continued)

| DM     | DMA     |         | SUB-                                                  |  |  |
|--------|---------|---------|-------------------------------------------------------|--|--|
| NAME   | ADDRESS | ADDRESS | DESCRIPTION                                           |  |  |
| DMDSTP | 56h/57h | 1Fh     | DMA destination program page address (common channel) |  |  |
| DMIDX0 | 56h/57h | 20h     | DMA element index address register 0                  |  |  |
| DMIDX1 | 56h/57h | 21h     | DMA element index address register 1                  |  |  |
| DMFRI0 | 56h/57h | 22h     | DMA frame index register 0                            |  |  |
| DMFRI1 | 56h/57h | 23h     | DMA frame index register 1                            |  |  |
| DMGSA  | 56h/57h | 24h     | DMA global source address reload register             |  |  |
| DMGDA  | 56h/57h | 25h     | DMA global destination address reload register        |  |  |
| DMGCR  | 56h/57h | 26h     | DMA global count reload register                      |  |  |
| DMGFR  | 56h/57h | 27h     | DMA global frame count reload register                |  |  |



### 3.12 Interrupts

Vector-relative locations and priorities for all internal and external interrupts are shown in Table 3–15.

Table 3-15. Interrupt Locations and Priorities

| NAME                   | TRAP/INTR<br>NUMBER (K) | LOCA<br>DECIMAL | ATION<br>HEX | PRIORITY | FUNCTION                                                                                                        |
|------------------------|-------------------------|-----------------|--------------|----------|-----------------------------------------------------------------------------------------------------------------|
| RS, SINTR              | 0                       | 0               | 00           | 1        | Reset (hardware and software reset)                                                                             |
| NMI, SINT16            | 1                       | 4               | 04           | 2        | Nonmaskable interrupt                                                                                           |
| SINT17                 | 2                       | 8               | 08           | _        | Software interrupt #17                                                                                          |
| SINT18                 | 3                       | 12              | 0C           | _        | Software interrupt #18                                                                                          |
| SINT19                 | 4                       | 16              | 10           | _        | Software interrupt #19                                                                                          |
| SINT20                 | 5                       | 20              | 14           | _        | Software interrupt #20                                                                                          |
| SINT21                 | 6                       | 24              | 18           | _        | Software interrupt #21                                                                                          |
| SINT22                 | 7                       | 28              | 1C           | _        | Software interrupt #22                                                                                          |
| SINT23                 | 8                       | 32              | 20           | _        | Software interrupt #23                                                                                          |
| SINT24                 | 9                       | 36              | 24           | _        | Software interrupt #24                                                                                          |
| SINT25                 | 10                      | 40              | 28           | _        | Software interrupt #25                                                                                          |
| SINT26                 | 11                      | 44              | 2C           | _        | Software interrupt #26                                                                                          |
| SINT27                 | 12                      | 48              | 30           | _        | Software interrupt #27                                                                                          |
| SINT28                 | 13                      | 52              | 34           | _        | Software interrupt #28                                                                                          |
| SINT29                 | 14                      | 56              | 38           | _        | Software interrupt #29                                                                                          |
| SINT30                 | 15                      | 60              | 3C           | _        | Software interrupt #30                                                                                          |
| ĪNTO, SINTO            | 16                      | 64              | 40           | 3        | External user interrupt #0                                                                                      |
| ĪNT1, SINT1            | 17                      | 68              | 44           | 4        | External user interrupt #1                                                                                      |
| ĪNT2, SINT2            | 18                      | 72              | 48           | 5        | External user interrupt #2                                                                                      |
| TINTO, SINT3           | 19                      | 76              | 4C           | 6        | Timer0 interrupt                                                                                                |
| BRINTO, SINT4          | 20                      | 80              | 50           | 7        | McBSP #0 receive interrupt                                                                                      |
| BXINT0, SINT5          | 21                      | 84              | 54           | 8        | McBSP #0 transmit interrupt                                                                                     |
| Reserved(DMAC0), SINT6 | 22                      | 88              | 58           | 9        | Reserved (default) or DMA channel 0 interrupt. The selection is made in the DMPREC register.                    |
| TINT1 (DMAC1), SINT7   | 23                      | 92              | 5C           | 10       | Timer1 interrupt (default) or DMA chan-<br>nel 1 interrupt. The selection is made in<br>the DMPREC register.    |
| ĪNT3, SINT8            | 24                      | 96              | 60           | 11       | External user interrupt #3                                                                                      |
| HPINT, SINT9           | 25                      | 100             | 64           | 12       | HPI interrupt                                                                                                   |
| BRINT1(DMAC2), SINT10  | 26                      | 104             | 68           | 13       | McBSP #1 receive interrupt (default) or DMA channel 2 interrupt. The selection is made in the DMPREC register.  |
| BXINT1 (DMAC3), SINT11 | 27                      | 108             | 6C           | 14       | McBSP #1 transmit interrupt (default) or DMA channel 3 interrupt. The selection is made in the DMPREC register. |
| DMAC4,SINT12           | 28                      | 112             | 70           | 15       | DMA channel 4 interrupt                                                                                         |
| DMAC5,SINT13           | 29                      | 116             | 74           | 16       | DMA channel 5 interrupt                                                                                         |
| Reserved               | 30–31                   | 120-127         | 78-7F        |          | Reserved                                                                                                        |

The bits of the interrupt flag register (IFR) and interrupt mask register (IMR) are arranged as shown in Figure 3-11.

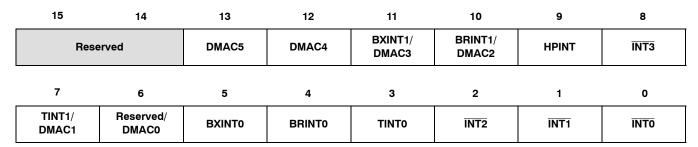



Figure 3-11. IFR and IMR Registers

Table 3-16. IFR and IMR Register Bit Fields

|        | BIT            |                                                                                                                                                                               |
|--------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NUMBER | NAME           | FUNCTION                                                                                                                                                                      |
| 15–14  | -              | Reserved for future expansion                                                                                                                                                 |
| 13     | DMAC5          | DMA channel 5 interrupt flag/mask bit                                                                                                                                         |
| 12     | DMAC4          | DMA channel 4 interrupt flag/mask bit                                                                                                                                         |
| 11     | BXINT1/DMAC3   | This bit can be configured as either the McBSP1 transmit interrupt flag/mask bit, or the DMA channel 3 interrupt flag/mask bit. The selection is made in the DMPREC register. |
| 10     | BRINT1/DMAC2   | This bit can be configured as either the McBSP1 receive interrupt flag/mask bit, or the DMA channel 2 interrupt flag/mask bit. The selection is made in the DMPREC register.  |
| 9      | HPINT          | Host to 54x interrupt flag/mask                                                                                                                                               |
| 8      | ĪNT3           | External interrupt 3 flag/mask                                                                                                                                                |
| 7      | TINT1/DMAC1    | This bit can be configured as either the timer1 interrupt flag/mask bit, or the DMA channel 1 interrupt flag/mask bit. The selection is made in the DMPREC register.          |
| 6      | Reserved/DMAC0 | This bit can be configured as either reserved, or the DMA channel 0 interrupt flag/mask bit. The selection is made in the DMPREC register.                                    |
| 5      | BXINT0         | McBSP0 transmit interrupt flag/mask bit                                                                                                                                       |
| 4      | BRINT0         | McBSP0 receive interrupt flag/mask bit                                                                                                                                        |
| 3      | TINT0          | Timer 0 interrupt flag/mask bit                                                                                                                                               |
| 2      | ĪNT2           | External interrupt 2 flag/mask bit                                                                                                                                            |
| 1      | ĪNT1           | External interrupt 1 flag/mask bit                                                                                                                                            |
| 0      | ĪNT0           | External interrupt 0 flag/mask bit                                                                                                                                            |

#### 4 Documentation Support

Extensive documentation supports all TMS320™ DSP family of devices from product announcement through applications development. The following types of documentation are available to support the design and use of the C5000™ platform of DSPs:

- TMS320C54x™ DSP Functional Overview (literature number SPRU307)
- Device-specific data sheets
- Complete users guides
- Development support tools
- Hardware and software application reports

The five-volume TMS320C54x DSP Reference Set (literature number SPRU210) consists of:

- Volume 1: CPU and Peripherals (literature number SPRU131)
- Volume 2: Mnemonic Instruction Set (literature number SPRU172)
- Volume 3: Algebraic Instruction Set (literature number SPRU179)
- Volume 4: Applications Guide (literature number SPRU173)
- Volume 5: Enhanced Peripherals (literature number SPRU302)

The reference set describes in detail the TMS320C54x<sup>™</sup> DSP products currently available and the hardware and software applications, including algorithms, for fixed-point TMS320<sup>™</sup> DSP family of devices.

A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal processing research and education. The TMS320™ DSP newsletter, *Details on Signal Processing*, is published quarterly and distributed to update TMS320™ DSP customers on product information.

Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com uniform resource locator (URL).



#### 4.1 Device and Development Tool Support Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320 DSP devices and support tools. Each TMS320 DSP commercial family member has one of three prefixes: TMX, TMP, or TMS. Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).

Device development evolutionary flow:

- **TMX** Experimental device that is not necessarily representative of the final device's electrical specifications
- **TMP** Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification
- TMS Fully-qualified production device

Support tool development evolutionary flow:

- **TMDX** Development support product that has not yet completed Texas Instruments internal qualification testing.
- TMDS Fully qualified development support product

TMX and TMP devices and TMDX development–support tools are shipped with appropriate disclaimers describing their limitations and intended uses. Experimental devices (TMX) may not be representative of a final product and Texas Instruments reserves the right to change or discontinue these products without notice.

TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. Tl's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.



### 5 Electrical Specifications

This section provides the absolute maximum ratings and the recommended operating conditions for the TMS320VC5401 DSP.

#### 5.1 Absolute Maximum Ratings

The list of absolute maximum ratings are specified over operating case temperature. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 5.2 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All supply voltage values (core and I/O) are with respect to V<sub>SS</sub>. Figure 5–1 provides the test load circuit values for a 3.3-V device.

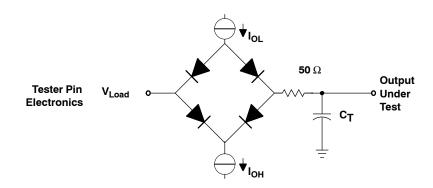
| Supply voltage I/O range, DV <sub>DD</sub>       | 0.3 V to 4.0 V |
|--------------------------------------------------|----------------|
| Supply voltage core range, CV <sub>DD</sub>      | 0.3 V to 2.4 V |
| Input voltage range, V <sub>I</sub>              | 0.3 V to 4.5 V |
| Output voltage range, V <sub>O</sub>             | 0.3 V to 4.5 V |
| Operating case temperature range, T <sub>C</sub> | -40°C to 100°C |
| Storage temperature range, T <sub>stg</sub>      | -55°C to 150°C |

#### 5.2 Recommended Operating Conditions

|                  |                                                                    |                                                                                                  | MIN  | NOM | MAX                    | UNIT |  |
|------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------|-----|------------------------|------|--|
| $DV_DD$          | Device supply voltage, I/O†                                        |                                                                                                  | 3    | 3.3 | 3.6                    | V    |  |
| CV <sub>DD</sub> | Device supply voltage, core†                                       |                                                                                                  | 1.71 | 1.8 | 1.98                   | V    |  |
| V <sub>SS</sub>  | Supply voltage, GND                                                |                                                                                                  |      | 0   |                        | V    |  |
|                  |                                                                    | RS, INTn, NMI, BIO, BCLKR0, BCLKR1, BCLKX0, BCLKX1, HCS, HDS1, HDS2, TDI, TMS, CLKMDn            | 2.3  |     | DV <sub>DD</sub> + 0.3 |      |  |
| $V_{IH}$         | $V_{IH}$ High-level input voltage $DV_{DD} = 3.3\pm 0.3 \text{ V}$ | X2/CLKIN <sup>‡</sup>                                                                            | 1.45 |     | CV <sub>DD</sub> +0.3  | V    |  |
|                  |                                                                    | TCK, TRST                                                                                        | 2.6  |     | DV <sub>DD</sub> + 0.3 |      |  |
|                  |                                                                    | All other inputs                                                                                 | 2.1  |     | DV <sub>DD</sub> + 0.3 |      |  |
| V <sub>IL</sub>  | Low-level input voltage<br>DV <sub>DD</sub> = 3.3± 0.3 V           | RS, INTn, NMI, X2/CLKIN, BIO, BCLKR0,<br>BCLKR1, BCLKX0, BCLKX1, HCS, HDS1,<br>HDS2, TCK, CLKMDn | -0.3 |     | 0.5                    | V    |  |
|                  |                                                                    | All other inputs                                                                                 | -0.3 |     | 0.7                    |      |  |
| I <sub>OH</sub>  | High-level output current                                          | •                                                                                                |      |     | 300                    | μΑ   |  |
| I <sub>OL</sub>  | Low-level output current                                           |                                                                                                  |      |     | 1.5                    | mA   |  |
| T <sub>C</sub>   | Operating case temperature                                         |                                                                                                  | -40  | •   | 100                    | °C   |  |

<sup>&</sup>lt;sup>†</sup> Texas Instrument DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be designed to ensure that neither supply is powered up for extended periods of time if the other supply is below the proper operating voltage. Excessive exposure to these conditions can adversely affect the long term reliability of the devices. System-level concerns such as bus contention may require supply sequencing to be implemented. In this case, the core supply should be powered up at the same time as or prior to the I/O buffers and then powered down after the I/O buffers.




<sup>&</sup>lt;sup>‡</sup> All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8V power supply (CV<sub>DD</sub>), rather than the 3V I/O supply (DV<sub>DD</sub>). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.

#### 5.3 Electrical Characteristics

|                         | PARAME                            | TER                             | TEST CONDIT                                                                                | IONS                              | MIN  | TYP <sup>†</sup> | MAX | UNIT |
|-------------------------|-----------------------------------|---------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------|------|------------------|-----|------|
| V <sub>OH</sub>         | High-level output voltage         |                                 | I <sub>OH</sub> = MAX                                                                      |                                   | 2.3  |                  |     | V    |
| V <sub>OL</sub>         | Low-level output volta            | age                             | I <sub>OL</sub> = MAX                                                                      |                                   |      |                  | 0.5 | V    |
| l <sub>iZ</sub>         | Input current for outputs in high | D[15:0], HD[7:0]                | Bus holders enabled, $DV_{DD} = MAX$ , $V_I = V_{SS}$ to $DV_{DD}$                         |                                   | -175 |                  | 175 | μА   |
|                         | impedance                         | All other inputs                | $DV_{DD} = MAX, V_O = V_{SS}$ to D                                                         | $V_{\mathrm{DD}}$                 | -10  |                  | 10  |      |
|                         |                                   | X2/CLKIN <sup>‡</sup>           |                                                                                            |                                   | -40  |                  | 40  |      |
|                         | I <sub>I</sub> Input current      | TRST                            | With internal pulldown                                                                     |                                   | -10  |                  | 300 | μΑ   |
| l.                      |                                   | HPIENA                          | With internal pulldown                                                                     | (V <sub>I</sub> = V <sub>SS</sub> | -10  |                  | 300 |      |
| "1                      |                                   | TMS, TCK, TDI, HPI <sup>§</sup> | With internal pullups,<br>HPIENA = 0                                                       | to DV <sub>DD</sub> )             | -300 |                  | 10  |      |
|                         |                                   | All other input-only pins       |                                                                                            |                                   | -10  |                  | 10  |      |
| I <sub>DDC</sub>        | Supply current, core              | CPU                             | $CV_{DD} = 1.8 \text{ V}, f_{clock} = 50 \text{ MHz}^{1}, T_{C} = 25^{\circ}C^{\#}$        |                                   |      | 22               |     | mA   |
| I <sub>DDP</sub>        | Supply current, pins              |                                 | DV <sub>DD</sub> = 3.3 V, f <sub>clock</sub> = 50 MHz <sup>¶</sup> , T <sub>C</sub> = 25°C |                                   |      | 30               |     | mA   |
|                         | Supply current,                   | IDLE2                           | PLL × 1 mode, 50 MHz input                                                                 |                                   |      | 2                |     | mA   |
| I <sub>DD</sub> standby |                                   | IDLE3                           | Divide-by-two mode, CLKIN stopped                                                          |                                   |      | 20               |     | μА   |
| Ci                      | C <sub>i</sub> Input capacitance  |                                 |                                                                                            |                                   |      | 5                |     | pF   |
| Co                      | Output capacitance                |                                 |                                                                                            |                                   |      | 5                |     | pF   |

<sup>&</sup>lt;sup>†</sup> All values are typical unless otherwise specified.

This value was obtained using the following conditions: external memory writes at a rate of 20 million writes per second, CLKOFF=0, full-duplex operation of McBSP0 and McBSP1 at a rate of 10 million bits per second each, and 15-pF loads on all outputs. For more details on how this calculation is performed, refer to the *Calculation of TMS320LC54x Power Dissipation Application Report* (literature number SPRA164).



Where:  $I_{OL}$  = 1.5 mA (all outputs)  $I_{OH}$  = 300  $\mu$ A (all outputs)

 $V_{Load} = 1.5 V$ 

C<sub>T</sub> = 40 pF typical load circuit capacitance

Figure 5-1. 3.3-V Test Load Circuit



<sup>&</sup>lt;sup>‡</sup> All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8 V power supply (CV<sub>DD</sub>), rather than the 3 V I/O supply (DV<sub>DD</sub>). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.

<sup>§</sup> HPI input signals except for HPIENA.

<sup>¶</sup> Clock mode: PLL × 1 with external source

<sup>#</sup> This value represents the current consumption of the CPU, on-chip memory, and on-chip peripherals. Conditions include: program execution from on-chip RAM, with 50% usage of MAC and 50% usage of NOP instructions. Actual operating current varies with program being executed.

#### 5.4 **Package Thermal Resistance Characteristics**

Table 5-1 provides the thermal resistance characteristics for the recommended package types used on the TMS320VC5401 DSP.

Table 5-1. Thermal Resistance Characteristics

| PARAMETER       | GGU<br>PACKAGE | PGE<br>PACKAGE | UNIT |
|-----------------|----------------|----------------|------|
| $R_{\Theta JA}$ | 38             | 56             | °C/W |
| $R_{\Theta JC}$ | 5              | 5              | °C/W |

#### 5.5 **Timing Parameter Symbology**

Timing parameter symbols used in the timing requirements and switching characteristics tables are created in accordance with JEDEC Standard 100. To shorten the symbols, some of the pin names and other related terminology have been abbreviated as follows:

Lowercase subscripts and their meanings:

| а   | access time            |
|-----|------------------------|
| С   | cycle time (period)    |
| d   | delay time             |
| dis | disable time           |
| en  | enable time            |
| f   | fall time              |
| h   | hold time              |
| r   | rise time              |
| su  | setup time             |
| t   | transition time        |
| V   | valid time             |
| W   | pulse duration (width) |

Letters and symbols and their meanings:

| Н | High  |
|---|-------|
| L | Low   |
| V | Valid |

Z High impedance

Χ

#### 5.6 Internal Oscillator With External Crystal

The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN. The frequency of CLKOUT is a multiple of the oscillator frequency. The multiply ratio is determined by the bit settings in the CLKMD register. The crystal should be in fundamental-mode operation, and parallel resonant, with an effective series resistance of 30  $\Omega$  and power dissipation of 1 mW.

The connection of the required circuit, consisting of the crystal and two load capacitors, is shown in Figure 5–2. The load capacitors,  $C_1$  and  $C_2$ , should be chosen such that the equation below is satisfied.  $C_L$  in the equation is the load specified for the crystal.

$$C_L = \frac{C_1 C_2}{(C_1 + C_2)}$$

Table 5-2. Input Clock Frequency Characteristics

|                                          | MIN | MAX | UNIT |
|------------------------------------------|-----|-----|------|
| f <sub>clock</sub> Input clock frequency | 10  | 20  | MHz  |

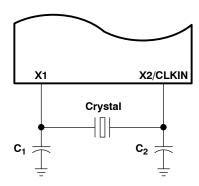



Figure 5-2. Internal Oscillator With External Crystal

#### 5.7 Clock Options

The frequency of the reference clock provided at the CLKIN pin can be divided by a factor of two or four to generate the internal machine cycle.

#### 5.7.1 Divide-By-Two Clock Option (PLL Disabled)

The frequency of the reference clock provided at the X2/CLKIN pin can be divided by a factor of two to generate the internal machine cycle. The selection of the clock mode is described in the clock generator section.

When an external clock source is used, the frequency injected must conform to specifications listed in the timing requirements table.

**NOTE:** All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8 V power supply (CV<sub>DD</sub>), rather than the 3 V I/O supply (DV<sub>DD</sub>). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.

Table 5–3 and Table 5–4 assume testing over recommended operating conditions and  $H = 0.5t_{c(CO)}$  (see Figure 5–3).

|                    |                      | MIN | MAX | UNIT |
|--------------------|----------------------|-----|-----|------|
| t <sub>c(CI)</sub> | Cycle time, X2/CLKIN | 20  | †   | ns   |
| t <sub>f(CI)</sub> | Fall time, X2/CLKIN  |     | 8   | ns   |
| t <sub>r(CI)</sub> | Rise time, X2/CLKIN  |     | 8   | ns   |

Table 5-3. Divide-By-2 Clock Option Timing Requirements

<sup>&</sup>lt;sup>†</sup> This device utilizes a fully static design and therefore can operate with t<sub>c(CI)</sub> approaching ∞. The device is characterized at frequencies approaching 0 Hz.

|                        | PARAMETER                                    | MIN             | TYP                 | MAX | UNIT |
|------------------------|----------------------------------------------|-----------------|---------------------|-----|------|
| t <sub>c(CO)</sub>     | Cycle time, CLKOUT                           | 20 <sup>‡</sup> | 2t <sub>c(CI)</sub> | †   | ns   |
| t <sub>d(CIH-CO)</sub> | Delay time, X2/CLKIN high to CLKOUT high/low | 2               | 10                  | 19  | ns   |
| t <sub>f(CO)</sub>     | Fall time, CLKOUT                            |                 | 2                   |     | ns   |
| t <sub>r(CO)</sub>     | Rise time, CLKOUT                            |                 | 2                   |     | ns   |
| t <sub>w(COL)</sub>    | Pulse duration, CLKOUT low                   | H-4             |                     | H+4 | ns   |
| t <sub>w(COH)</sub>    | Pulse duration, CLKOUT high                  | H-4             |                     | H+4 | ns   |

Table 5-4. Divide-By-2 Clock Option Switching Characteristics

<sup>&</sup>lt;sup>‡</sup> It is recommended that the PLL clocking option be used for maximum frequency operation.

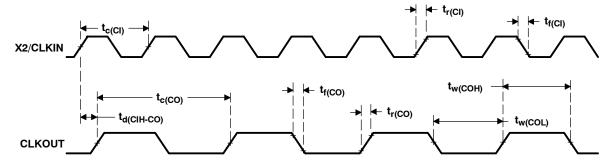



Figure 5-3. External Divide-by-Two Clock Timing

<sup>&</sup>lt;sup>†</sup> This device utilizes a fully static design and therefore can operate with t<sub>c(CI)</sub> approaching ∞. The device is characterized at frequencies approaching 0 Hz.

#### 5.7.2 Multiply-By-N Clock Option (PLL Enabled)

The frequency of the reference clock provided at the X2/CLKIN pin can be multiplied by a factor of N to generate the internal machine cycle. The selection of the clock mode and the value of N is described in the clock generator section.

When an external clock source is used, the external frequency injected must conform to specifications listed in the timing requirements table.

**NOTE:** All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8 V power supply (CV<sub>DD</sub>), rather than the 3 V I/O supply (DV<sub>DD</sub>). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.

Table 5–5 and Table 5–6 assume testing over recommended operating conditions and  $H = 0.5t_{c(CO)}$  (see Figure 5–4).

|                    |                      |                                                  | MIN             | MAX | UNIT |
|--------------------|----------------------|--------------------------------------------------|-----------------|-----|------|
|                    |                      | Integer PLL multiplier N (N = 1-15) <sup>†</sup> | 20 <sup>‡</sup> | 200 |      |
| t <sub>c(CI)</sub> | Cycle time, X2/CLKIN | PLL multiplier N = x.5 <sup>†</sup>              | 20 <sup>‡</sup> | 100 | ns   |
|                    |                      | PLL multiplier N = x.25, x.75 <sup>†</sup>       | 20 <sup>‡</sup> | 50  |      |
| t <sub>f(CI)</sub> | Fall time, X2/CLKIN  |                                                  |                 | 8   | ns   |
| t <sub>r(Cl)</sub> | Rise time, X2/CLKIN  |                                                  |                 | 8   | ns   |

Table 5-5. Multiply-By-N Clock Option Timing Requirements

<sup>&</sup>lt;sup>‡</sup> The multiplication factor and minimum X2/CLKIN cycle time should be chosen such that the resulting CLKOUT cycle time is within the specified range (tc(CO))

|                       | PARAMETER                                        | MIN | TYP                    | MAX | UNIT |
|-----------------------|--------------------------------------------------|-----|------------------------|-----|------|
| t <sub>c(CO)</sub>    | Cycle time, CLKOUT                               | 20  | t <sub>c(CI)/N</sub> † |     | ns   |
| t <sub>d(CI-CO)</sub> | Delay time, X2/CLKIN high/low to CLKOUT high/low | 2   | 10                     | 19  | ns   |
| t <sub>f(CO)</sub>    | Fall time, CLKOUT                                |     | 2                      |     | ns   |
| t <sub>r(CO)</sub>    | Rise time, CLKOUT                                |     | 2                      |     | ns   |
| t <sub>w(COL)</sub>   | Pulse duration, CLKOUT low                       | H-4 |                        | H+4 | ns   |
| t <sub>w(COH)</sub>   | Pulse duration, CLKOUT high                      | H-4 |                        | H+4 | ns   |
| t <sub>p</sub>        | Transitory phase, PLL lock up time               |     |                        | 35  | μS   |

Table 5-6. Multiply-By-N Clock Option Switching Characteristics

<sup>†</sup> N = Multiplication factor

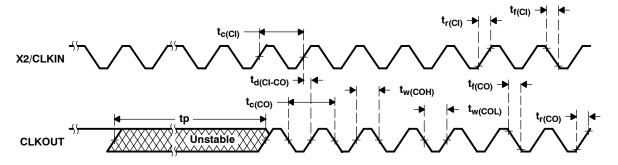



Figure 5-4. External Multiply-by-One Clock Timing



<sup>†</sup> N = Multiplication factor

#### 5.8 Memory and Parallel I/O Interface Timing

#### 5.8.1 Memory Read

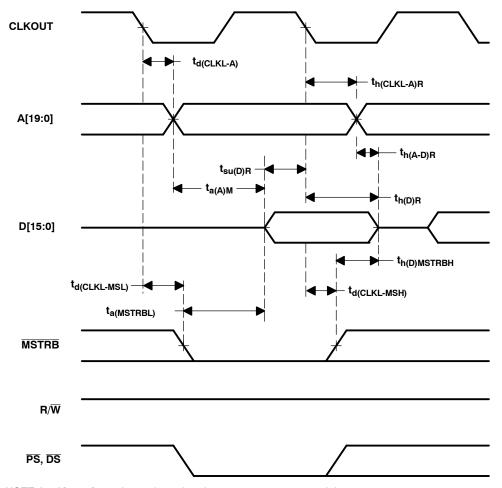
External memory reads can be performed in consecutive or nonconsecutive mode under control of the CONSEC bit in the BSCR.

Table 5–7 and Table 5–8 assume testing over recommended operating conditions with  $\overline{\text{MSTRB}} = 0$  and  $H = 0.5t_{c(CO)}$  (see Figure 5–5).

Table 5-7. Memory Read Timing Requirements

|                         |                                                               | MIN | MAX   | UNIT |
|-------------------------|---------------------------------------------------------------|-----|-------|------|
| t <sub>a(A)M</sub>      | Access time, read data access from address valid <sup>†</sup> |     | 2H-9  | ns   |
| t <sub>a(MSTRBL)</sub>  | Access time, read data access from MSTRB low                  |     | 2H-10 | ns   |
| t <sub>su(D)R</sub>     | Setup time, read data before CLKOUT low                       | 8   |       | ns   |
| t <sub>h(D)R</sub>      | Hold time, read data after CLKOUT low                         | 0   |       | ns   |
| t <sub>h(A-D)R</sub>    | Hold time, read data after address invalid                    | 2   |       | ns   |
| t <sub>h(D)MSTRBH</sub> | Hold time, read data after MSTRB high                         | 2   |       | ns   |

 $<sup>^{\</sup>dagger}$  Address,  $\overline{PS}$ , and  $\overline{DS}$  timings are all included in timings referenced as address.


Table 5-8. Memory Read Switching Characteristics

|                           | PARAMETER                                                           | MIN | MAX | UNIT |
|---------------------------|---------------------------------------------------------------------|-----|-----|------|
| t <sub>d(CLKL-A)</sub>    | Delay time, CLKOUT low to address valid <sup>†‡</sup>               | -4  | 5   | ns   |
| t <sub>d(CLKH-A)</sub>    | Delay time, CLKOUT high (transition) to address valid <sup>†§</sup> | -4  | 5   | ns   |
| t <sub>d</sub> (CLKL-MSL) | Delay time, CLKOUT low to MSTRB low                                 | -3  | 5   | ns   |
| t <sub>d(CLKL-MSH)</sub>  | Delay time, CLKOUT low to MSTRB high                                | -3  | 5   | ns   |
| t <sub>h(CLKL-A)R</sub>   | Hold time, address valid after CLKOUT low <sup>†‡</sup>             | -4  | 5   | ns   |
| t <sub>h(CLKH-A)R</sub>   | Hold time, address valid after CLKOUT high <sup>†§</sup>            | -4  | 5   | ns   |

 $<sup>^{\</sup>dagger}$  Address,  $\overline{\text{PS}},$  and  $\overline{\text{DS}}$  timings are all included in timings referenced as address.

<sup>&</sup>lt;sup>‡</sup> In the case of a memory read preceded by a memory read

<sup>§</sup> In the case of a memory read preceded by a memory write



NOTE A: A[19:16] are always driven low during accesses to external data space.

Figure 5–5. Memory Read ( $\overline{MSTRB} = 0$ )

#### 5.8.2 Memory Write

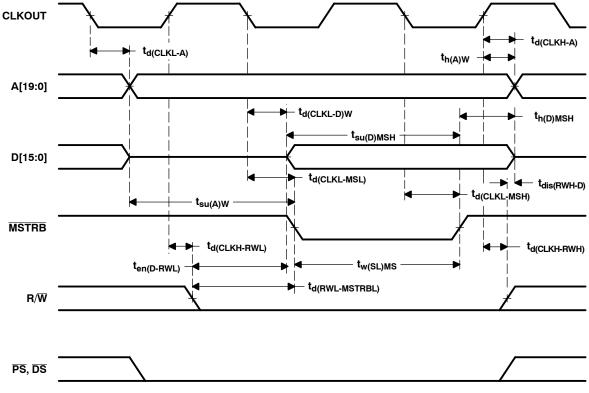

Table 5–9 assumes testing over recommended operating conditions with  $\overline{MSTRB}$  = 0 and H = 0.5t<sub>c(CO)</sub> (see Figure 5–6).

Table 5-9. Memory Write Switching Characteristics

|                             | PARAMETER                                                  | MIN   | MAX   | UNIT |
|-----------------------------|------------------------------------------------------------|-------|-------|------|
| t <sub>d(CLKH-A)</sub>      | Delay time, CLKOUT high to address valid <sup>†‡</sup>     | -4    | 5     | ns   |
| t <sub>d(CLKL-A)</sub>      | Delay time, CLKOUT low to address valid <sup>†</sup>       | -4    | 5     | ns   |
| t <sub>d(CLKL-MSL)</sub>    | Delay time, CLKOUT low to MSTRB low                        | -3    | 5     | ns   |
| t <sub>d(CLKL-D)W</sub>     | Delay time, CLKOUT low to data valid                       | -2    | 8     | ns   |
| t <sub>d(CLKL-MSH)</sub>    | Delay time, CLKOUT low to MSTRB high                       | -3    | 5     | ns   |
| t <sub>d(CLKH-RWL)</sub>    | Delay time, CLKOUT high to $R/\overline{W}$ low            | -3    | 5     | ns   |
| t <sub>d(CLKH-RWH)</sub>    | Delay time, CLKOUT high to $R/\overline{W}$ high           | -3    | 5     | ns   |
| t <sub>d</sub> (RWL-MSTRBL) | Delay time, $R/\overline{W}$ low to $\overline{MSTRB}$ low | H – 4 | H + 3 | ns   |
| t <sub>h(A)W</sub>          | Hold time, address valid after CLKOUT high <sup>†‡</sup>   | -1    | 5     | ns   |
| t <sub>h(D)MSH</sub>        | Hold time, write data valid after MSTRB high               | H-1   | H+8   | ns   |
| t <sub>w(SL)MS</sub>        | Pulse duration, MSTRB low                                  | 2H-4  |       | ns   |
| t <sub>su(A)W</sub>         | Setup time, address valid before MSTRB low <sup>†</sup>    | 2H-4  |       | ns   |
| t <sub>su(D)MSH</sub>       | Setup time, write data valid before MSTRB high             | 2H-4  | 2H+7  | ns   |
| t <sub>en(D-RWL)</sub>      | Enable time, data bus driven after $R/\overline{W}$ low    | H-6   |       | ns   |
| t <sub>dis(RWH-D)</sub>     | Disable time, R/W high to data bus high impedance          |       | 0     | ns   |

 $<sup>\</sup>overline{}^{\dagger}$  Address,  $\overline{PS}$ , and  $\overline{DS}$  timings are all included in timings referenced as address.

<sup>&</sup>lt;sup>‡</sup> In the case of a memory write preceded by a memory write



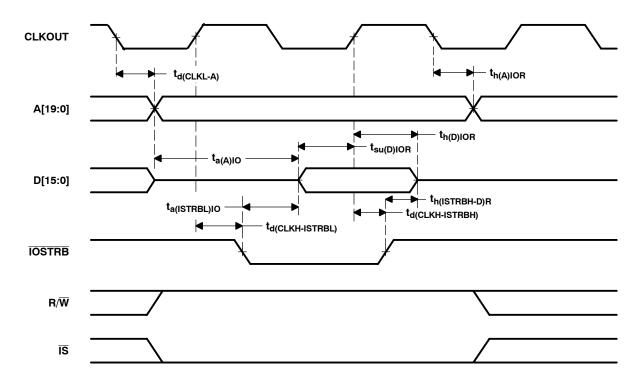
NOTE A: A[19:16] are always driven low during accesses to external data space.

Figure 5–6. Memory Write ( $\overline{MSTRB} = 0$ )

#### 5.8.3 I/O Read

Table 5-10 and Table 5-11 assume testing over recommended operating conditions,  $\overline{\text{IOSTRB}} = 0$ , and  $H = 0.5t_{c(CO)}$  (see Figure 5-7).

Table 5-10. I/O Read Timing Requirements


|                           |                                                               | B. A.I.B.I | 14437 |      |
|---------------------------|---------------------------------------------------------------|------------|-------|------|
|                           |                                                               | MIN        | MAX   | UNIT |
| t <sub>a(A)IO</sub>       | Access time, read data access from address valid <sup>†</sup> |            | 3H-9  | ns   |
| t <sub>a(ISTRBL)IO</sub>  | Access time, read data access from IOSTRB low                 |            | 2H-9  | ns   |
| t <sub>su(D)IOR</sub>     | Setup time, read data before CLKOUT high                      | 8          |       | ns   |
| t <sub>h(D)IOR</sub>      | Hold time, read data after CLKOUT high                        | 2          | •     | ns   |
| t <sub>h(ISTRBH-D)R</sub> | Hold time, read data after IOSTRB high                        | 2          |       | ns   |

 $<sup>^\</sup>dagger$  Address and  $\overline{\text{IS}}$  timings are included in timings referenced as address.

Table 5-11. I/O Read Switching Characteristics

|                              | PARAMETER                                            | MIN | MAX | UNIT |
|------------------------------|------------------------------------------------------|-----|-----|------|
| t <sub>d(CLKL-A)</sub>       | Delay time, CLKOUT low to address valid <sup>†</sup> | -4  | 5   | ns   |
| t <sub>d</sub> (CLKH-ISTRBL) | Delay time, CLKOUT high to IOSTRB low                | -4  | 5   | ns   |
| t <sub>d(CLKH-ISTRBH)</sub>  | Delay time, CLKOUT high to IOSTRB high               | -4  | 5   | ns   |
| t <sub>h(A)IOR</sub>         | Hold time, address after CLKOUT low                  | -2  | 5   | ns   |

 $<sup>^\</sup>dagger$  Address and  $\overline{\text{IS}}$  timings are included in timings referenced as address.



NOTE A: A[19:16] are always driven low during accesses to I/O space.

Figure 5–7. Parallel I/O Port Read (IOSTRB = 0)

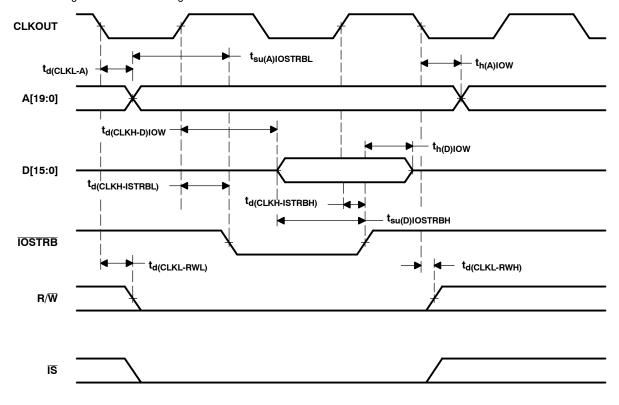

#### 5.8.4 I/O Write

Table 5–12 assumes testing over recommended operating conditions,  $\overline{IOSTRB} = 0$ , and  $H = 0.5t_{c(CO)}$  (see Figure 5–8).

Table 5-12. I/O Write Switching Characteristics

|                             | PARAMETER                                                | MIN | MAX  | UNIT |
|-----------------------------|----------------------------------------------------------|-----|------|------|
| t <sub>d(CLKL-A)</sub>      | Delay time, CLKOUT low to address valid <sup>†</sup>     | -4  | 5    | ns   |
| t <sub>d(CLKH-ISTRBL)</sub> | Delay time, CLKOUT high to IOSTRB low                    | -4  | 5    | ns   |
| t <sub>d(CLKH-D)IOW</sub>   | Delay time, CLKOUT high to write data valid              | H-7 | H+11 | ns   |
| t <sub>d(CLKH-ISTRBH)</sub> | Delay time, CLKOUT high to IOSTRB high                   | -4  | 5    | ns   |
| t <sub>d(CLKL-RWL)</sub>    | Delay time, CLKOUT low to R/W low                        | -3  | 5    | ns   |
| t <sub>d(CLKL-RWH)</sub>    | Delay time, CLKOUT low to $R/\overline{W}$ high          | -3  | 5    | ns   |
| t <sub>h(A)IOW</sub>        | Hold time, address valid after CLKOUT low <sup>†</sup>   | -2  | 5    | ns   |
| t <sub>h(D)IOW</sub>        | Hold time, write data after IOSTRB high                  | H-5 | H+9  | ns   |
| t <sub>su(D)</sub> IOSTRBH  | Setup time, write data before IOSTRB high                | H-9 | H+3  | ns   |
| t <sub>su(A)IOSTRBL</sub>   | Setup time, address valid before IOSTRB low <sup>†</sup> | H-4 | H+4  | ns   |

 $<sup>^\</sup>dagger$  Address and  $\overline{\text{IS}}$  timings are included in timings referenced as address.



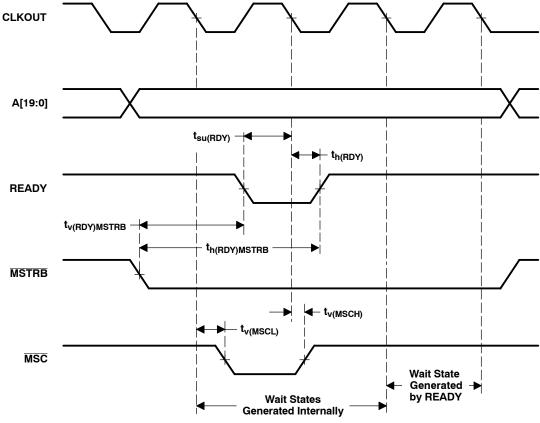
NOTE A: A[19:16] are always driven low during accesses to I/O space.

Figure 5-8. Parallel I/O Port Write (IOSTRB = 0)

#### 5.9 Ready Timing for Externally Generated Wait States

Table 5–13 and Table 5–14 assume testing over recommended operating conditions and  $H = 0.5t_{c(CO)}$  (see Figure 5–9, Figure 5–10, Figure 5–11, and Figure 5–12).

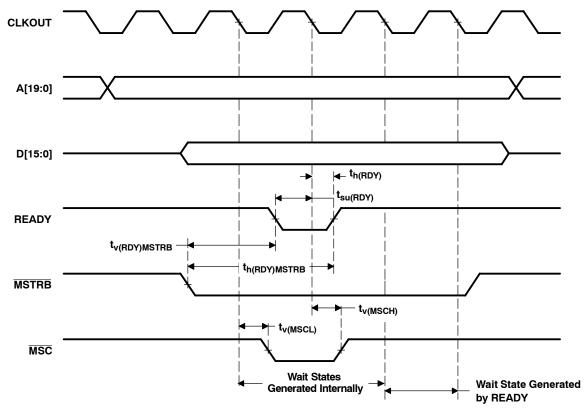
Table 5-13. Ready Timing Requirements for Externally Generated Wait States<sup>†</sup>


|                            |                                                 | N | VIN V | ΙΑΧ  | UNIT |
|----------------------------|-------------------------------------------------|---|-------|------|------|
| t <sub>su(RDY)</sub>       | Setup time, READY before CLKOUT low             |   | 8     |      | ns   |
| t <sub>h(RDY)</sub>        | Hold time, READY after CLKOUT low               |   | 0     |      | ns   |
| t <sub>v(RDY)</sub> MSTRB  | Valid time, READY after MSTRB low <sup>‡</sup>  |   | 4     | ₽H−6 | ns   |
| t <sub>h(RDY)</sub> MSTRB  | Hold time, READY after MSTRB low <sup>‡</sup>   |   | 4H    |      | ns   |
| t <sub>v(RDY)IOSTRB</sub>  | Valid time, READY after IOSTRB low <sup>‡</sup> |   | 5     | 5H-6 | ns   |
| t <sub>h(RDY)</sub> IOSTRB | Hold time, READY after IOSTRB low <sup>‡</sup>  |   | 5H    |      | ns   |

<sup>&</sup>lt;sup>†</sup> The hardware wait states can be used only in conjunction with the software wait states to extend the bus cycles. To generate wait states using READY, at least two software wait states must be programmed. READY is not sampled until the completion of the internal software wait states.

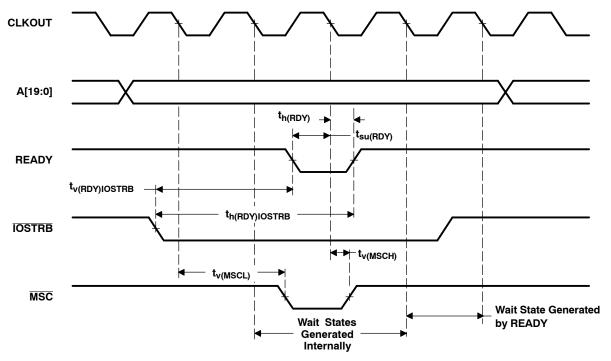
Table 5-14. Ready Switching Characteristics for Externally Generated Wait States<sup>†</sup>

|                      | PARAMETER                                             | MIN | MAX | UNIT |
|----------------------|-------------------------------------------------------|-----|-----|------|
| t <sub>d(MSCL)</sub> | Delay time, $\overline{\text{MSC}}$ low to CLKOUT low | - 1 | 3   | ns   |
| t <sub>d(MSCH)</sub> | Delay time, CLKOUT low to MSC high                    | -1  | 3   | ns   |


<sup>&</sup>lt;sup>†</sup> The hardware wait states can be used only in conjunction with the software wait states to extend the bus cycles. To generate wait states using READY, at least two software wait states must be programmed. READY is not sampled until the completion of the internal software wait states.



NOTE A: A[19:16] are always driven low during accesses to external data space.


Figure 5-9. Memory Read With Externally Generated Wait States

<sup>&</sup>lt;sup>‡</sup> These timings are included for reference only. The critical timings for READY are those referenced to CLKOUT.



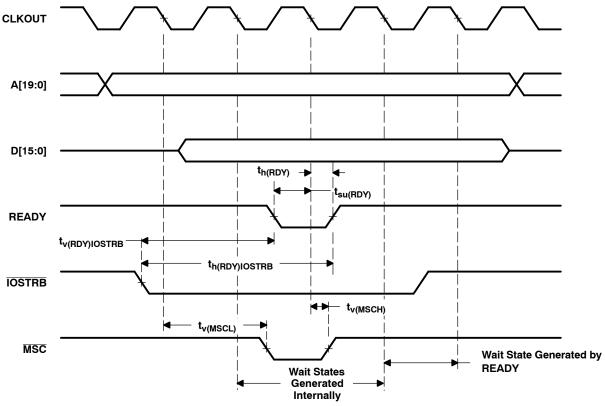

NOTE A: A[19:16] are always driven low during accesses to external data space.

Figure 5-10. Memory Write With Externally Generated Wait States



NOTE A: A[19:16] are always driven low during accesses to I/O space.

Figure 5-11. I/O Read With Externally Generated Wait States



NOTE A: A[19:16] are always driven low during accesses to I/O space.

Figure 5-12. I/O Write With Externally Generated Wait States

#### 5.10 HOLD and HOLDA Timings

Table 5–15 and Table 5–16 assume testing over recommended operating conditions and  $H = 0.5t_{c(CO)}$  (see Figure 5–13).

Table 5-15. HOLD and HOLDA Timing Requirements

|                       |                                             | MIN  | MAX | UNIT |
|-----------------------|---------------------------------------------|------|-----|------|
| t <sub>w(HOLD)</sub>  | Pulse duration, HOLD low                    | 4H+9 |     | ns   |
| t <sub>su(HOLD)</sub> | Setup time, HOLD low/high before CLKOUT low | 9    |     | ns   |

Table 5-16. HOLD and HOLDA Switching Characteristics

|                           | PARAMETER                                                                                                 | MIN  | MAX  | UNIT |
|---------------------------|-----------------------------------------------------------------------------------------------------------|------|------|------|
| t <sub>dis(CLKL-A)</sub>  | Disable time, address, $\overline{PS}$ , $\overline{DS}$ , $\overline{IS}$ high impedance from CLKOUT low |      | 7    | ns   |
| t <sub>dis(CLKL-RW)</sub> | Disable time, $R/\overline{W}$ high impedance from CLKOUT low                                             |      | 7    | ns   |
| t <sub>dis(CLKL-S)</sub>  | Disable time, $\overline{\text{MSTRB}}$ , $\overline{\text{IOSTRB}}$ high impedance from CLKOUT low       |      | 7    | ns   |
| t <sub>en(CLKL-A)</sub>   | Enable time, address, PS, DS, IS from CLKOUT low                                                          |      | 2H+7 | ns   |
| t <sub>en(CLKL-RW)</sub>  | Enable time, $R/\overline{W}$ enabled from CLKOUT low                                                     |      | 2H+7 | ns   |
| t <sub>en(CLKL-S)</sub>   | Enable time, $\overline{\text{MSTRB}}$ , $\overline{\text{IOSTRB}}$ enabled from CLKOUT low               | 0    | 2H+7 | ns   |
|                           | Valid time, HOLDA low after CLKOUT low                                                                    | -3   | 4    | ns   |
| t <sub>v(HOLDA)</sub>     | Valid time, HOLDA high after CLKOUT low                                                                   | -3   | 4    | ns   |
| t <sub>w(HOLDA)</sub>     | Pulse duration, HOLDA low duration                                                                        | 2H-3 |      | ns   |

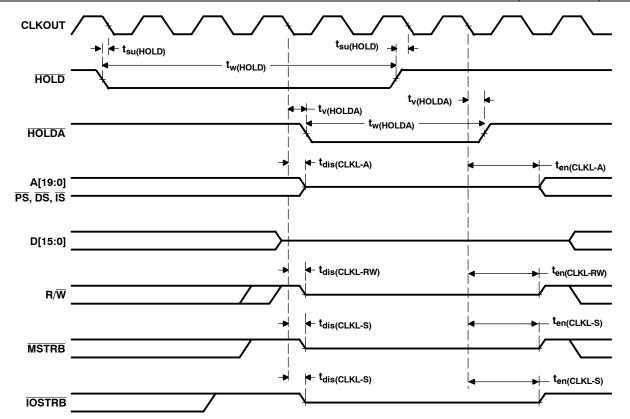



Figure 5–13.  $\overline{\text{HOLD}}$  and  $\overline{\text{HOLDA}}$  Timings (HM = 1)

#### 5.11 Reset, BIO, Interrupt, and MP/MC Timings

Table 5–17 assumes testing over recommended operating conditions and  $H = 0.5t_{c(CO)}$  (see Figure 5–14, Figure 5–15, and Figure 5–16).

Table 5-17. Reset, BIO, Interrupt, and MP/MC Timing Requirements

|                          |                                                      | MIN  | MAX | UNIT |
|--------------------------|------------------------------------------------------|------|-----|------|
| t <sub>h(RS)</sub>       | Hold time, RS after CLKOUT low                       | 2    |     | ns   |
| t <sub>h(BIO)</sub>      | Hold time, BIO after CLKOUT low                      | 2    |     | ns   |
| t <sub>h(INT)</sub>      | Hold time, INTn, NMI, after CLKOUT low <sup>†</sup>  | 2    |     | ns   |
| t <sub>h(MPMC)</sub>     | Hold time, MP/MC after CLKOUT low                    | 2    |     | ns   |
| t <sub>w(RSL)</sub>      | Pulse duration, RS low <sup>‡§</sup>                 | 4H+7 |     | ns   |
| t <sub>w(BIO)S</sub>     | Pulse duration, BIO low, synchronous                 | 2H+4 |     | ns   |
| t <sub>w(BIO)A</sub>     | Pulse duration, BIO low, asynchronous                | 4H+2 |     | ns   |
| t <sub>w(INTH)</sub> s   | Pulse duration, INTn, NMI high (synchronous)         | 2H+2 |     | ns   |
| t <sub>w(INTH)</sub> A   | Pulse duration, INTn, NMI high (asynchronous)        | 4H+2 |     | ns   |
| t <sub>w(INTL)</sub> S   | Pulse duration, INTn, NMI low (synchronous)          | 2H+4 |     | ns   |
| t <sub>w(INTL)</sub> A   | Pulse duration, INTn, NMI low (asynchronous)         | 4H+2 |     | ns   |
| t <sub>w(INTL)</sub> WKP | Pulse duration, INTn, NMI low for IDLE2/IDLE3 wakeup | 12   |     | ns   |
| t <sub>su(RS)</sub>      | Setup time, RS before X2/CLKIN low1                  | 7    |     | ns   |
| t <sub>su(BIO)</sub>     | Setup time, BIO before CLKOUT low                    | 9    | 12  | ns   |
| t <sub>su(INT)</sub>     | Setup time, INTn, NMI, RS before CLKOUT low          | 9    | 12  | ns   |
| t <sub>su(MPMC)</sub>    | Setup time, MP/MC before CLKOUT low                  | 7    |     | ns   |

<sup>&</sup>lt;sup>†</sup> The external interrupts (INTO-INT3, NMI) are synchronized to the core CPU by way of a two-flip-flop synchronizer which samples these inputs with consecutive falling edges of CLKOUT. The input to the interrupt pins is required to represent a 1-0-0 sequence at the timing that is corresponding to three CLKOUT sampling sequences.

<sup>¶</sup> Divide-by-two mode

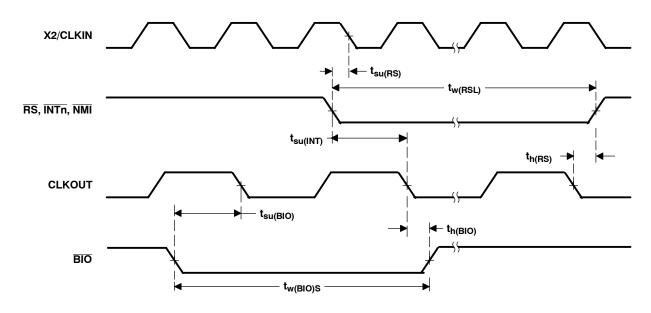



Figure 5-14. Reset and BIO Timings

<sup>‡</sup> If the PLL mode is selected, then at power-on sequence, or at wakeup from IDLE3, RS must be held low for at least 50 μs to ensure synchronization and lock-in of the PLL.

 $<sup>\</sup>S$  Note that  $\overline{\mbox{RS}}$  may cause a change in clock frequency, therefore changing the value of H.

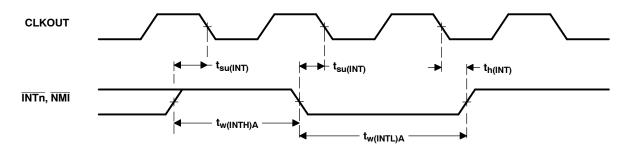



Figure 5-15. Interrupt Timing

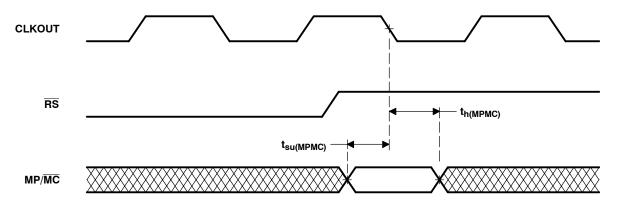



Figure 5–16. MP/MC Timing

#### 5.12 Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings

Table 5–18 assumes testing over recommended operating conditions and  $H = 0.5t_{c(CO)}$  (see Figure 5–17).

Table 5-18. Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Switching Characteristics

|                             | PARAMETER                                  | MIN  | MAX | UNIT |
|-----------------------------|--------------------------------------------|------|-----|------|
| t <sub>d(CLKL-IAQL)</sub>   | Delay time, CLKOUT low to IAQ low          | -3   | 5   | ns   |
| t <sub>d(CLKL-IAQH)</sub>   | Delay time, CLKOUT low to IAQ high         | -3   | 5   | ns   |
| t <sub>d(A)IAQ</sub>        | Delay time, address valid to IAQ low       |      | 3   | ns   |
| t <sub>d(CLKL-IACKL)</sub>  | Delay time, CLKOUT low to IACK low         | -3   | 5   | ns   |
| t <sub>d</sub> (CLKL-IACKH) | Delay time , CLKOUT low to IACK high       | -3   | 5   | ns   |
| t <sub>d(A)IACK</sub>       | Delay time, address valid to IACK low      |      | 5   | ns   |
| t <sub>h(A)IAQ</sub>        | Hold time, IAQ high after address invalid  | -4   |     | ns   |
| t <sub>h(A)IACK</sub>       | Hold time, IACK high after address invalid | -4   |     | ns   |
| t <sub>w(IAQL)</sub>        | Pulse duration, IAQ low                    | 2H-4 |     | ns   |
| t <sub>w(IACKL)</sub>       | Pulse duration, TACK low                   | 2H-4 |     | ns   |

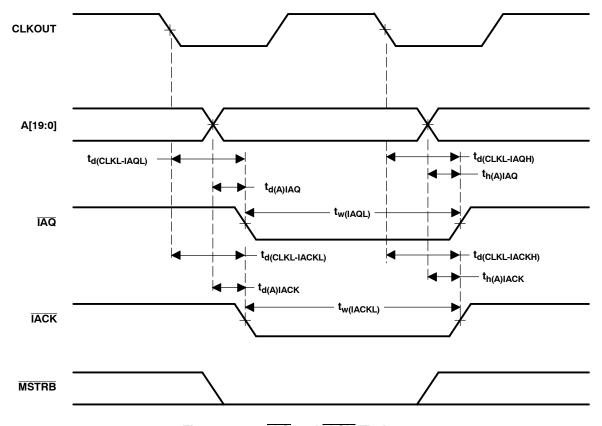



Figure 5-17. IAQ and IACK Timings

#### 5.13 External Flag (XF) and TOUT Timings

Table 5–19 assumes testing over recommended operating conditions and  $H = 0.5t_{c(CO)}$  (see Figure 5–18 and Figure 5–19).

Table 5-19. External Flag (XF) and TOUT Switching Characteristics

|                       | PARAMETER                           | MIN  | MAX | UNIT |
|-----------------------|-------------------------------------|------|-----|------|
|                       | Delay time, CLKOUT low to XF high   | -3   | 5   |      |
| <sup>t</sup> d(XF)    | Delay time, CLKOUT low to XF low    | -3   | 5   | ns   |
| t <sub>d(TOUTH)</sub> | Delay time, CLKOUT low to TOUT high | -2   | 6   | ns   |
| t <sub>d(TOUTL)</sub> | Delay time, CLKOUT low to TOUT low  | -2   | 6   | ns   |
| t <sub>w(TOUT)</sub>  | Pulse duration, TOUT                | 2H-2 |     | ns   |

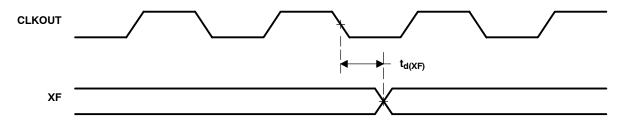



Figure 5–18. XF Timing

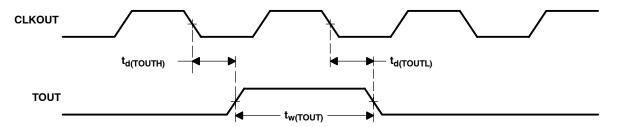



Figure 5-19. TOUT Timing

#### 5.14 Multichannel Buffered Serial Port (McBSP) Timing

#### 5.14.1 McBSP Transmit and Receive Timings

Table 5–20 and Table 5–21 assume testing over recommended operating conditions and  $H = 0.5t_{c(CO)}$  (see Figure 5–20 and Figure 5–21).

Table 5-20. McBSP Transmit and Receive Timing Requirements<sup>†</sup>

|                             |                                                 |             | MIN  | MAX | UNIT |
|-----------------------------|-------------------------------------------------|-------------|------|-----|------|
| t <sub>c(BCKRX)</sub>       | Cycle time, BCLKR/X                             | BCLKR/X ext | 4H   |     | ns   |
| t <sub>w(BCKRX)</sub>       | Pulse duration, BCLKR/X high or BCLKR/X low     | BCLKR/X ext | 2H-2 |     | ns   |
|                             | O L III L I DESPLICATION DOLLAR                 | BCLKR int   | 10   |     |      |
| t <sub>su(BFRH-BCKRL)</sub> | Setup time, external BFSR high before BCLKR low | BCLKR ext   | 3    |     | ns   |
|                             | IIIII II I I I I I I I I I I I I I I I          | BCLKR int   | 2    |     |      |
| th(BCKRL-BFRH)              | Hold time, external BFSR high after BCLKR low   | BCLKR ext   | 5    |     | ns   |
|                             | O L III DDD IIII ( DOLLADI                      | BCLKR int   | 7    |     | ns   |
| t <sub>su(BDRV-BCKRL)</sub> | Setup time, BDR valid before BCLKR low          | BCLKR ext   | 2    |     |      |
|                             |                                                 | BCLKR int   | 2    |     |      |
| th(BCKRL-BDRV)              | Hold time, BDR valid after BCLKR low            | BCLKR ext   | 6    |     | ns   |
|                             |                                                 | BCLKX int   | 9    |     |      |
| t <sub>su(BFXH-BCKXL)</sub> | Setup time, external BFSX high before BCLKX low | BCLKX ext   | 2    |     | ns   |
|                             | THE TENTE OF THE POLICY                         | BCLKX int   | 2    |     | ns   |
| th(BCKXL-BFXH)              | Hold time, external BFSX high after BCLKX low   | BCLKX ext   | 5    |     |      |
| t <sub>r(BCKRX)</sub>       | Rise time, BCKR/X                               | BCLKR/X ext |      | 8   | ns   |
| t <sub>f(BCKRX)</sub>       | Fall time, BCKR/X                               | BCLKR/X ext |      | 8   | ns   |

<sup>†</sup> CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

Table 5-21. McBSP Transmit and Receive Switching Characteristics<sup>†</sup>

|                                | PARAMETER                                              |                |             | MIN                | MAX                | UNIT |  |
|--------------------------------|--------------------------------------------------------|----------------|-------------|--------------------|--------------------|------|--|
| t <sub>c(BCKRX)</sub>          | Cycle time, BCLKR/X                                    |                | BCLKR/X int | 4H                 |                    | ns   |  |
| t <sub>w(BCKRXH)</sub>         | Pulse duration, BCLKR/X high                           |                | BCLKR/X int | D – 4 <sup>‡</sup> | D + 4 <sup>‡</sup> | ns   |  |
| t <sub>w(BCKRXL)</sub>         | Pulse duration, BCLKR/X low                            |                | BCLKR/X int | C – 4 <sup>‡</sup> | C + 4 <sup>‡</sup> | ns   |  |
|                                | Delegations DOLVD high to internal DECD called         |                | BCLKR int   | -4                 | 4                  | ns   |  |
| <sup>t</sup> d(BCKRH-BFRV)     | Delay time, BCLKR high to internal BFSR valid          |                | BCLKR ext   | 1                  | 11                 | ns   |  |
|                                | Dala Para BOLIO/high ta internal BEOV and              |                | BCLKX int   | -2                 | 6                  |      |  |
| t <sub>d</sub> (BCKXH-BFXV)    | Delay time, BCLKX high to internal BFSX valid          |                | BCLKX ext   | 6                  | 13                 | ns   |  |
|                                | Disable time, BCLKX high to BDX high impedance follo   | wing last data | BCLKX int   | -3                 | 6                  | 1    |  |
| t <sub>dis</sub> (BCKXH-BDXHZ) | bit of transfer                                        |                | BCLKX ext   | 1                  | 11                 | ns   |  |
|                                | D. I. I. DOLLOWIN . DDV . II.                          |                | BCLKX int   | -2 <sup>¶</sup>    | 9                  | 1    |  |
| t <sub>d</sub> (BCKXH-BDXV)    | Delay time, BCLKX high to BDX valid                    | DXENA = 0§     | BCLKX ext   | 1                  | 13                 | ns   |  |
|                                | Delay time, BFSX high to BDX valid                     |                | BFSX int    | -3 <sup>¶</sup>    | 5                  |      |  |
| t <sub>d</sub> (BFXH-BDXV)     | ONLY applies when in data delay 0 (XDATDLY = 00b) mode |                | BFSX ext    | 1                  | 15                 | ns   |  |

<sup>†</sup> CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

<sup>¶</sup> Minimum delay times also represent minimum output hold times.



<sup>&</sup>lt;sup>‡</sup>T = BCLKRX period = (1 + CLKGDV) \* 2H

C = BCLKRX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) \* 2H when CLKGDV is even

D = BCLKRX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) \* 2H when CLKGDV is even

<sup>§</sup> The transmit delay enable (DXENA) and A-bis mode (ABIS) features of the McBSP are not implemented on the TMS320VC5401.

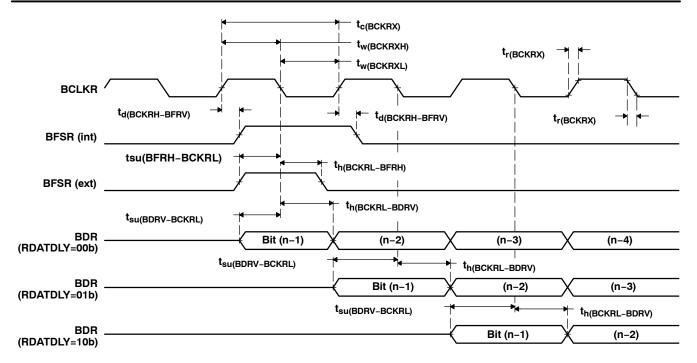



Figure 5-20. McBSP Receive Timings

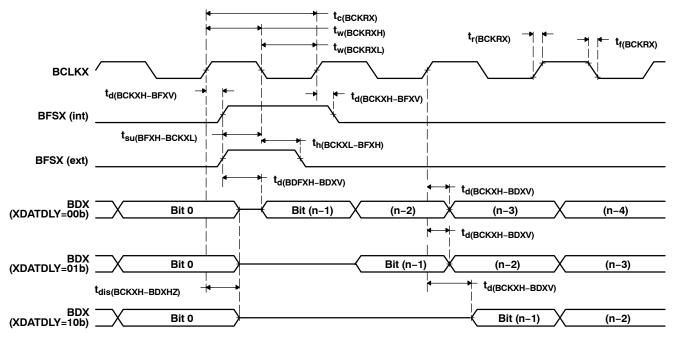
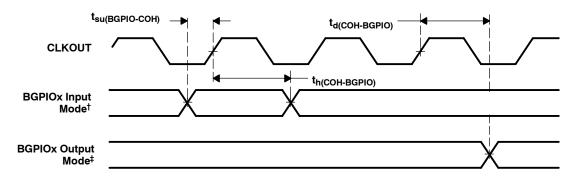



Figure 5-21. McBSP Transmit Timings

#### 5.14.2 McBSP General-Purpose I/O Timing

Table 5-22 and Table 5-23 assume testing over recommended operating conditions (see Figure 5-22).

Table 5-22. McBSP General-Purpose I/O Timing Requirements


|                            |                                                               | MIN | MAX | UNIT |
|----------------------------|---------------------------------------------------------------|-----|-----|------|
| t <sub>su(BGPIO-COH)</sub> | Setup time, BGPIOx input mode before CLKOUT high <sup>†</sup> | 11  |     | ns   |
| t <sub>h(COH-BGPIO)</sub>  | Hold time, BGPIOx input mode after CLKOUT high <sup>†</sup>   | 2   |     | ns   |

<sup>†</sup> BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.

Table 5-23. McBSP General-Purpose I/O Switching Characteristics

| PARAMETER                                                                            | MIN | MAX | UNIT |
|--------------------------------------------------------------------------------------|-----|-----|------|
| t <sub>d(COH-BGPIO)</sub> Delay time, CLKOUT high to BGPIOx output mode <sup>‡</sup> | -2  | 7   | ns   |

<sup>‡</sup> BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.



<sup>†</sup> BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.

Figure 5-22. McBSP General-Purpose I/O Timings

<sup>&</sup>lt;sup>‡</sup> BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.

## 5.14.3 McBSP Transmit and Receive Timing Using CLKR/X as a Clock Source Input to the Sample Rate Generator (SRGR)

The 5401 McBSP has been enhanced to allow the use of an external clock source as an input to the sample rate generator (SRGR). This capability is enabled by reconfiguring either the transmit shift clock (BCLKX), or the receive shift clock (BCLKR) to function as the input clock to the SRGR. When the McBSP is used in this mode, the output of the SRGR is then used as a common shift clock for both the receive and transmit sections of the serial port. This clock is output on the other of these two pins. Therefore, if BCLKX is reconfigured as the SRGR input, then BCLKR is used as the shift clock for both the transmit and receive sections of the McBSP. If BCLKR is reconfigured as the SRGR input, then BCLKX is used as the shift clock for both the transmit and receive sections of the McBSP. The relevant timings for this mode of operation are depicted in Figure 5–23. The other timings for serial port operations are the same as when using an internal clock source as described in the standard McBSP transmit and receive timings presented in Section 5.14.1.

Table 5–24 and Table 5–25 assume testing over recommended operating conditions and  $H = 0.5t_{c(CO)}$  (see Figure 5–23).

Table 5-24. McBSP Sample Rate Generator Timing Requirements

|                       |                                       | MIN | MAX | UNIT |
|-----------------------|---------------------------------------|-----|-----|------|
| t <sub>c(BCKS)</sub>  | Cycle time, SRGR clock input          | 2H  |     | ns   |
| t <sub>w(BCKSH)</sub> | Pulse duration, SRGR clock input high | H-6 | H+3 | ns   |
| t <sub>w(BCKSL)</sub> | Pulse duration, SRGR clock input low  | H-6 | H+3 | ns   |
| t <sub>r(BCKS)</sub>  | Rise time, SRGR clock input           |     | 10  | ns   |
| t <sub>f(BCKS)</sub>  | Fall time, SRGR clock input           |     | 10  | ns   |

Table 5-25. McBSP Sample Rate Generator Switching Characteristics

| PARAMETER                      |                                                  | MIN | MAX | UNIT |
|--------------------------------|--------------------------------------------------|-----|-----|------|
| t <sub>d</sub> (BCKSH-BCLKRXH) | Delay time, from SRGR clock input to SRGR output | 1   | 15  | ns   |

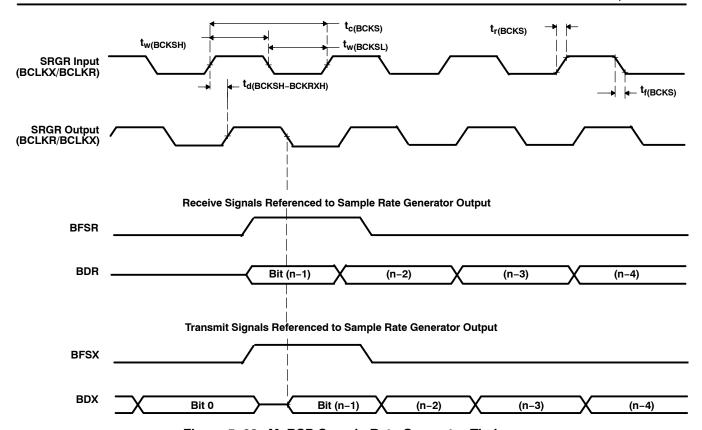



Figure 5-23. McBSP Sample Rate Generator Timings

#### 5.14.4 McBSP as SPI Master or Slave Timing

Table 5–26 through Table 5–33 assume testing over recommended operating conditions and  $H = 0.5t_{c(CO)}$  (see Figure 5–24 through Figure 5–27).

Table 5-26. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)<sup>†</sup>

|                             |                                        | MAST | MASTER |         | SLAVE |      |
|-----------------------------|----------------------------------------|------|--------|---------|-------|------|
|                             |                                        | MIN  | MAX    | MIN     | MAX   | UNIT |
| t <sub>su(BDRV-BCKXL)</sub> | Setup time, BDR valid before BCLKX low | 11   |        | – 12H   |       | ns   |
| t <sub>h(BCKXL-BDRV)</sub>  | Hold time, BDR valid after BCLKX low   | 2    |        | 7 + 12H |       | ns   |
| t <sub>su(BFXL-BCKXH)</sub> | Setup time, BFSX low before BCLKX high |      |        | 12      |       | ns   |
| t <sub>c(BCKX)</sub>        | Cycle time, BCLKX                      | 12H  |        | 32H     |       | ns   |

<sup>†</sup> For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

Table 5-27. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)<sup>†</sup>

|                               | PARAMETER                                                               |       | ΓER <sup>‡</sup> | SLAVE |          |      |
|-------------------------------|-------------------------------------------------------------------------|-------|------------------|-------|----------|------|
|                               |                                                                         |       | MAX              | MIN   | MAX      | UNIT |
| t <sub>h(BCKXL-BFXL)</sub>    | Hold time, BFSX low after BCLKX low§                                    | T –5  | T +6             |       |          | ns   |
| t <sub>d</sub> (BFXL-BCKXH)   | Delay time, BFSX low to BCLKX high¶                                     | C – 7 | C +5             |       |          | ns   |
| t <sub>d</sub> (BCKXH-BDXV)   | Delay time, BCLKX high to BDX valid                                     | -4    | 6                | 6H +3 | 10H + 17 | ns   |
| t <sub>dis(BCKXL-BDXHZ)</sub> | Disable time, BDX high impedance following last data bit from BCLKX low | C – 4 | C + 5            |       |          | ns   |
| t <sub>dis(BFXH-BDXHZ)</sub>  | Disable time, BDX high impedance following last data bit from BFSX high |       |                  | 2H+ 2 | 6H + 19  | ns   |
| t <sub>d(BFXL-BDXV)</sub>     | Delay time, BFSX low to BDX valid                                       |       |                  | 4H -4 | 8H + 19  | ns   |

 $<sup>^{\</sup>dagger}$  For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

<sup>¶</sup> BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (BCLKX).

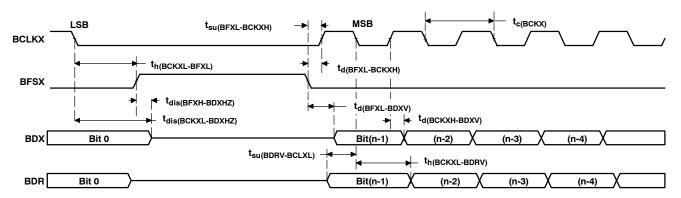



Figure 5-24. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0

<sup>&</sup>lt;sup>‡</sup>T = BCLKX period = (1 + CLKGDV) \* 2H

C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) \* 2H when CLKGDV is even

<sup>§</sup> FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX and BFSR is inverted before being used internally.

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

Table 5-28. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)<sup>†</sup>

|                             |                                         | MASTER          |     | SLAVE   |  | UNIT |
|-----------------------------|-----------------------------------------|-----------------|-----|---------|--|------|
|                             |                                         | MIN MAX MIN MAX | MAX | UNIT    |  |      |
| t <sub>su(BDRV-BCKXH)</sub> | Setup time, BDR valid before BCLKX high | 14              |     | 2 – 12H |  | ns   |
| t <sub>h(BCKXH-BDRV)</sub>  | Hold time, BDR valid after BCLKX high   | 6               |     | 5 + 12H |  | ns   |
| t <sub>su(BFXL-BCKXH)</sub> | Setup time, BFSX low before BCLKX high  |                 |     | 12      |  | ns   |
| t <sub>c(BCKX)</sub>        | Cycle time, BCLKX                       | 12H             |     | 32H     |  | ns   |

<sup>†</sup> For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

Table 5-29. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)<sup>†</sup>

|                               | PARAMETER                                                               |       | MASTER <sup>‡</sup> |        | SLAVE    |      |
|-------------------------------|-------------------------------------------------------------------------|-------|---------------------|--------|----------|------|
| PARAMETER                     |                                                                         | MIN   | MAX                 | MIN    | MAX      | UNIT |
| t <sub>h(BCKXL-BFXL)</sub>    | Hold time, BFSX low after BCLKX low§                                    | C – 5 | C + 6               |        |          | ns   |
| t <sub>d(BFXL-BCKXH)</sub>    | Delay time, BFSX low to BCLKX high <sup>¶</sup>                         | T – 7 | T +5                |        |          | ns   |
| t <sub>d(BCKXL-BDXV)</sub>    | Delay time, BCLKX low to BDX valid                                      | -4    | 8                   | 6H +3  | 10H + 17 | ns   |
| t <sub>dis(BCKXL-BDXHZ)</sub> | Disable time, BDX high impedance following last data bit from BCLKX low | -4    | 6                   | 6H +1  | 10H + 19 | ns   |
| t <sub>d(BFXL-BDXV)</sub>     | Delay time, BFSX low to BDX valid                                       | D – 4 | D +6                | 4H – 4 | 8H + 19  | ns   |

<sup>†</sup> For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (BCLKX).

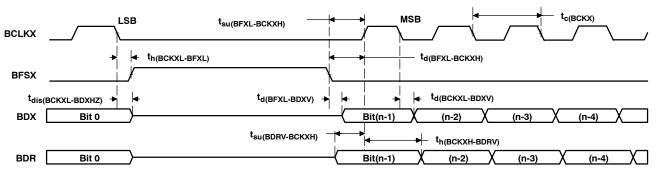



Figure 5-25. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0

<sup>&</sup>lt;sup>‡</sup>T = BCLKX period = (1 + CLKGDV) \* 2H

C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) \* 2H when CLKGDV is even

D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) \* 2H when CLKGDV is even

<sup>§</sup> FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX and BFSR is inverted before being used internally.

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

Table 5-30. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)<sup>†</sup>

|                             |                                         | MASTER |     | SLAVE   |     | UNIT |
|-----------------------------|-----------------------------------------|--------|-----|---------|-----|------|
|                             |                                         | MIN    | MAX | MIN     | MAX | UNII |
| t <sub>su(BDRV-BCKXH)</sub> | Setup time, BDR valid before BCLKX high | 14     |     | 2 – 12H |     | ns   |
| t <sub>h(BCKXH-BDRV)</sub>  | Hold time, BDR valid after BCLKX high   | 6      |     | 5 + 12H |     | ns   |
| t <sub>su(BFXL-BCKXL)</sub> | Setup time, BFSX low before BCLKX low   |        |     | 12      |     | ns   |
| t <sub>c(BCKX)</sub>        | Cycle time, BCLKX                       | 12H    |     | 32H     |     | ns   |

<sup>&</sup>lt;sup>†</sup> For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

Table 5-31. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)<sup>†</sup>

| MAST  | ΓER <sup>‡</sup> | SI      | A) /=    |                |
|-------|------------------|---------|----------|----------------|
|       |                  | SLAVE   |          | UNIT           |
| MIN   | MAX              | MIN     | MAX      | UNII           |
| T – 5 | T + 6            |         |          | ns             |
| D – 7 | D + 5            |         |          | ns             |
| -4    | 8                | 6H + 3  | 10H + 17 | ns             |
| D – 4 | D + 5            |         |          | ns             |
|       |                  | 2H + 2  | 6H + 19  | ns             |
|       |                  | 4H – 4  | 8H + 19  | ns             |
| _     | D - 4            | D-4 D+5 |          | 2H + 2 6H + 19 |

<sup>&</sup>lt;sup>†</sup> For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (BCLKX).

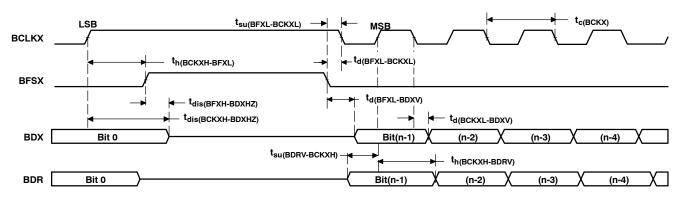



Figure 5-26. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1

<sup>&</sup>lt;sup>‡</sup>T = BCLKX period = (1 + CLKGDV) \* 2H

D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) \* 2H when CLKGDV is even

<sup>§</sup> FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX and BFSR is inverted before being used internally.

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

Table 5-32. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)<sup>†</sup>

|                             |                                        | MASTER |     | SLAVE   |     | UNIT |
|-----------------------------|----------------------------------------|--------|-----|---------|-----|------|
|                             |                                        | MIN    | MAX | MIN     | MAX | UNII |
| t <sub>su(BDRV-BCKXL)</sub> | Setup time, BDR valid before BCLKX low | 11     |     | – 12H   |     | ns   |
| t <sub>h(BCKXL-BDRV)</sub>  | Hold time, BDR valid after BCLKX low   | 2      |     | 5 + 12H |     | ns   |
| t <sub>su(BFXL-BCKXL)</sub> | Setup time, BFSX low before BCLKX low  |        |     | 12      |     | ns   |
| t <sub>c(BCKX)</sub>        | Cycle time, BCLKX                      | 12H    |     | 32H     |     | ns   |

<sup>†</sup> For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

Table 5-33. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)<sup>†</sup>

|                                | DADAMETED                                                                | MAS   | MASTER <sup>‡</sup> |        | SLAVE    |      |
|--------------------------------|--------------------------------------------------------------------------|-------|---------------------|--------|----------|------|
| PARAMETER                      |                                                                          | MIN   | MAX                 | MIN    | MAX      | UNIT |
| t <sub>h(BCKXH-BFXL)</sub>     | Hold time, BFSX low after BCLKX high§                                    | D – 5 | D + 6               |        |          | ns   |
| t <sub>d(BFXL-BCKXL)</sub>     | Delay time, BFSX low to BCLKX low <sup>¶</sup>                           | T – 7 | T + 5               |        |          | ns   |
| t <sub>d(BCKXH-BDXV)</sub>     | Delay time, BCLKX high to BDX valid                                      | -4    | 8                   | 6H + 3 | 10H + 17 | ns   |
| t <sub>dis</sub> (BCKXH-BDXHZ) | Disable time, BDX high impedance following last data bit from BCLKX high | -4    | 6                   | 6H + 1 | 10H + 19 | ns   |
| t <sub>d(BFXL-BDXV)</sub>      | Delay time, BFSX low to BDX valid                                        | C – 4 | C + 6               | 4H – 4 | 8H + 19  | ns   |

<sup>&</sup>lt;sup>†</sup> For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (BCLKX).

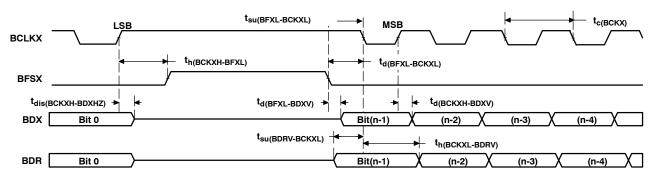



Figure 5-27. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1

<sup>&</sup>lt;sup>‡</sup> T = BCLKX period = (1 + CLKGDV) \* 2H

C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) \* 2H when CLKGDV is even

D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) \* 2H when CLKGDV is even

<sup>§</sup> FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX and BFSR is inverted before being used internally.

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

#### 5.15 Host-Port Interface (HPI8) Timing

Table 5–34 and Table 5–35 assume testing over recommended operating conditions and H = 0.5 \* processor clock (see Figure 5–28 through Figure 5–31). In the following tables, DS refers to the logical OR of  $\overline{\text{HCS}}$ ,  $\overline{\text{HDS1}}$ , and  $\overline{\text{HDS2}}$ ; HDx refers to any of the HPI data bus pins (HD0, HD1, HD2, etc.); and  $\overline{\text{HAD}}$  stands for HCNTL0, HCNTL1, and HR/ $\overline{\text{W}}$ .

Table 5-34. HPI8 Timing Requirements<sup>†</sup>

|                           |                                                                                         | MIN | MAX | UNIT |
|---------------------------|-----------------------------------------------------------------------------------------|-----|-----|------|
| t <sub>su(HBV-DSL)</sub>  | Setup time, HBIL and HAD valid before DS low or before HAS low <sup>‡§</sup>            | 7   |     | ns   |
| t <sub>h(DSL-HBV)</sub>   | Hold time, HBIL and HAD valid after DS low or after HAS low <sup>‡§</sup>               | 7   |     | ns   |
| t <sub>su(HSL-DSL)</sub>  | Setup time, HAS low before DS low                                                       | 12  |     | ns   |
| t <sub>w(DSL)</sub>       | Pulse duration, DS low                                                                  | 20  |     | ns   |
| t <sub>w(DSH)</sub>       | Pulse duration, DS high                                                                 | 10  |     | ns   |
| t <sub>su(HDV-DSH)</sub>  | Setup time, HDx valid before DS high, HPI write                                         | 4   |     | ns   |
| t <sub>h(DSH-HDV)W</sub>  | Hold time, HDx valid after DS high, HPI write                                           | 5   |     | ns   |
| t <sub>su(GPIO-COH)</sub> | Setup time, HDx input valid before CLKOUT high, HDx configured as general-purpose input | 8   |     | ns   |
| t <sub>h(GPIO-COH)</sub>  | Hold time, HDx input valid after CLKOUT high, HDx configured as general-purpose input   | 2   |     | ns   |

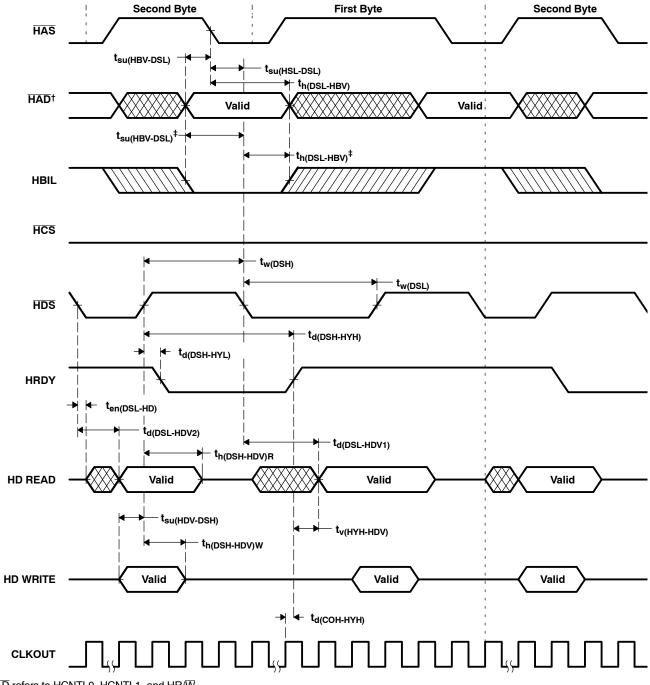
<sup>&</sup>lt;sup>†</sup> GPIO refers to the HD pins when they are configured as general-purpose input/outputs.

<sup>&</sup>lt;sup>‡</sup> HAD refers to HCNTL0, HCNTL1, and H/RW.

<sup>§</sup> When the HAS signal is used to latch the control signals, this timing refers to the falling edge of the HAS signal. Otherwise, when HAS is not used (always high), this timing refers to the falling edge of DS.

#### Table 5-35. HPI8 Switching Characteristics

|                           | PARAMETER                                                      |                                                                                                          | MIN                          | MAX                          | UNIT |  |
|---------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------|--|
| t <sub>en(DSL-HD)</sub>   | Enable time, HD driven from DS low                             |                                                                                                          | 0                            | 18                           | ns   |  |
|                           |                                                                | Case 1a: Memory accesses when DMAC is active in 16-bit mode and $t_{w(DSH)}$ < $18H^{\dagger}$           |                              | 18H+18 – t <sub>w(DSH)</sub> |      |  |
|                           |                                                                | Case 1b: Memory accesses when DMAC is active in 16-bit mode and $t_{w(DSH)} \geq 18 H^{\dagger}$         |                              | 18                           |      |  |
| t <sub>d(DSL</sub> -HDV1) | Delay time, DS low to HDx valid for first                      | Case 1c: Memory access when DMAC is active in 32-bit mode and $$t_{\rm w(DSH)}$$ < $26{\rm H}^{\dagger}$ |                              | 26H+18 – t <sub>w(DSH)</sub> | ns   |  |
|                           | is<br>t,                                                       | Case 1d: Memory access when DMAC is active in 32-bit mode and $t_{w(DSH)} \geq 26H^{\dagger}$            |                              | 18                           | 115  |  |
|                           |                                                                | Case 2a: Memory accesses when DMAC is inactive and $t_{w(DSH)} < 10H^{\dagger}$                          | 10H+18 - t <sub>w(DSH)</sub> |                              |      |  |
|                           |                                                                | Case 2b: Memory accesses when DMAC is inactive and $t_{w(DSH)} \ge 10H^{\dagger}$                        |                              |                              |      |  |
|                           |                                                                | Case 3: Register accesses                                                                                |                              | 18                           |      |  |
| t <sub>d(DSL-HDV2)</sub>  | Delay time, DS low to HDx valid for second byte of an HPI read |                                                                                                          |                              | 18                           |      |  |
| t <sub>h(DSH-HDV)R</sub>  | Hold time, HDx valid after DS high, for a                      | HPI read                                                                                                 | 1                            | 7                            | ns   |  |
| t <sub>v(HYH-HDV)</sub>   | Valid time, HDx valid after HRDY high                          |                                                                                                          |                              | 11                           |      |  |
| t <sub>d(DSH-HYL)</sub>   | Delay time, DS high to HRDY low (see N                         | ote 1)                                                                                                   |                              | 18                           | ns   |  |
|                           |                                                                | Case 1a: Memory accesses when DMAC is active in 16-bit mode <sup>†</sup>                                 |                              | 18H+18                       | ns   |  |
|                           |                                                                | Case 1b: Memory accesses when DMAC is active in 32-bit mode <sup>†</sup>                                 |                              | 26H+18                       | ns   |  |
| t <sub>d(DSH-HYH)</sub>   | Delay time, DS high to HRDY high                               | Case 2: Memory accesses when DMAC is inactive <sup>†</sup>                                               |                              | 10H+18                       |      |  |
|                           | Case 3: Write accesses to HPIC register (see Note 2)           |                                                                                                          |                              | 6H+18                        | ns   |  |
| t <sub>d(HCS-HRDY)</sub>  | HRDY) Delay time, HCS low/high to HRDY low/high                |                                                                                                          | 18                           |                              | ns   |  |
| t <sub>d(COH-HYH)</sub>   | Delay time, CLKOUT high to HRDY high                           | ŭ                                                                                                        |                              | 5                            | ns   |  |
| t <sub>d(COH-HTX)</sub>   | Delay time, CLKOUT high to HINT chang                          | ge                                                                                                       |                              | 7                            | ns   |  |
| t <sub>d(COH-GPIO)</sub>  | Delay time, CLKOUT high to HDx ou general-purpose output.‡     | ttput change. HDx is configured as a                                                                     |                              | 8                            | ns   |  |




NOTES: 1. The HRDY output is always high when the HCS input is high, regardless of DS timings.

2. This timing applies to the first byte of an access, when writing a one to the DSPINT bit or HINT bit of the HPIC register. All other writes to the HPIC occur asynchronoulsy, and do not cause HRDY to be deasserted.

<sup>†</sup> DMAC stands for direct memory access (DMA) controller. The HPI8 shares the internal DMA bus with the DMAC, thus HPI8 access times are affected by DMAC activity.

<sup>&</sup>lt;sup>‡</sup> GPIO refers to the HD pins when they are configured as general-purpose input/outputs.



 $<sup>^{\</sup>dagger}$   $\overline{\text{HAD}}$  refers to HCNTL0, HCNTL1, and HR/ $\overline{\text{W}}.$ 

Figure 5-28. Using HDS to Control Accesses (HCS Always Low)

<sup>&</sup>lt;sup>‡</sup> When HAS is not used (HAS always high)

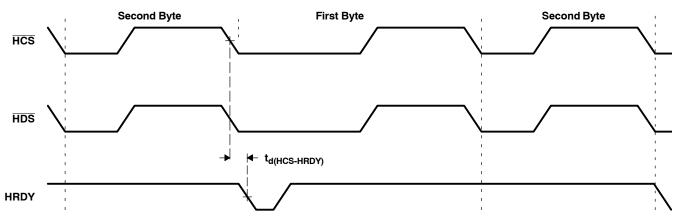



Figure 5-29. Using HCS to Control Accesses

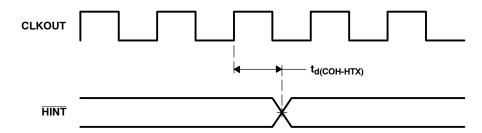
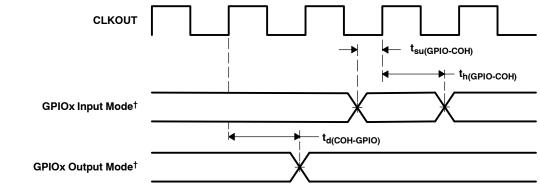
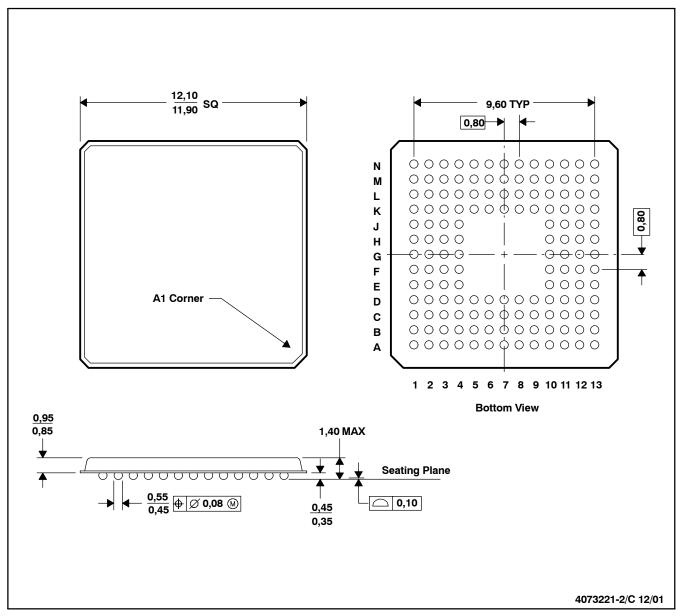




Figure 5–30. HINT Timing



<sup>†</sup> GPIOx refers to HD0, HD1, HD2, ...HD7, when the HD bus is configured for general-purpose input/output (I/O).


Figure 5–31. GPIOx<sup>†</sup> Timings

#### 6 Mechanical Data

#### 6.1 Ball Grid Array Mechanical Data

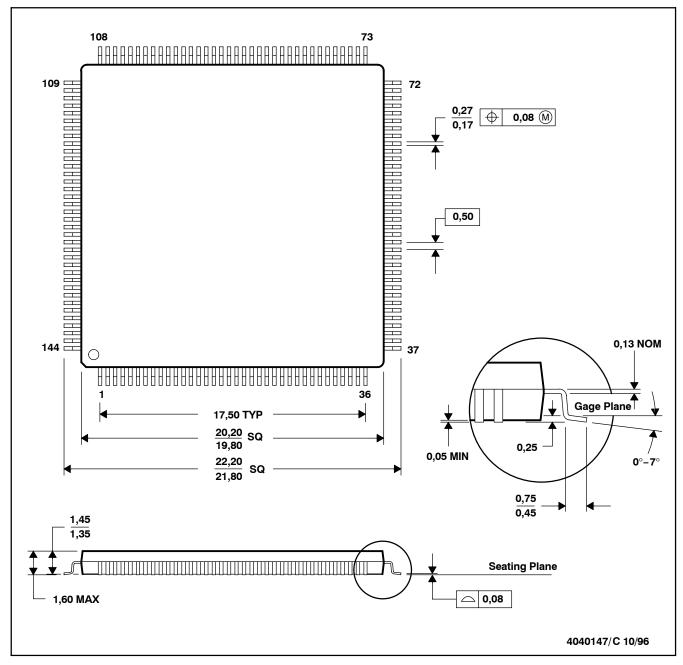
GGU (S-PBGA-N144)

#### **PLASTIC BALL GRID ARRAY**



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice
- C. MicroStar BGA™ configuration


Figure 6-1. TMS320VC5401 144-Ball MicroStar BGA™ Plastic Ball Grid Array Package

MicroStar BGA is a trademark of Texas Instruments.



# **6.2 Low-Profile Quad Flatpack Mechanical Data** PGE (S-PQFP-G144)

#### PLASTIC QUAD FLATPACK



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-026

Figure 6-2. TMS320VC5401 144-Pin Low-Profile Quad Flatpack

## Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com