SPRS098 - DECEMBER 1999

- 200-MIPS Dual-Core DSP Consisting of Two Independent Subsystems
- Each Core Has an Advanced Multibus Architecture With Three Separate 16-Bit Data Memory Buses and One Program Bus
- 40-Bit Arithmetic Logic Unit (ALU)
 Including a 40-Bit Barrel-Shifter and Two
 40-Bit Accumulators Per Core
- Each Core Has a 17-Bit × 17-Bit Parallel Multiplier Coupled to a 40-Bit Adder for Non-Pipelined Single-Cycle Multiply/ Accumulate (MAC) Operations
- Each Core Has a Compare, Select, and Store Unit (CSSU) for the Add/Compare Selection of the Viterbi Operator
- Each Core Has an Exponent Encoder to Compute an Exponent Value of a 40-Bit Accumulator Value in a Single Cycle
- Each Core Has Two Address Generators With Eight Auxiliary Registers and Two Auxiliary Register Arithmetic Units (ARAUs)
- 16-Bit Data Bus With Data Bus Holder Feature
- 512K-Word × 16-Bit Extended Program Address Space
- Total of 256K-Word × 16-Bit Dual- and Single-Access On-Chip RAM (128K-Word x 16-Bit Shared Memory)
- Single-Instruction Repeat and Block-Repeat Operations
- Instructions With 32-Bit-Long Word Operands
- Instructions With 2 or 3 Operand Reads
- Fast Return From Interrupts
- Arithmetic Instructions With Parallel Store and Parallel Load

- Conditional Store Instructions
- Output Control of CLKOUT
- Output Control of TOUT
- Power Consumption Control With IDLE1, IDLE2, and IDLE3 Instructions
- Dual 1.8-V (Core) and 3.3-V (I/O) Power Supplies for Low-Power, Fast Operations
- 10-ns Single-Cycle Fixed-Point Instruction
- Interprocessor Communication via Two Internal 8-Element FIFOs
- Twelve Channels of Direct Memory Access (DMA) for Data Transfers With No CPU Loading (Six Channels Per Subsystem With External Access)
- Six Multichannel Buffered Serial Ports (McBSPs) With 128-Channel Selection Capability (3 McBSPs per Subsystem)
- 16-Bit Host-Port Interface (HPI) Multiplexed With External Memory Interface Pins
- Software-Programmable Phase-Locked Loop (APLL) Provides Several Clocking Options (Requires External TTL Oscillator)
- Includes JTAG Functionality for In-Circuit Emulation
- On-Chip Scan-Based Emulation Logic, IEEE Standard 1149-1[†] (JTAG) Boundary-Scan Logic
- Two Software-Programmable Timers (One Per Subsystem)
- Software-Programmable Wait-State Generator (14 Wait States Maximum)
- Provided in 144-pin MicroStar™ Ball Grid Array (GGU Suffix) and 144-pin Thin Quad Flatpack (TQFP) (PGE Suffix) Packages

description

The TMS320VC5421 fixed-point digital signal processor (DSP) is a dual-core solution running at 200-MIPS performance. The '5421 consists of two DSP subsystems capable of core-to-core communications and a 128K-word zero-wait-state on-chip program memory shared by the two DSP subsystems. Each subsystem consists of one '54x DSP core, 32K-word program/data DARAM, 32K-word data SARAM, 2K-word ROM, three multichannel serial interfaces, xDMA logic, one timer, one APLL, and other miscellaneous circuitry.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

MicroStar is a trademark of Texas Instruments Incorporated.

† IEEE Standard 1149.1-1990, IEEE Standard Test-Access Port and Boundary Scan Architecture.

SPRS098 - DECEMBER 1999

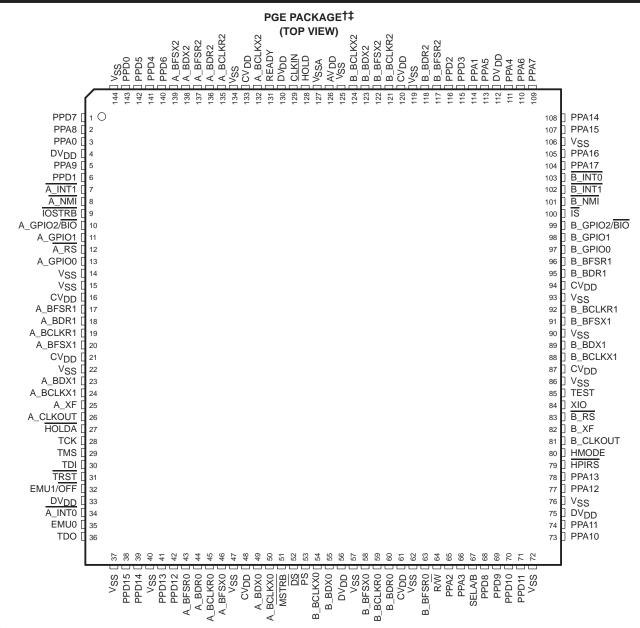
description (continued)

The '5421 also contains a host-port interface (HPI) that allows the '5421 to be viewed as a memory-mapped peripheral to a host processor. The '5421 is pin-compatible with the TMS320VC5420.

Each subsystem has its separate program and data spaces, allowing simultaneous accesses to program instructions and data. Two read operations and one write operation can be performed in one cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. Furthermore, data can be transferred between program and data spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The '5421 includes the control mechanisms to manage interrupts, repeated operations, and function calls. In addition, the '5421 has 128K words of on-chip program memory that can be shared between the two subsystems.

The '5421 is intended as a high-performance, low-cost, high-density DSP for remote data access or voice-over IP subsystems. It is designed to maintain the current modem architecture with minimal hardware and software impacts, thus maximizing reuse of existing modem technologies and development efforts.

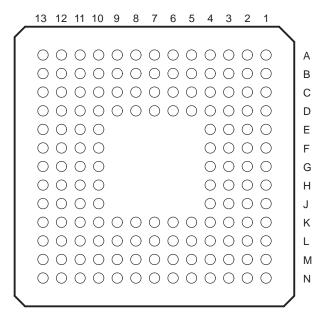
NOTE: This data sheet is designed to be used in conjunction with the *TMS320C5000 DSP Family Functional Overview* (literature number SPRU307).


migration from the '5420 to the '5421

Customers who are migrating from the '5420 to the '5421 need to take into account the following differences between the two devices.

- The memory structure of the '5421 has been changed to incorporate 128K x 16-bit words of shared memory.
- The DMA of the '5421 has been enhanced to provide access to external, as well as internal memory.
- The HPI and DMA memory maps have been changed to incorporate the new memory '5421.
- 2K x 16-bit words of ROM have been added to the '5421 for bootloading purposes only.
- The VCO pin on the '5420 has been replaced with the HOLDA pin on the '5421 and the HOLD pin was added to the '5421 at a previously unused pin location.
- The McBSPs have been updated with a new mode that allows 128-channel selection capability.
- McBSP CLKX/R pins can be used as inputs to internal clock rate generator for CLKS-like function without the penalty of extra pins.
- The SELA/B pin on '5421 is changed to type I/O/Z for added functionality.

NOTE: For more detailed information, see the 5420 to 5421 migration issues document .



[†] DV_{DD} is the power supply for the I/O pins while CV_{DD} is the power supply for the core CPU. V_{SS} is the ground for both the I/O pins and the core CPU.

The TMS320VC5421PGE 144-pin thin quad flatpack (TQFP) is footprint- and pin-compatible with the '5420.

[‡] Pin configuration shown for nonmultiplexed mode only. See the pin assignments table for the TMS320VC5421PGE for multiplexed functions of specific pins and for specific pin numbers.

GGU PACKAGE (BOTTOM VIEW)

The pin assignments table for the TMS320VC5421GGU lists each pin name and its associated pin number for this 144-pin ball grid array (BGA) package, which is footprint- and pin-compatible with the '5420.

The signal descriptions table lists each pin name, function, and operating mode(s) for the '5421 device.

ADVANCE INFORMATION

Pin Assignments for the TMS320VC5421PGE (144-Pin Thin Quad Flatpack)

SIGNAL NAME (NONMULTIPLEXED)	SIGNAL NAME (MULTIPLEXED)	PIN NO.	SIGNAL NAME (NONMULTIPLEXED)	SIGNAL NAME (MULTIPLEXED)	PIN NO.	
PPD7	HD7	1	PPA8	HA8	2	
PPA9	HA9	5	PPD1	HD1	6	
ĪOSTRB	A_GPIO3/A_TOUT	9	A_GPIO2/BIO		10	
A_GPIO0	A_ROMEN	13	V _{SS}		14	
A_BFSR1		17	A_BDR1		18	
CV _{DD}		21	V _{SS}		22	
A_XF		25	A_CLKOUT		26	
TMS		29	TDI		30	
DV _{DD}		33	A_INT0		34	
V _{SS}		37	PPD15	HD15	38	
PPD13	HD13	41	PPD12	HD12	42	
A_BCLKR0		45	A_BFSX0		46	
A_BDX0		49	A_BCLKX0		50	
PS	HDS1	53	B_BCLKX0		54	
V _{SS}		57	B_BFSX0		58	
CV _{DD}		61	V _{SS}		62	
PPA2	HCNTL1/HA2	65	PPA3	HCNTL0/HA3	66	
PPD9	HD9	69	PPD10	HD10	70	
PPA10	HA10	73	PPA11	HA11	74	
PPA12	HA12	77	PPA13	HA13	78	
B_CLKOUT		81	B_XF		82	
TEST		85	V _{SS}		86	
B_BDX1		89	V _{SS}		90	
V _{SS}		93	CV _{DD}		94	
B_GPIO0	B_ROMEN	97	B_GPIO1		98	
B_NMI		101	B_INT1		102	
PPA16	HA16	105	V _{SS}		106	
PPA7	HA7	109	PPA6	HA6	110	
PPA5	HA5	113	PPA1	B_HINT/HA1	114	
B_BFSR2		117	B_BDR2		118	
B_BCLKR2		121	B_BFSX2		122	
V _{SS}		125	AV _{DD}		126	
CLKIN		129	DV_DD		130	
CV _{DD}		133	V _{SS}		134	
A_BFSR2		137	A_BDX2		138	
PPD4	HD4	141	PPD5	HD5	142	

Pin Assignments for the TMS320VC5421PGE (144-Pin Thin Quad Flatpack) (Continued)

SIGNAL NAME (NONMULTIPLEXED)	SIGNAL NAME (MULTIPLEXED)	PIN NO.	SIGNAL NAME (NONMULTIPLEXED)	SIGNAL NAME (MULTIPLEXED)	PIN NO.
PPA0	A_HINT/HA0	3	DV _{DD}		4
A_INT1		7	A_NMI		8
A_GPIO1		11	A_RS		12
V _{SS}		15	CV _{DD}		16
A_BCLKR1		19	A_BFSX1		20
A_BDX1		23	A_BCLKX1		24
HOLDA		27	TCK		28
TRST		31	EMU1/OFF		32
EMU0		35	TDO		36
PPD14	HD14	39	V _{SS}		40
A_BFSR0		43	A_BDR0		44
VSS		47	CV _{DD}		48
MSTRB	HCS	51	DS	HDS2	52
B_BDX0		55	DV _{DD}		56
B_BCLKR0		59	B_BDR0		60
B_BFSR0		63	R/W	HR/W	64
SELA/B	PPA18	67	PPD8	HD8	68
PPD11	HD11	71	Vss		72
DV_DD		75	Vss		76
HPIRS		79	HMODE		80
B_RS		83	XIO		84
CV _{DD}		87	B_BCLKX1		88
B_BFSX1		91	B_BCLKR1		92
B_BDR1		95	B_BFSR1		96
B_GPIO2/BIO		99	ĪS	B_GPIO3/B_TOUT	100
B_INT0		103	PPA17	HA17	104
PPA15	HA15	107	PPA14	HA14	108
PPA4	HAS/HA4	111	DV _{DD}		112
PPD3	HD3	115	PPD2	HD2	116
VSS		119	CV _{DD}		120
B_BDX2		123	B_BCLKX2		124
VSSA		127	HOLD		128
READY	HRDY	131	A_BCLKX2		132
A_BCLKR2		135	A_BDR2		136
A_BFSX2		139	PPD6	HD6	140
PPD0	HD0	143	Vss		144

ADVANCE INFORMATION

Pin Assignments for the TMS320VC5421GGU (144-Pin MicroStar Ball Grid Array)

SIGNAL NAME (NONMULTIPLEXED)	SIGNAL NAME (MULTIPLEXED)	BALL NO.	SIGNAL NAME (NONMULTIPLEXED)	SIGNAL NAME (MULTIPLEXED)	BALL NO.
PPD7	HD7	A1	PPA8	HA8	B1
A_RS		E1	CV _{DD}		F1
A_XF		J1	TMS		K1
V _{SS}		N1	PPD0	HD0	A2
A_INT1		D2	A_GPIO1		E2
V _{SS}		H2	A_CLKOUT		J2
TDO		M2	PPD15	HD15	N2
PPD5	HD5	C3	PPD1	HD1	D3
A_BCLKR1		G3	A_BDX1		H3
A_INT0		L3	PPD14	HD14	M3
A_BDX2		B4	A_BFSX2		C4
A_GPIO0	A_ROMEN	F4	A_BFSX1		G4
PPD13	HD13	K4	PPD12	HD12	L4
CV _{DD}		A5	V _{SS}		B5
A_BCLKR0		K5	A_BFSX0		L5
CLKIN		A6	DV _{DD}		B6
A_BDX0		K6	A_BCLKX0		L6
AV _{DD}		A7	V _{SS}		В7
DV _{DD}		K7	B_BDX0		L7
B_BCLKX2		A8	B_BDX2		B8
B_BDR0		K8	B_BCLKR0		L8
CV _{DD}		A9	V _{SS}		B9
R/W	HR/W	K9	B_BFSR0		L9
PPD2	HD2	A10	PPD3	HD3	B10
ĪS	B_GPIO3/B_TOUT	E10	B_BFSR1		F10
B_CLKOUT		J10	PPA12	HA12	K10
PPA2	HCNTL1/HA2	N10	DV _{DD}		A11
B_INT0		D11	B_GPIO2/BIO		E11
V _{SS}		H11	B_XF		J11
PPD9	HD9	M11	PPD8	HD8	N11
PPA16	HA16	C12	B_INT1		D12
B_BDX1		G12	CV _{DD}		H12
DV_DD		L12	V _{SS}		M12
PPA15	HA15	B13	PPA17	HA17	C13
V _{SS}		F13	V _{SS}		G13
HMODE		K13	V _{SS}		L13

Pin Assignments for the TMS320VC5421GGU (144-Pin MicroStar Ball Grid Array) (Continued)

SIGNAL NAME (NONMULTIPLEXED)			SIGNAL NAME (NONMULTIPLEXED)	SIGNAL NAME (MULTIPLEXED)	BALL NO.	
DV _{DD}		C1	A_NMI		D1	
A_BDR1		G1	CV _{DD}		H1	
EMU1/OFF		L1	EMU0		M1	
V _{SS}		B2	PPA0	A_HINT/HA0	C2	
V _{SS}		F2	A_BFSR1		G2	
TDI		K2	DV _{DD}		L2	
PPD6	HD6	А3	PPD4	HD4	В3	
A_GPIO2/BIO		E3	V _{SS}		F3	
HOLDA		J3	TRST		K3	
V _{SS}		N3	A_BFSR2		A4	
PPA9	HA9	D4	IOSTRB	A_GPIO3/A_TOUT	E4	
A_BCLKX1		H4	тск		J4	
A_BFSR0		M4	A_BDR0		N4	
A_BCLKR2		C5	A_BDR2		D5	
V _{SS}		M5	CV _{DD}		N5	
READY	HRDY	C6	A_BCLKX2		D6	
MSTRB	HCS	M6	DS	HDS2	N6	
VSSA		C7	HOLD		D7	
PS	HDS1	M7	B_BCLKX0		N7	
B_BFSX2		C8	B_BCLKR2		D8	
B_BFSX0		M8	V _{SS}		N8	
B_BDR2		C9	B_BFSR2		D9	
V _{SS}		M9	CV _{DD}		N9	
PPA1	B_HINT/HA1	C10	PPA5	HA5	D10	
B_BCLKR1		G10	TEST		H10	
SELA/B	PPA18	L10	PPA3	HCNTL0/HA3	M10	
PPA4	HAS/HA4	B11	V _{SS}		C11	
B_BDR1		F11	B_BFSX1		G11	
PPA13	HA13	K11	PPD10	HD10	L11	
PPA6	HA6	A12	PPA14	HA14	B12	
B_GPIO1		E12	CV _{DD}		F12	
B_RS		J12	HPIRS		K12	
PPD11	HD11	N12	PPA7	HA7	A13	
B_NMI		D13	B_GPIO0	B_ROMEN	E13	
B_BCLKX1		H13	XIO		J13	
PPA11	HA11	M13	PPA10	HA10	N13	

Signal Descriptions

NAME	TYPE [†]	DESCRIPTION							
	DATA SIGNALS								
PPA18 (MSB) PPA17 PPA16 PPA15 PPA14 PPA13 PPA12 PPA11 PPA10 PPA9 PPA8 PPA7 PPA6 PPA5 PPA4‡§ PPA3 PPA2 PPA1 PPA0 (LSB)	I/O/Z	Parallel port address bus. The DSP can access the external memory locations by way of the external memory interface using PPA[18:0] in external memory interface (EMIF) mode when the XIO pin is logic high. PPA18 is a secondary output function of the SELA/B pin. The PPA[17:0] pins are also multiplexed with the HPI interface. In HPI mode (XIO pin is low), the external address pins PPA[17:0] are used by a host processor for access to the memory map by way of the on-chip HPI. Refer to the Host-Port Interface (HPI) Signals section of this table for details on the secondary functions of these pins. These pins are placed into the high-impedance state when OFF is low.							
PPD15 (MSB) PPD14 PPD13 PPD12 PPD11 PPD10 PPD9 PPD8 PPD7 PPD6 PPD5 PPD4 PPD3 PPD2 PPD1 PPD0 (LSB)	I/O/Z¶	Parallel port data bus. The DSP uses this bidirectional data bus to access external memory when the device is in external memory interface (EMIF) mode (the XIO pin is logic high). This data bus is also multiplexed with the 16-bit HPI data bus. When in HPI mode, the bus is used to transfer data between the host processor and internal DSP memory via the HPI. Refer to the HPI section of this table for details on the secondary functions of these pins. The data bus includes bus holders to reduce power dissipation caused by floating, unused pins. The bus holders also eliminate the need for external pullup resistors on unused pins. When the data bus is not being driven by the '5421, the bus holders keep data pins at the last driven logic level. The data bus keepers are disabled at reset and can be enabled/disabled via the BH bit of the BSCR register. These pins are placed into high-impedance state when OFF is low.							
		INITIALIZATION, INTERRUPT, AND RESET OPERATIONS							
A_INTO\$ B_INTO\$ A_INT1\$ B_INT1\$	I	External user interrupts. A_INT0-B_INT0 are prioritized and are maskable by the interrupt mask register (IMR) and the interrupt mode bit. A_INT1 -B_INT1 can be polled and reset by way of the interrupt flag register (IFR).							
A_NMI\$ B_NMI\$	I	Nonmaskable interrupt. NMI is an external interrupt that cannot be masked by way of the INTM or the IMR. When NMI is activated, the processor traps to the appropriate vector location.							
A_RS B_RS§	I	Reset. $\overline{\text{RS}}$ causes the digital signal processor (DSP) to terminate execution and causes a reinitialization of the CPU and peripherals. When $\overline{\text{RS}}$ is brought to a high level, execution begins at location 0FF80h of program memory. $\overline{\text{RS}}$ affects various registers and status bits.							

[†] I = Input, O = Output, S = Supply, Z = High Impedance

[‡] This pin has an internal pullup resistor.

[§] These pins are Schmitt triggered inputs.

This pin has an internal bus holder controlled by way of the BSCR register in 54x cLEAD core of DSP subsystem A .

[#] This pin is used by Texas Instruments for device testing and should be left unconnected.

^{||} This pin has an internal pulldown resistor.

NAME	TYPE†			DESCRIPTION		
	INITIA	ALIZATION, INT	ERRU	PT, AND RESET OPERATIONS (CONTINUED)		
XIO	ı	The XIO pin is used to configure the parallel port as a host-port interface (HPI mode when XIO pin is low) or as an asynchronous memory interface (EMIF mode when XIO pin is high).				
				XIO pin level determines the initialization value of the MP/MC bit (a bit in the us (PMST) register). Refer to the memory section for details.		
		1	GENE	RAL-PURPOSE I/O PINS		
A_XF B_XF	O/Z			(latched software-programmable output-only signal). Bit-addressable. A_XF and by the high-impedance state when OFF is low.		
A_GPIO0 B_GPIO0	I/O/Z	A_ROMEN B_ROMEN	1	General-purpose I/O pins. The secondary function of these pins. In XIO mode, the ROM enable (ROMEN) pins are used to enable the applicable on-chip ROM after reset.		
A_GPIO1 B_GPIO1	I/O/Z	writing into the	GPIO	pins (software-programmable I/O signal). Values can be latched (output) by register. The states of GPIO pins (inputs) can be read by reading the GPIO irection is also programmable by way of the DIRn field in the GPIO register.		
A_GPIO2/ <u>BIO</u> B_GPIO2/BIO	I/O/Z	operate as the	traditi	. These pins can be configured like GPIO0–GPIO1; however, as an input, the pins onal branch control bit (BIO). If application code does not perform BIO-conditional ns operate as general inputs.		
		PRIMARY				
A_GPIO3 (A_TOUT)	1/O/Z	ĪOSTRB	0	When the device is in HPI mode and HMODE = 0 (multiplexed), these pins act according to the general-purpose I/O control register. TOUT bit must be set to "1" to drive the timer output on the pin. IF TOUT = 0, then these pins are		
B_GPIO3 (B_TOUT)		ĪS		general-purpose I/Os. In EMIF mode (XIO = 1), these signals are active during I/O space accesses.		
		I	MEMO	DRY CONTROL SIGNALS		
PS‡§		Program space pin is placed in	selector selector the	et signal. The PS signal is asserted during external program space accesses. This high-impedance state when OFF is low.		
		Refer to the HF	PI sec	lexed with the HPI, and functions as the HDS1 data strobe input signal in HPI mode. tion of this table for details on the secondary function of this pin.		
<u>DS</u> ‡§		Data space select signal. The $\overline{\text{DS}}$ signal is asserted during external data space accesses. This pin is placed into the high-impedance state when $\overline{\text{OFF}}$ is low.				
5010	O/Z	This pin is also multiplexed with the HPI, and functions as the HDS2 data strobe input signal in HPI mode. Refer to the HPI section of this table for details on the secondary function of this pin.				
				al. The IS signal is asserted during external I/O space accesses. This pin is placed nce state when OFF is low.		
ĪS		(B_TOUT) inpu	ıt/outp	tiplexed with the general-purpose I/O feature, and functions as the B_GPIO3 but signal in HPI mode. Refer to the General-Purpose I/O section of this table for dary function of this pin.		
MSTRB‡§	O/Z	Program and d		emory strobe (active in EMIF mode). This pin is placed into the high-impedance w.		

 $[\]dagger$ I = Input, O = Output, S = Supply, Z = High Impedance

[‡] This pin has an internal pullup resistor.

[§] These pins are Schmitt triggered inputs.

[¶] This pin has an internal bus holder controlled by way of the BSCR register in 54x cLEAD core of DSP subsystem A .

[#] This pin is used by Texas Instruments for device testing and should be left unconnected.

Il This pin has an internal pulldown resistor.

NAME	TYPE†	DESCRIPTION						
MEMORY CONTROL SIGNALS (CONTINUED)								
READY	1	Data-ready input signal. READY indicates that the external device is prepared for a bus transaction to be completed. If the device is not ready (READY = 0), the processor waits one cycle and checks READY again. The processor performs the READY detection if at least two software wait states are programmed.						
		This pin is also multiplexed with the HPI, and functions as the host-port data ready (output) in HPI mode. Refer to the HPI section of this table for details on the secondary function of this pin.						
_		Read/write output signal. R/W indicates transfer direction during communication to an external device. R/W is normally in the read mode (high), unless it is asserted low when the DSP performs a write operation.						
R/W	O/Z	This pin is also multiplexed with the HPI, and functions as the host-port read/write input in HPI mode. Refer to the HPI section of this table for details on the secondary function of this pin.						
		This pin is placed into the high-impedance state when OFF is low.						
		I/O space memory strobe. External I/O space is accessible by the CPU and not the direct memory access (DMA) controller. The DMA has its own dedicated I/O space that is not accessible by the CPU.						
ĪOSTRB	O/Z	This pin is also multiplexed with the general-purpose I/O feature, and functions as the A_GPIO3 (A_TOUT) signal in HPI mode. Refer to the General Purpose I/O section of this table for details on the secondary function of this pin.						
		This pin is placed into the high-impedance state when OFF is low.						
		PRIMARY						
PPA18	O/Z	For HPI access (XIO=0), SELA/B is an input. See Table 3 for a truth table of SELA/B, HMODE, and XIO pins and functionality. For external memory accesses (XIO=1), SELA/B is multiplexed as output PPA18. See the PPA signal descriptions. These pins are placed into the high-impedance state when OFF is low.						
HOLD‡	ı	Hold. HOLD is asserted to request control of the address, data, and control lines. When acknowledged, these lines go into the high-impedance state.						
HOLDA	O/Z	Hold acknowledge. HOLDA indicates to the external circuitry that the processor is in a hold state and that the address, data, and control lines are in the high-impedance state, allowing them to be available to the external circuitry. HOLDA also goes into the high-impedance state when OFF is low.						
		CLOCKING SIGNALS						
A_CLKOUT B_CLKOUT	O/Z	Master clock output signal. CLKOUT cycles at the machine-cycle rate of the CPU. The internal machine cycle is bounded by the falling edges of this signal. The CLKOUT pin can be turned off by writing a "1" to the CLKOFF bit of the PMST register. CLKOUT goes into the high-impedance state when EMU1/OFF is low.						
CLKIN§	I	Input clock to the device. CLKIN connects to an oscillator circuit/device (PLL).						

 $^{^{\}dagger}$ I = Input, O = Output, S = Supply, Z = High Impedance

[‡] This pin has an internal pullup resistor.

[§] These pins are Schmitt triggered inputs.

[¶] This pin has an internal bus holder controlled by way of the BSCR register in 54x cLEAD core of DSP subsystem A .

[#] This pin is used by Texas Instruments for device testing and should be left unconnected.

^{||} This pin has an internal pulldown resistor.

NAME	TYPET			DESCRIPTION			
	MU	ILTICHANNEL	BUFF	ERED SERIAL PORT 0, 1, AND 2 SIGNALS			
A_BCLKR0‡\$ B_BCLKR0‡\$ A_BCLKR1‡\$ B_BCLKR1‡\$ A_BCLKR2‡\$ B_BCLKR2‡\$	I/O/Z	Receive clocks. BCLKR serves as the serial shift clock for the buffered serial-port receiver. Input f an external clock source for clocking data into the McBSP. When not being used as a clock, these can be used as general-purpose I/O by setting RIOEN = 1. BCLKR can be configured as an output by the way of the CLKRM bit in the PCR register. These pins are placed into the high-impedance state when OFF is low.					
A_BCLKX0‡§ B_BCLKX0‡§ A_BCLKX1‡§ B_BCLKX1‡§ A_BCLKX2‡§ B_BCLKX2‡§	I/O/Z	configured as by way of the general-purp	Transmit clocks. Clock signal used to clock data from the transmit register. This pin can all configured as an input by setting the CLKXM = 0 in the PCR register. BCLKX can be sampled as an by way of the IN1 bit in the SPC register. When not being used as a clock, these pins can be us general-purpose I/O by setting XIOEN = 1. These pins are placed into the high-impedance state when OFF is low.				
A_BDR0 B_BDR0 A_BDR1 B_BDR1 A_BDR2 B_BDR2	ı		Buffered serial data receive (input) pin. When not being used as data-receive pins, these pins coused as general-purpose I/O by setting RIOEN = 1.				
A_BDX0 B_BDX0 A_BDX1 B_BDX1 A_BDX2 B_BDX2	O/Z	Buffered serial-port transmit (output) pin. When not being used as data-transmit pins, these pins car used as general-purpose I/O by setting XIOEN = 1. These pins are placed into the high-impedance so when OFF is low.					
A_BFSR0 B_BFSR0 A_BFSR1 B_BFSR1 A_BFSR2 B_BFSR2	I/O/Z	Frame synchronization pin for buffered serial-port input data. The BFSR pulse initiates the receive-da process over the BDR pin. When not being used as data-receive synchronization pins, these pins c be used as general-purpose I/O by setting RIOEN = 1. These pins are placed into the high-impedan state when OFF is low.					
A_BFSX0 B_BFSX0 A_BFSX1 B_BFSX1 A_BFSX2 B_BFSX2	I/O/Z	Buffered serial-port frame synchronization <u>pin</u> for transmitting data. The BFSX pulse initiates the transmit-data process over the BDX pin. If RS is asserted when BFSX is configured as output, ther BFSX is turned into input mode by the reset operation. When not being used as data-transmi synchronization pins, these pins can be used as <u>general-purpose I/O</u> by setting XIOEN = 1. These pins are placed into the high-impedance state when OFF is low.					
		НО	ST-POR	T INTERFACE (HPI) SIGNALS			
		PRIMAR	Υ				
HA[17:0]	I	PPA[17:0]	These pins are multiplexed with the external interface pins and are used				

[†] I = Input, O = Output, S = Supply, Z = High Impedance

[‡] This pin has an internal pullup resistor.

[§] These pins are Schmitt triggered inputs.

[¶] This pin has an internal bus holder controlled by way of the BSCR register in 54x cLEAD core of DSP subsystem A .

[#] This pin is used by Texas Instruments for device testing and should be left unconnected.

Il This pin has an internal pulldown resistor.

NAME	TYPET	DESCRIPTION					
	RFACE (HPI) SIGNALS (CONTINUED)						
		PRIMAR	RY				
HD[15:0]	I/O/Z	PPD[15:0]	I/O/Z	Parallel bidirectional data bus. These pins are multiplexed with the external interface pins and are used as an HPI interface when XIO = 0. The data bus includes bus holders to reduce power dissipation caused by floating, unused pins. The bus holders also eliminate the need for external pullup resistors on unused pins. When the data bus is not being driven by the '5421, the bus holders keep address pins at the last driven logic level. The data bus keepers are disabled at reset and can be enabled/disabled via the BH bit of the BSCR register.			
				See the PPD signal descriptions. These pins are placed into the high-impedance state when OFF is low.			
HCNTL0 HCNTL1	ı	PPA3 PPA2	O/Z	HPI control inputs. Use PPA3 and PPA2 for the HCNTL0 and HCNTL1 values during the HPI HPIC, HPIA, and HPID reads/writes. Only used in multiplexed address/data mode (HMODE = 0). These pins are shared with the external memory interface and are only used by the HPI when the interface is in HPI mode (XIO pin is low). These pins are placed into the high-impedance state when OFF is low.			
HAS‡§	ı	PPA4‡§	O/Z	Address strobe input. Hosts with multiplexed address and data pins require HAS to latch the address in the HPIA register. This signal is only used in HPI multiplexed address/data mode (HMODE pin is low). This pin is shared with the external memory interface and is only used by the HPI when the interface is in HPI mode (XIO pin is low). This pin is placed into the high-impedance state when OFF is low.			
HCS [‡] §	I	MSTRB‡§	O/Z	HPI chip-select signal. This signal must be active during HPI transfers, and can remain active between concurrent transfers. This pin is shared with the external memory interface and is only used by the HPI when the interface is in HPI mode (XIO pin is low). This pin is placed into the high-impedance state when $\overline{\text{OFF}}$ is low.			
HDS1 [‡] § HDS2 [‡] §	I	<u>PS</u> ‡§ DS‡§	O/Z	HPI data strobes. HDS1 and HDS2 are driven by the host read and write strobes to control HPI transfers. These pins are shared with the external memory interface and are only used by the HPI when the interface is in HPI mode (XIO pin is low). These pins are placed into the high-impedance state when OFF is low.			
HR/W	I	R/W	O/Z	HPI read/write signal. This signal is used by the host to control the direction of an HPI transfer. This pin is shared with the external memory interface and is only used by the HPI when the interface is in HPI mode (XIO pin is low). This pin is placed into the high-impedance state when OFF is low.			
HRDY	O/Z	READY	ı	HPI data-ready output. The ready output informs the host when the HPI is ready for the next transfer. This pin is shared with the external memory interface and is only used by the HPI when the interface is in HPI mode (XIO pin is low). HRDY is placed into the high-impedance state when OFF is low.			

[†] I = Input, O = Output, S = Supply, Z = High Impedance

[‡] This pin has an internal pullup resistor.

[§] These pins are Schmitt triggered inputs.

[¶] This pin has an internal bus holder controlled by way of the BSCR register in 54x cLEAD core of DSP subsystem A .

[#] This pin is used by Texas Instruments for device testing and should be left unconnected.

^{||} This pin has an internal pulldown resistor.

NAME	TYPET		DESCRIPTION				
		HOST-POF	T INTE	RFACE (HPI) SIGNALS (CONTINUED)			
		PRIMAR	RY				
A_HINT B_HINT	O/Z	PPA0 PPA1	O/Z	Host interrupt pin. HPI can interrupt the host by asserting this low. The host can clear this interrupt by writing a "1" to the HINT bit of the HPIC register. Only supported in HPI multiplexed address/data mode (HMODE pin is low). These pins are placed into the high-impedance state when OFF is low.			
HPIRS§	I	Host-port into	erface (H	HPI) reset pin. This signal resets the host port interface and both subsystems.			
HMODE	1	Host mode select. When this pin is low, it selects the HPI multiplexed address/data mode. The multiplexed address/data mode allows hosts with multiplexed address/data lines access to the HPI registers HPIC, HPIA, and HPID. Host-to-DSP and DSP-to-host interrupts are supported in this mode. When HMODE is high, it selects the HPI nonmultiplexed mode. HPI nonmultiplexed mode allows hosts with separate address/data buses to access the HPI address range by way of the 18-bit address bus and the HPI data (HPID) register via the 16-bit data bus. Host-to-DSP and DSP-to-host interrupts are not supported in this mode.					
SUPPLY PINS							
AV _{DD}	S	Dedicated po	ower sup	oply that powers the PLL. AV_{DD} = 1.8 V. AV_{DD} can be connected to CV_{DD} .			
CV _{DD}	S	Dedicated "c	lean" po	wer supply that powers the core CPUs. CV _{DD} = 1.8 V			
DV_DD	S	Dedicated "dirty" power supply that powers the I/O pins. $DV_{DD} = 3.3 \text{ V}$					
V _{SS}	S	Digital ground. Dedicated ground plane for the device.					
VSSA	S		Analog ground. Dedicated ground for the PLL. VSSA can be connected to VSS if digital and analog grounds are not separated.				
				TEST PIN			
TEST#		No connecti	on				
			EN	IULATION/TEST PINS			
TCK‡§	I	test access	oort (TAI elected te	This is normally a free-running clock signal with a 50% duty cycle. Changes on the P) of input signals TMS and TDI are clocked into the TAP controller, instruction est-data register on the rising edge of TCK. Changes at the TAP output signal (TDO) dge of TCK.			
TDI‡	I	Test data inport or data) on a		with an internal pullup device. TDI is clocked into the selected register (instruction dge of TCK.			
TDO	O/Z	TDO is in high	Test data pin. The contents of the selected register is shifted out of TDO on the falling edge of TCK. TDO is in high-impedance state except when the scanning of data is in progress. These pins are placed into high-impedance state when OFF is low.				
TMS [‡]	I		Test mode select. Pin with internal pullup device. This serial control input is clocked into the TAF controller on the rising edge of TCK.				
TRSTII	I		e device	h, TRST gives the scan system control of the operations of the device. If TRST is experates in its functional mode and the IEEE 1149.1 signals are ignored. Pin with vice.			

[†] I = Input, O = Output, S = Supply, Z = High Impedance

[‡] This pin has an internal pullup resistor.

[§] These pins are Schmitt triggered inputs.

This pin has an internal bus holder controlled by way of the BSCR register in 54x cLEAD core of DSP subsystem A .

[#] This pin is used by Texas Instruments for device testing and should be left unconnected.

Il This pin has an internal pulldown resistor.

NAME	TYPE†	DESCRIPTION				
	EMULATION/TEST PINS (CONTINUED)					
EMU0	I/O/Z	Emulator interrupt 0 pin. When TRST is driven low, EMU0 must be high for the activation of the EMU1/OFF condition. When TRST is driven high, EMU0 is used as an interrupt to or from the emulator system and is defined as I/O.				
EMU1/OFF	I/O/Z	Emulator interrupt 1 pin. When TRST is driven high, EMU1/OFF is used as an interrupt to or from the emulator system and is defined as I/O. When TRST transitions from high to low, then EMU1 operates as OFF. EMU/OFF = 0 puts all output drivers into the high-impedance state.				
LINIO I/OI I	Note that O applications	Note that $\overline{\text{OFF}}$ is used exclusively for testing and emulation purposes (and not for multiprocessing applications). Therefore, for the $\overline{\text{OFF}}$ condition, the following conditions apply: $\overline{\text{TRST}} = 0$, EMU0 = 1, EMU1 = 0				

 $^{^{\}dagger}$ I = Input, O = Output, S = Supply, Z = High Impedance

[‡] This pin has an internal pullup resistor.

[§] These pins are Schmitt triggered inputs.

This pin has an internal bus holder controlled by way of the BSCR register in 54x cLEAD core of DSP subsystem A .

[#] This pin is used by Texas Instruments for device testing and should be left unconnected.

This pin has an internal pulldown resistor.

functional overview

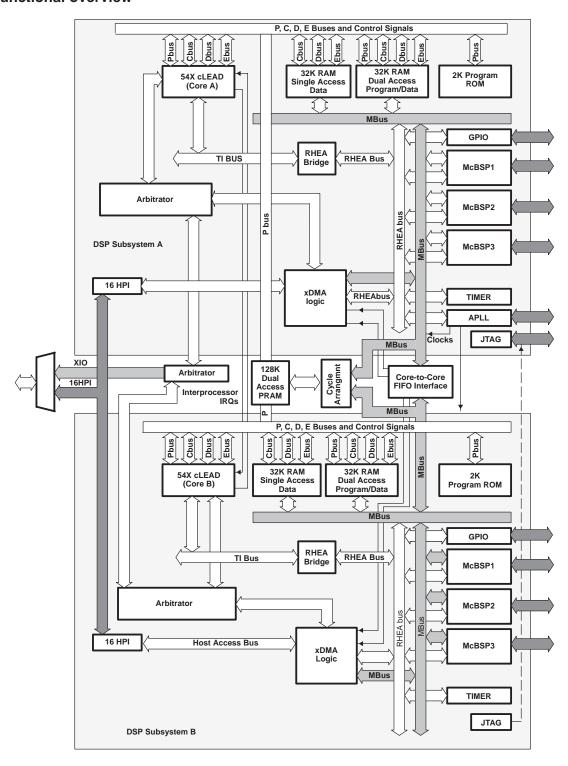


Figure 1. Functional Block Diagram

memory

Each '5421 DSP subsystem maintains the peripheral register memory map and interrupt location/priorities of the standard '5420. Figure 2 shows the size of the required memory blocks and their link map within the program and data space of the cLEAD core. The total on-chip memory for the '5421 devices is 256K-word data/program.

Hex	Data	Hex	Program Page 0	Hex	Program Page 1	Hex	Program Page 2	Hex	Program Page 3	Hex	Program Page n
00 0000 00 005F	Memory- Mapped Registers	00 0000 00 005F	Reserved	01 0000 01 005F	Reserved	02 0000 02 005F	Reserved	03 0000 03 005F	Reserved	0n 0000	Reserved
00 0060	On-Chip DARAM A/B [§] (32K Words) Prog/Data	00 0060	On-Chip DARAM A/B (32K Words) Prog/Data (OVLY=1) External (OVLY=0)	01 0060	On-Chip DARAM A/B [§] (32K Words) Prog/Data (OVLY=1) External (OVLY=0)	02 0060	On-Chip DARAM A/B (32K Words) Prog/Data (OVLY=1) External (OVLY=0)	03 0060		0n 0060	External [‡]
00 7FFF 00 8000	On-Chip SARAM A/B (32K Words) Data Only (DROM=1) External (DROM=0)	00 7FFF 00 8000 00 DFFF 00 E000 00 F7FF	On-Chip Shared DARAM 0 (24K Words) Prog Only Shared 0	01 7FFF 01 8000	On-Chip Shared DARAM 1 (32K Words) Prog Only	02 7FFF 02 8000	On-Chip Shared DARAM 2 (32K Words) Prog Only	03 7FFF 03 8000	On-Chip Shared DARAM 3 (32K Words) Prog Only	On 7FFF On 8000	External [‡]
00 FFFF		00 F800 00 FFFF	ROM (ROMEN=1)	01 FFFF	Shared 1	02 FFFF	Shared 2	03 FFFF	Shared 3	0n FFFF	
					(extended)		(extended)		(extended)		(n = 4 – 127)

[†] ROM enabled after reset.

NOTES: A. Clearing the ROMEN bit (GPIO[7]) enables an 8K-word block (0E000h - 0FFFFh) of DARAM .

- B. All external accesses require the XIO pin to be high.
- C. CPU I/O space is a single page of 64K words. Access is always external.
 - D. All internal memory is divided into 8K blocks.

Figure 2. Memory Map Relative to CPU Subsystems A and B

on-chip dual-access RAM (DARAM)

The '5421 subsystems A and B each have 32K 16-bit words of on-chip DARAM (4 blocks of 8K words). Each of these DARAM blocks can be accessed twice per machine cycle. This memory is intended primarily to store data values; however, it can be used to store program as well. At reset, the DARAM is mapped into data memory space. The DARAM can be mapped into program/data memory space by setting the OVLY bit in the processor-mode status (PMST) register of the 54X cLEAD CPU in each DSP subsystem.

[‡]When cLEAD PMST register bit MP/MC=0 and an address is generated outside the on-chip memory bound or the address reach, i.e., XPC > 3h, access is always external, if XIO = 1. Pages 8–127 are mapped over pages 4–7. When XIO = 1 and MP/MC = 1, program pages 0, 1, 2, and 3 are external. Pages 4–127 are mapped over pages 0–3.

[§] On-chip DARAM A and SARAM A are for core A. Likewise, on-chip DARAM B and SARAM B are for core B.

SPRS098 - DECEMBER 1999

on-chip single-access RAM (SARAM)

The '5421 subsystems A and B each have 32K 16-bit words of on-chip SARAM (4 blocks of 8K words). Each of these SARAM blocks can be accessed once per machine cycle. This memory is intended to store data values only. At reset, the SARAM is disabled. The SARAM can be enabled in data memory space by setting the DROM bit in the PMST register.

on-chip shared RAM (DARAM)

The '5421 has 128K 16-bit words of on-chip DARAM (16 blocks of 8K words) that is shared between the two DSP subsystems. This memory is intended to store program only. Each subsystem is able to make one instruction fetch from any location in shared memory each cycle. Neither subsystem CPU can write to the shared memory as only the DMA can write to shared memory.

on-chip boot ROM

The '5421 subsystems A and B each have 2K 16-bit words of on-chip ROM. This ROM is used for bootloading functions only. Enabling the ROM maps out one 8K-word block of the shared program memory. The ROM can be disabled by clearing bit 7 (ROMEN) of the general-purpose I/O (GPIO) register. Table 1 shows the XIO/ROMEN modes. The ROM is enabled or disabled at reset for each subsystem depending on the state of the GPIO0 pin for that subsystem.

 XIO
 ROMEN/GPIO0
 MODE

 0
 x
 Fetch internal from RAM

 1
 0
 Fetch external

 1
 1
 ROM enabled

Table 1. XIO/ROMEN Modes

extended program memory

The program memory space on the '5421 device addresses up to 512K 16-bit words. The '5421 device uses a paged extended memory scheme in program space to allow access of up to 512K of program memory . This extended program memory (each subsystem) is organized into eight pages (0–7), pages 0–3 are internal, pages 4–7 are external, each 64K in length. (Pages 8–127 as defined by the program counter extension register (XPC) are aliases for pages 4–7.) Access to the extended program memory is similar to the '5420. To implement the extended program memory scheme, the '5421 device includes the following feature:

- Two '54x instructions are extended to use the additional two bits in the '5421 device.
 - READA Read program memory addressed by accumulator A and store in data memory
 - WRITA Write data to program memory addressed by accumulator A (Writes not allowed for CPUs to shared program memory)

program memory

The program memory is accessible on multiple pages, depending on the XPC value. Within these pages, memory is accessible, depending on the address range.

- Access in the lower 32K of each page is dependent on the state of OVLY.
 - OVLY = 0 Program memory is accessed externally for all values of XPC.
 - OVLY = 1 Program memory is accessed from local data/program DARAM for all values of XPC.
- Access in the upper 32K of each page is dependent on the state of MP/MC and the value of XPC.
 - MP/MC = 0 Program memory is accessed internally from shared DARAM for XPC = 0-3. Program memory is accessed externally for XPC = 4-127.
 - MP/MC = 1 Program memory is accessed externally for all values of XPC.

data memory

The data memory space is a single page of 64K. Access is dependent on the address range. Access in the lower 32K of data memory is always from local DARAM.

Access in the upper 32K of data memory is dependent on the state of DROM.

- DROM = 0 Data memory is accessed externally
- DROM = 1 Data memory is accessed internally from local SARAM

I/O memory

The I/O space is a single page of 64K. Access is always external.

When XIO = 0 and an access to external memory is attempted, any write is ignored and any read is an unknown value.

multicore reset signals

The '5421 device includes three reset signals: $\overline{A_RS}$, $\overline{B_RS}$, and \overline{HPIRS} . The $\overline{A_RS}$ and $\overline{B_RS}$ pins function as the CPU reset signal for subsystem A and subsystem B, respectively. These signals reset the state of the CPU registers and upon release, initiate the reset function. Additionally, the $\overline{A_RS}$ signal resets the on-chip PLL and initializes the CLKMD register to bypass mode.

The HPI reset signal (HPIRS) places the HPI peripheral into a reset state. It is necessary to wait three clock cycles after the rising edge of HPIRS before performing an HPI access. The HPIRS signal also resets the PLL by turning off the PLL and initializing the CLKMD register to bypass mode.

bootloader

The on-chip bootloader is used to automatically transfer user code from an external source to anywhere in program memory after reset. The XIO pin is sampled during a hardware reset and the results indicate the operating mode as shown in Table 2.

Table 2. Bootloader Operating Modes

XIO	AFTER RESET
	HPI mode, bootload is controlled by host. The external host holds the '5421 in reset while it loads the on-chip memory of one or both subsystems as determined by the SELA/B pin.
	The host can release the '5421 from reset by either of the following methods:
0	1. If the RS_A/B pins are held low while HPIRS transitions from low to high, the subsystem cores reset will be controlled by the RS_A/B pins. When the host has finished downloading code, it drives RS_A/B high to release the cores from reset.
	2. If the RS_A/B pins are held high while HPIRS transitions from low to high, the subsystems stay in reset until a HPI data write to address 0x2F occurs. This means the host can download code to subsystem A and then release core A from reset by writing any data to core A address 0x2F via the HPI. The host can then repeat the sequence for core B. This mode allows the host to control the '5421 reset without additional hardware.
1	XIO mode. ROM is mapped in, if ROMEN pin = 1 during reset.

The '5421 bootloader provides the following options for the source of code to download:

- Parallel from 8-bit or 16-bit-wide EPROM
- Serial boot from McBSPs, 8-bit mode

SPRS098 - DECEMBER 1999

bootloader (continued)

GPIO register bit 7 (ROMEN) is used to enable/disable the ROM after reset. The ROMEN bit reflects the status of the ROMEN/GPIO0 pin for each core. ROMEN = 1 indicates that the ROM and the 8K-word program memory block (00 E000h–00 FFFFh) are not available for the CPU. When ROMEN = 0, this 8K-word program memory is available and the ROM are disabled.

A combination of interrupt flags and the bit values of an external memory location determine the selection of the various boot options.

external interface (XIO)

The external interface (XIO) supports the '5421 master boot modes and other external accesses. Its features include:

- Multiplexed with the HPI pins
- Selection of XIO or HPI mode is determined by a dedicated pin (XIO)
- Provides 512K words of external program space, 64K words of external data space, and 64K words of external I/O space.
- Different boot modes are selectable by the XIO, HMODE, and RS A/B pins.
- After reset, the control register bit ROMEN is always preset to 1.

While XIO = 0 during reset, host HPI mode is on, the host sees all RAM, and ROM is disabled. A host write to 002Fh releases the CPUs from reset; the 002Fh write by the host clears the ROMEN bit in the GPIO register.

While XIO = 1 and ROMEN = 1 during reset, the CPU starts from ROM (0FF80h) to do boot selection. After branching to non-ROM area, the code changes the ROMEN bit to enable the RAM area occupied by ROM. While XIO = 1 and ROMEN = 0 during reset, the CPU starts from external (0FF80h) to do boot selection.

Table 3 provides a complete description of HMODE, SELA/B, and XIO pin functionality.

Table 3. XIO/HPI Modes

HMODE	SELA/B	HPI MODES (XIO = 0)	XIO MODES (XIO = 1)
0	0	HPI muxed address/data subsystem A slave to host	SELA/B pin is multiplexed as PPA18 output.
0	1	HPI muxed address/data subsystem B slave to host	SELA/B pin is multiplexed as PPA18 output.
1	0	HPI non-muxed address/data subsystem A slave to host	SELA/B pin is multiplexed as PPA18 output.
1	1	HPI non-muxed address/data subsystem B slave to host	SELA/B pin is multiplexed as PPA18 output.

on-chip peripherals

All the '54x devices have the same CPU structure; however, they have different on-chip peripherals connected to their CPUs. The on-chip peripheral options provided are:

- Software-programmable wait-state generator
- Programmable bank-switching
- Parallel I/O ports
- Multichannel buffered serial ports (McBSPs)
- A hardware timer
- A software-programmable clock generator using a phase-locked loop (PLL)

software-programmable wait-state generators

The software-programmable wait-state generator can be used to extend external bus cycles up to fourteen machine cycles to interface with slower off-chip memory and I/O devices. The software wait-state register (SWWSR) controls the operation of the wait-state generator. The SWWSR of a particular DSP subsystem (A or B) is used for the external memory interface, depending on the state of the xDMA/XIO arbitration logic (see Direct Memory Access (DMA) Controller section and Table 13. The 14 least significant bits (LSBs) of the SWWSR specify the number of wait states (0–7) to be inserted for external memory accesses to five separate address ranges. This allows a different number of wait states for each of the five address ranges.

Additionally, the software wait-state multiplier (SWSM) bit of the software wait-state control register (SWCR) defines a multiplication factor of 1 or 2 for the number of wait states. At reset, the wait-state generator is initialized to provide seven wait states on all external memory accesses. The SWWSR bit fields are shown in Figure 3 and described in Table 4.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XPA	I/O		Data			Data		Program		Program					
R/W=0	R/W=0 R/W=111			R/W=111		R/W=111				R/W=111			R/W=111		

LEGEND: R = Read, W = Write

Figure 3. Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h]

Table 4. Software Wait-State Register (SWWSR) Bit Fields

	BIT	RESET							
NO.	NAME	VALUE	FUNCTION						
15	XPA	0	Extended program address control bit. XPA is used in conjunction with the program space fields (bits 0 through 5) to select the address range for program space wait states.						
14–12	I/O	1	I/O space. The field value (0–7) corresponds to the base number of wait states for I/O space accesses within addresses 0000–FFFFh. The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.						
11–9	Data	1	Upper data space. The field value (0–7) corresponds to the base number of wait states for external data space accesses within addresses 8000–FFFFh. The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.						
8–6	Data	1	Lower data space. The field value (0–7) corresponds to the base number of wait states for external data space accesses within addresses 0000–7FFFh. The SWSM bit of the SWCR defines a multiplication actor of 1 or 2 for the base number of wait states.						
			Upper program space. The field value (0–7) corresponds to the base number of wait states for external program space accesses within the following addresses:						
5–3	Program	1	☐ XPA = 0: x8000-xFFFFh						
			☐ XPA = 1: The upper program space bit field has no effect on wait states.						
			The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.						
			Program space. The field value (0–7) corresponds to the base number of wait states for external program space accesses within the following addresses:						
2–0	Program	1	☐ XPA = 0: x0000-x7FFFh						
			☐ XPA = 1: 00000–3FFFFh						
			The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.						

The software wait-state multiplier bit of the software wait-state control register (SWCR) is used to extend the base number of wait states selected by the SWWSR. The SWCR bit fields are shown in Figure 4 and described in Table 5.

Reserved SWSM

R/W=0

1

0

R/W=0

LEGEND: R = Read, W = Write

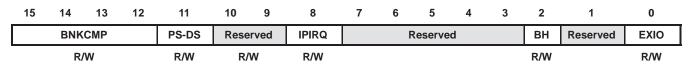

Figure 4. Software Wait-State Control Register (SWCR) [MMR Address 002Bh]

Table 5. Software Wait-State Control Register (SWCR) Bit Fields

	PIN	RESET	FUNCTION						
NO.	NAME	VALUE	FUNCTION						
15–1	Reserved	0	hese bits are reserved and are unaffected by writes.						
_			Software wait-state multiplier. Used to multiply the number of wait states defined in the SWWSR by a factor of 1 or 2.						
0	0 SWSM	0	SWSM = 0: wait-state base values are unchanged (multiplied by 1).						
			SWSM = 1: wait-state base values are multiplied by 2 for a maximum of 14 wait states.						

programmable bank-switching

Programmable bank-switching can be used to insert one cycle automatically when crossing memory-bank boundaries inside program memory or data memory space. One cycle can also be inserted when crossing from program-memory space to data-memory space ('54x) or one program memory page to another program memory page. This extra cycle allows memory devices to release the bus before other devices start driving the bus, thereby avoiding bus contention. The size of the memory bank for the bank-switching is defined by the bank-switching control register (BSCR), as shown in Figure 5. The BSCR of a particular DSP subsystem (A or B) is used for the external memory interface based on the xDMA/XIO arbitration logic.

LEGEND: R = Read, W = Write

Figure 5. BSCR Register Bit Layout for Each DSP Subsystem

programmable bank-switching (continued)

Table 6. BSCR Register Bit Functions for Each DSP Subsystem

BIT NO.	BIT NAME	RESET VALUE	FUNCTION						
15–12	BNKCMP	1111	Bank compare. BNKCMP determines the external memory-bank size. BNKCMP is used to mask the four most significant bits (MSBs) of an address. For example, if BNKCMP = 1111b, the four MSBs (bits 12–15) are compared, resulting in a bank size of 4K words. Bank sizes of 4K words to 64K words are allowed.						
11	PS-DS	1	Program read – data read access. PS-DS inserts an extra cycle between consecutive accesses of program read and data read or data read and program read. PS-DS = 0 No extra cycles are inserted by this feature. PS-DS = 1 One extra cycle is inserted between consecutive data and program reads.						
10–9	Reserved	0	These bits are reserved and are unaffected by writes.						
8	IPIRQ	0	The IPIRQ bit is used to send an interprocessor interrupt to the other subsystem. IPIRQ=1 sends the interrupt. IPIRQ must be cleared before subsequent interrupts can be made. Refer to the interrupts section for more details.						
7–3	Reserved	0	These bits are reserved and are unaffected by writes.						
2	ВН	0	Bus holder. BH controls the data bus holder feature: BH is cleared to 0 at reset. BH = 0 The bus holder is disabled. BH = 1 The bus holder is enabled. When not driven, the data bus (PPD[15:0]) is held in the previous logic level.						
1	Reserved	0	This bit is reserved and is unaffected by writes.						
0	EXIO	0	External bus interface off. The EXIO bit controls the external bus-off function. EXIO = 0 EXIO = 1 The external bus interface functions as usual. The address bus, data bus, and control signals become inactive after completing the current bus cycle. Note that the DROM, MP/MC, and OVLY bits in the PMST and the HM bit of ST1 cannot be modified when the interface is disabled.						

parallel I/O ports

The '5421 has a total of 64K words of I/O port address space. These ports can be addressed by PORTR and PORTW. The $\overline{\text{IS}}$ signal indicates the read/write access through an I/O port. The devices can interface easily with external devices through the I/O ports while requiring minimal off-chip address-decoding logic. The SELA/B pin selects which subsystem is accessing the external I/O space.

16-bit bidirectional host-port interface (HPI16)

HPI16 memory map

The HPI16 is an enhanced 16-bit version of the 'C54x 8-bit host-port interface (HPI). The HPI16 is designed to allow a 16-bit host to access the DSP on-chip memory, with the host acting as the master of the interface. Figure 6 illustrates the available memory accessible by the HPI. Neither the CPU nor DMA I/O spaces can be accessed using the host-port interface.

Hex	Page 0	Hex	Page 1	Hex	Page 2	Hex	Page 3
00 0000	B	01 0000		02 0000		03 0000	
00 001F	Reserved			02 001F	Reserved		
00 0020	McBSP DXR/DRR			02 0020	McBSP DXR/DRR		
00 005F	MMRegs Only			02 005F	MMRegs Only		
00 0060	On-Chip DARAM A (32K Words) Prog/Data		On-Chip Shared DARAM 0 (32K Words) Program Only	02 0060	On-Chip DARAM B (32K Words) Prog/Data		On-Chip Shared DARAM 2 (32K Words) Program Only
00 7FFF	Subsystem A	01 7FFF	Shared 0	02 7FFF	Subsystem B	03 7FFF	Shared 2
00 8000	On-Chip SARAM A (32K Words) Data Only	01 8000	On-Chip Shared DARAM 1 (32K Words) Program Only	02 8000	On-Chip SARAM B (32K Words) Data Only	03 8000	On-Chip Shared DARAM 3 (32K Words) Program Only
00 FFFF	Subsystem A	01 FFFF	Shared 1	02 FFFF	Subsystem B	03 FFFF	Shared 3

NOTES: A. All local memory is available to the HPI

- B. The encoder maps CPU A Data Page 0 into the HPI Page 0. CPU B Data Page 0 is mapped into the HPI Page 2. Pages 1 and 3 are the on-chip shared program memory.
- C. In pages 00 and 02, in the range of 0020–005F, only the following memory mapped registers are accessible: 20,21,30,31,40,41 (read only), 22,23,32,33,42,43 (write only).

Figure 6. Memory Map Relative to Host-Port Interface HPI16

HPI16 memory map (continued)

Some of the features of the HPI16 include:

- 16-bit bidirectional data bus
- Multiple data strobes and control signals to allow glueless interfacing to a variety of hosts
- Multiplexed and nonmultiplexed address/data modes
- 18-bit address bus used in nonmultiplexed mode to allow access to all internal memory (including internal extended address pages)
- 18-bit address register used in multiplexed mode. Includes address autoincrement feature for faster accesses to sequential addresses
- Interface to on-chip DMA module to allow access to entire internal memory space
- HRDY signal to hold off host accesses due to DMA latency
- Control register available in multiplexed mode only. Accessible by either host or DSP to provide host/DSP interrupts, extended addressing, and data prefetch capability
- Maximum data rate of 33 megabytes per second (MBps) at 100-MHz DSP clock rate (no other DMA channels active)

The HPI16 acts as a slave to a 16-bit host processor and allows access to the on-chip memory of the DSP. There are two modes of operation as determined by the HMODE signal: *multiplexed* mode and *nonmultiplexed* mode.

HPI multiplexed mode

In *multiplexed* mode, HPI16 operation is very similar to that of the standard 8-bit HPI, which is available with other 'C54x products. A host with a multiplexed address/data bus can access the HPI16 data register (HPID), address register (HPIA), or control register (HPIC) via the HD bidirectional data bus. The host initiates the access with the strobe signals (HDS1, HDS2, HCS) and controls the type of access with the HCNTL, HR/W, and HAS signals. The DSP can interrupt the host via the HINT signal, and can stall host accesses via the HRDY signal.

host/DSP interrupts

In *multiplexed* mode, the HPI16 offers the capability for the host and DSP to interrupt each other through the HPIC register.

For host-to-DSP interrupts, the host must write a "1" to the DSPINT bit of the HPIC register. This generates an interrupt to the DSP. This interrupt can also be used to wake the DSP from any of the IDLE 1,2, or 3 states. Note that the DSPINT bit is always read as "0" by both the host and DSP. The DSP cannot write to this bit (see Figure 7).

For DSP-to-host interrupts, the DSP must write a "1" to the HINT bit of the HPIC register to interrupt the host via the HINT pin. The host acknowledges and clears this interrupt by also writing a "1" to the HINT bit of the HPIC register. Note that writing a "0" to the HINT bit by either host or DSP has no effect.

HPI nonmultiplexed mode

In *nonmultiplexed* mode, a host with separate address/data buses can access the HPI16 data register (HPID) via the HD 16-bit bidirectional data bus, and the address register (HPIA) via the 18-bit HA address bus. The host initiates the access with the strobe signals (HDS1, HDS2, HCS) and controls the direction of the access with the HR/W signal. The HPI16 can stall host accesses via the HRDY signal. Note that the HPIC register is not available in *nonmultiplexed* mode since there are no HCNTL signals available. All host accesses initiate a DMA read or write access. Figure 7 shows a block diagram of the HPI16 in *nonmultiplexed* mode.

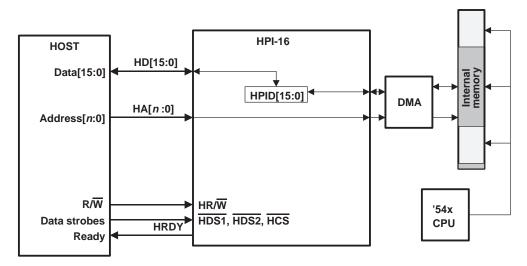


Figure 7. Interfacing to the HPI-16 in Non-Multiplexed Mode

other HPI16 system considerations

operation during IDLE

The HPI16 can continue to operate during IDLE1 or IDLE2 by using special clock management logic that turns on relevant clocks to perform a synchronous memory access, and then turns the clocks back off to save power. The DSP CPU does not wake up from the IDLE mode during this process.

downloading code during reset

The HPI16 can download code while the DSP is in reset. However, the system provides a pin (HPIRS) that provides a way to take the HPI16 module out of reset while leaving the DSP in reset. The maximum HPI16 data rate is 33 MBps assuming no other DMA activity (100-MIPS DSP subsystem).

emulation considerations

The HPI16 can continue operation even when the DSP CPU is halted due to debugger breakpoints or other emulation events.

multichannel buffered serial port (McBSP)

The '5421 device provides high-speed, full-duplex serial ports that allow direct interface to other 'C54x/'LC54x devices, codecs, and other devices in a system. There are six multichannel buffered serial ports (McBSPs) on board (three per subsystem).

The McBSP provides:

- Full-duplex communication
- Double-buffer data registers, which allow a continuous data stream
- Independent framing and clocking for receive and transmit

In addition, the McBSP has the following capabilities:

- Direct interface to:
 - T1/E1 framers
 - MVIP switching-compatible and ST-BUS compliant devices
 - IOM-2 compliant device
 - AC97-compliant device
 - Serial port interface (SPI™)
- Multichannel transmit and receive of up to 128 channels
- A wide selection of data sizes, including: 8, 12, 16, 20, 24, or 32 bits
- μ-law and A-law companding
- Programmable polarity for both frame synchronization and data clocks
- Programmable internal clock and frame generation

The '5421 McBSPs have been enhanced to provide more flexibility in the choice of the sample rate generator input clock source. On previous C5000 devices, the McBSP sample rate input clock can be driven from one of two possible choices: the internal CPU clock, or the external CLKS pin. However, most C5000 devices have only the internal CPU clock as a possible source because the CLKS pin is not implemented on most device packages.

To accomodate applications that require an external reference clock for the sample rate generator, the '5421 McBSPs allow either the receive clock pin (BCLKR) or the transmit clock pin (BCLKX) to be configured as the input clock to the sample rate generator. This enhancement is enabled through two register bits: pin control register (PCR) bit 7 – enhanced sample clock mode (SCLKME), and sample rate generator register 2 (SRGR2) bit 13 – McBSP sample rate generator clock mode (CLKSM). SCLKME is an addition to the PCR contained in the McBSPs on previous C5000 devices. The new bit layout of the PCR is shown in Figure 8. For a description of the remaining bits, see *TMS320C54x DSP Reference Set, Volume 5: Enhanced Peripherals* (literature number SPRU302).

15	14	13	12	11	10	9	8
Rese	erved	XIOEN	RIOEN	FSXM	FSRM	CLKXM	CLKRM
R,	+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0
7	6	5	4	3	2	1	0
SCLKME	CLKS_STAT	DX_STAT	DR_STAT	FSXP	FSRP	CLKXP	CLKRP
RW,+0	R,+0	R,+0	R,+0	RW,+0	RW,+0	RW,+0	RW,+0

Note: R = Read, W = Write, +0 = Value at reset

Figure 8. Pin Control Register (PCR)

SPI is a trademark of Motorola Incorporated.

multichannel buffered serial port (McBSP) (continued)

The selection of the sample rate generator (SRG) clock input source is made by the combination of the CLKSM and SCLKME bit values as shown in Table 7.

Table 7. Sample Rate Generator Clock Source Selection

SCLKME	CLKSM	SRG Clock Source							
0	0	CLKS (not available as a pin on '5421)							
0	1	CPU clock							
1	0	BCLKR pin							
1	1	BCLKX pin							

When either of the bidirectional pins, BCLKR or BCLKX, is configured as the clock input, its output buffer is automatically disabled. For example, with SCLKME = 1 and CLKSM = 0, the BCLKR pin is configured as the SRG input. In this case, both the transmitter and receiver circuits can be synchronized to the SRG output by setting the PCR bits (9:8) for CLKXM = 1 and CLKRM = 1. However, the SRG output is only driven onto the BCLKX pin because the BCLKR output is automatically disabled.

The McBSP supports independent selection of multiple channels for the transmitter and receiver. When multiple channels are selected, each frame represents a time-division multiplexed (TDM) data stream. In using time-division multiplexed data streams, the CPU may only need to process a few of them. Thus, to save memory and bus bandwidth, multichannel selection allows independent enabling of particular channels for transmission and reception. Up to a maximum of 128 channels in a bit stream can be enabled or disabled.

The '5421 McBSPs have two working modes that are selected by setting the RMCME and XMCME bits in the multichannel control registers (MCR1x and MCR2x, respectively). See Figure 9 and Figure 10. For a description of the remaining bits, see *TMS320C54x DSP Reference Set, Volume 5: Enhanced Peripherals* (literature number SPRU302).

• In the first mode, when RMCME = 0 and XMCME = 0, there are two partitions (A and B), with each containing 16 channels as shown in Figure 9 and Figure 10. This is compatible with the McBSPs used in the '5420, where only 32-channel selection is enabled (default).

Note: R = Read, W = Write, +0 = Value at reset; x = McBSP 0,1, or 2

Figure 9. Multichannel Control Register 2x (MCR2x)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			RMC ME	RPB	BLK	RPA	BLK		RCBLK		RM	исм
		R,	+0			RW,+0	RW	/,+0	RW	/,+0		R,+0		RV	V,+0

Note: R = Read, W = Write, +0 = Value at reset; x = McBSP 0,1, or 2

Figure 10. Multichannel Control Register 1x (MCR1x)

multichannel buffered serial port (McBSP) (continued)

• In the second mode, with RMCME = 1 and XMCME = 1, the McBSPs have 128 channel selection capability. Twelve new registers (RCERCx–RCERHx and XCERCx–XCERHx) are used to enable the 128 channel selection. The subadresses of the new registers are shown in Table 20. These new registers, functionally equivalent to the RCERA0–RCERB1 and XCERA0–XCERB1 registers in the '5420, are used to enable/disable the transmit and receive of additional channel partitions (C,D,E,F,G, and H) in the 128 channel stream. For example, XCERH1 is the transmit enable for channel partition H (channels 112 to 127) of MCBSP1 for each DSP subsystem. See Figure 11, Table 8, Figure 12, and Table 9 for bit layout and function of the receive and transmit registers .

	15	14	13	12	11	10	9	8
	RCERyz15	RCERyz14	RCERyz13	RCERyz12	RCERyz11	RCERyz10	RCERyz9	RCERyz8
	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0
	7	6	5	4	3	2	1	0
	RCERyz7	RCERyz6	RCERyz5	RCERy4	RCERyz3	RCERyz2	RCERyz1	RCERyz0
,	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0

Note: R = Read, W = Write, +0 = Value at reset; y = Partition A,B,C,D,E,F,G, or H; z = McBSP 0,1, or 2

Figure 11. Receive Channel Enable Registers Bit Layout for Partitions A to H

Table 8. Receive Channel Enable Registers for Partitions A to H

Bit	Name	Function			
15–0	RCERyz(15:0)	Receive Channel Enable Register			
		RCERyz $n = 0$ Disal	oles reception of <i>n</i> th channel in partition y.		
		RCERyz $n = 1$ Enab	les reception of <i>n</i> th channel in partition y.		

Note: y = Partition A,B,C,D,E,F,G, or H; z = McBSP 0,1, or 2; n = bit 15–0

SPRS098 - DECEMBER 1999

multichannel buffered serial port (McBSP) (continued)

	15	14	13	12	11	10	9	8
	XCERyz15	XCERyz14	XCERyz13	XCERyz12	XCERyz11	XCERyz10	XCERyz9	XCERyz8
-	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0
	7	6	5	4	3	2	1	0
	XCERyz7	XCERyz6	XCERyz5	XCERy4	XCERyz3	XCERyz2	XCERyz1	XCERyz0
	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0	RW,+0

Note: R = Read, W = Write, +0 = Value at reset; y = Partition A,B,C,D,E,F,G, or H; z = McBSP 0,1, or 2

Figure 12. Transmit Channel Enable Registers Bit Layout for Partitions A to H

Table 9. Transmit Channel Enable Registers for Partitions A to H

Bit	Name	Function			
15–0	XCERyz(15:0)	Transmit Channel Enable Register			
		XCERyz $n = 0$	Disables transmit of <i>n</i> th channel in partition y.		
		XCERyz $n = 1$	Enables transmit of nth channel in partition y.		

Note: y = Partition A,B,C,D,E,F,G, or H; z = McBSP 0,1, or 2; n = bit 15–0

The clock stop mode (CLKSTP) in the McBSP provides compatibility with the serial port interface (SPI) protocol. Clock stop mode works with only single-phase frames and one word per frame. The word sizes supported by the McBSP are programmable for 8-, 12-, 16-, 20-, 24-, or 32-bit operation. When the McBSP is configured to operate in SPI mode, both the transmitter and the receiver operate together as a master or as a slave.

The McBSP is fully static and operates at arbitrarily low clock frequencies. The maximum McBSP multichannel operating frequency on the '5421 is 9 MBps. Nonmultichannel operation is limited to 38 MBps.

direct memory access (DMA) controller

The '5421 includes two 6-channel direct memory access (DMA) controllers for performing data transfers independent of the CPU, one for each subsystem. The DMA controller controls accesses to off-chip program/data/IO and internal data/program memory. The primary function of the '5421 DMA controller is to provide code overlays and manage data transfers between on-chip memory, the peripherals, and off-chip memory.

In the background of CPU operation, the '5421 DMA allows movement of data between internal and external program/data memory, and internal peripherals, such as the McBSPs and the HPI. Each subsystem has its own independent DMA with six programmable channels, which allows for six different contexts for DMA operation. The HPI has a dedicated auxiliary DMA channel. Figure 13 illustrates the memory map accessible by the DMA.

direct memory access (DMA) controller (continued)

Hex	Data†	Hex P	rogram Page 0 [‡]	Hex P	rogram Page 1	‡ _{Hex} P	rogram Page 2	Hex P	rogram Page 3 [‡]
00 0000	Reserved	00 0000	Reserved	01 0000		02 0000	Reserved	03 0000	
00 001F	McBSP	00 001F				02 001F 02 0020	McBSP		
00 0020	DXR/DRR	00 0020	McBSP DXR/DRR				DXR/DRR		
00 005F 00 0060	MMRegs Only	00 005F 00 0060	MMRegs Only			02 005F 02 0060	MMRegs Only		On-Chip
00 0000		00 0000			On-Chip Shared	5= 5555			Shared DARAM 2
	On-Chip DARAM A/B		On-Chip DARAM A		DARAM 0 (32K Words)		On-Chip DARAM B		(32K Words) Program
	(32K Words) Prog/Data		(32K Words) Prog/Data		` Program ´		(32K Words) Prog/Data		Only
	Prog/Data		1 Tog/Data		Only				
00 7FFF 00 8000		00 7FFF 00 8000	Subsystem A	01 7FFF 01 8000	Shared 0	02 7FFF 02 8000	Subsystem B	03 7FFF 03 8000	Shared 2
00 0000		00 8000		01 0000					
							On-Chip		
	On-Chip SARAM A/B		On-Chip SARAM A		On-Chip		SARAM B (32K Words)		On-Chip Shared
	(32K Words)		(32K Words) Data Only		Shared DARAM 1		Data Only		DARAM 3
	Data Only				(32K Words) Program				(32K Words) Program
					Only				Only
			Subsystem A		Shared 1		Subsystem B		Shared 3
00 FFFF		00 FFFF	Subsystem A	01 FFFF	Snareu 1	02 FFFF	Subsystem B	03 FFFF	Shared S

 $[\]dagger$ DMD/DMS = 01

Figure 13. On-Chip Memory Map Relative to DMA (DLAXS/SLAXS = 0)

 $^{$^{\}ddagger}DMD/DMS = 00$

NOTES: A. All local memory is available to the DMA.

B. All I/O memory accesses by the DMA (DMD/DMS = 10) are mapped to the core-to-core FIFO.

C. In pages 00 and 02, in the range of 0020–005F, only the following memory mapped registers are accessible: 20,21,30,31,40,41 (read only), 22,23,32,33,42,43 (write only).

direct memory access (DMA) controller (continued)

xDMA External Program Memory Map†

00 0000		01 0000		02 0000		03 0000			07 0000	
	Page 0 Lower 32K [†] External		Page 1 Lower 32K [†] External		Page 2 Lower 32K [†] External		Page 3 Lower 32K [†] External			Page7 Lower 32K [†] External
00 7FFF		01 7FFF		02 7FFF		03 7FFF			07 7FFF	
00 8000		01 8000		02 8000		03 8000			07 8000	
	Page 0 Upper 32K External		Page 1 Upper 32K External		Page 2 Upper 32K External		Page 3 Upper 32K External			Page 7 Upper 32K External
00 FFFF		01 FFFF		02 FFFF		03 FFFF		•••	07 FFFF	
'		•				+			!	

xDMA External Data Memory Map†

00 0000		01 0000		02 0000		03 0000		07 0000	
	Page 0 Lower 32K [†] External		Page 1 Lower 32K [†] External		Page 2 Lower 32K [†] External		Page 3 Lower 32K [†] External		Page 7 Lower 32K [†] External
00 7FFF		01 7FFF		02 7FFF		03 7FFF		 07 7FFF	
00 8000		01 8000		02 8000		03 8000		 07 8000	
	Page 0 Upper 32K External		Page 1 Upper 32K External		Page 2 Upper 32K External		Page 3 Upper 32K External		Page 7 Upper 32K External
00 FFFF		01 FFFF		02 FFFF		03 FFFF		 07 FFFF	

 $[\]dagger$ Pages 8 – 127 are overlaid over pages 0 – 7.

Figure 14. DMA External Program Memory Map

DMA controller features

The '5421 DMA has the following features:

- The DMA operates independently of the CPU.
- The DMA has six channels. The DMA can keep track of the contexts of six independent block transfers.
- Two DMA channels are available for external accesses: one for reads and one for writes.
- The DMA has higher priority than the CPU for internal accesses.
- Each channel has independently programmable priorities.
- Each channel's source and destination address registers include configurable indexing modes. The address can be held constant, postincremented, postdecremented, or adjusted by a programmable value.
- For internal accesses, each read or write transfer can be initialized by selected events.
- Supports 32-bit transfers for internal accesses only.
- Single-word (16-bit) transfers are supported for external accesses.
- The DMA does not support transfers from peripherals to external memory.
- The DMA does not support transfers from external memory to the peripherals.
- The DMA does not support external to external transfers.

A 16-bit DMA transfer requires four CPU clock cycles to complete — two cycles for reads and two cycles for writes. This gives a maximum DMA throughput of 50 MBps. Since the DMA controller shares the DMA bus with the HPI module, the DMA access rate is reduced when the HPI is active.

DMA accesses to external memory

The '5421 DMAs supports external accesses to extended program, extended data, and extended I/O memory. These overlay pages are only visible to the DMA controller. A maximum of two channels (one for reads, one for writes) per DMA can be used for external memory accesses. The DMA external accesses require 9 cycles (minimum) for external writes and 13 cycles (minimum) for external reads.

The control of the bus is arbitrated between the two CPUs and the two DMAs. While one DMA or CPU is in control of the external bus, the other three components will be held off (via wait-states) until the current transfer is complete. The DMA takes precedence over XIO requests. The HOLD/HOLDA feature of the '5421 affects external CPU transfers, as well as external DMA transfers. When an external processor asserts the HOLD pin to gain control of the memory interface, the HOLDA signal is not asserted until all pending DMA transfers are completed. To prevent a DMA from blocking out the CPUs or HOLD/HOLDA feature from accessing the external bus, uninterrupted burst transfers are *not* supported by the DMAs. Subsequently, CPU and DMA arbitration testing is performed for each external bus cycle, regardless of the bus activity. With the completion of each block, the highest priority will be swapped.

For arbitration at the DSP subsystem level, the DMA requests (DMA_REQ_A or DMA_REQ_B) from either DMA will be sent to both CPUs as shown in Figure 15. Regardless of which CPU controls the external pin interface (XIO), both CPUs must send a grant (GRANT_A, GRANT_B) for control of the bus to be released to the DMAs.

Arbitration between CPUs is done using a request/grant scheme. Prior to accessing XIO of one of the CPUs, software is responsible for asserting a request for access to the device pins and polling grant status until the pins are granted to the requestor. If both CPUs request the bus simultaneously, subsystem A is granted priority. For details on memory-mapped register bits pertaining to CPU XIO arbitration, see the general-purpose I/O control register bits 6:4 (CORE SEL, XIO GRANT, XIO REQ) in Table 13.

At reset, the default is that subsystem A has access to the device pins. Accesses without a grant will be allowed, but do not show up on the device pins.

DMA accesses to external memory (continued)

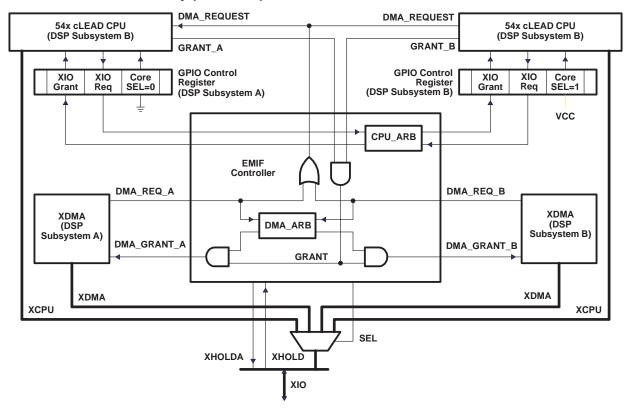


Figure 15. Arbitration Between XIO and xDMA for External Access

The HM bit in the ST1 indicates whether the processor continues internal execution when acknowledging an active HOLD signal.

- HM = 0, the processor continues execution from internal program memory but places its external interface in the high-impedance state.
- When HM = 1, the processor halts internal execution.

To ensure that proper arbitration occurs, the HM bit should be set to 0 in the memory-mapped ST1 registers for both CPUs.

To allow the DMA access to extended data pages, the SLAXS and DLAXs bits are added to the DMMCRn register. For a description of the remaining bits, see *TMS320C54x DSP Reference Set, Volume 5: Enhanced Peripherals* (literature number SPRU302).

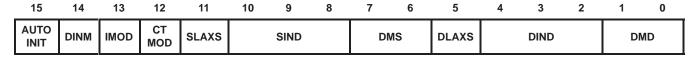


Figure 16. DMA Transfer Mode Control Register (DMMCRn)

DMA accesses to external memory (continued)

These new bit fields were created to allow the user to define the space-select for the DMA (internal/external). Also, a new extended destination data page (XDSTDP[6:0], subaddress 029h) and extended source data page (XSRCDP[6:0], subaddress 028h) have been created.

DLAXS(DMMCRn[5]) 0 = No external access (default internal)

Destination 1 = External access

SLAXS(DMMCRn[11]) 0 = No external access (default internal)

Source 1 = External access

For the CPU external access, software can configure the memory cells to reside inside or outside the program address map. When the cells are mapped into program space, the device automatically accesses them when their addresses are within bounds. When the program address generation (PAGEN) logic generates an address outside its bounds, the device automatically generates an external access. All DMA I/O space accesses are mapped to the core-to-core FIFO.

DMA controller synchronization events

The transfers associated with each DMA channel can be synchronized to one of several events. The DSYN bit field of the DMA channel x sync select and frame count (DMSFCx) register selects the synchronization event for a channel. The list of possible events and the DSYN values are shown in Table 10.

DMA SYNCHRONIZATION EVENT DSYN VALUE 0000b No synchronization used 0001b McBSP0 Receive Event 0010b McBSP0 Transmit Event 0011b McBSP2 Receive Event 0100b McBSP2 Transmit Event 0101b McBSP1 Receive Event 0110b McBSP1 Transmit Event 0111b FIFO Receive Buffer Not Empty Event 1000b FIFO Transmit Buffer Not Full Event 1001b - 1111b Reserved

Table 10. DMA Synchronization Events

DMA channel interrupt selection

The DMA controller can generate a CPU interrupt for each of the six channels. However, channels 0, 1, 2, and 3 are multiplexed with other interrupt sources. DMA channels 0 and 1 share an interrupt line with the receive and transmit portions of McBSP2 (IMR/IFR bits 6 and 7), and DMA channels 2 and 3 share an interrupt line with the receive and transmit portions of McBSP1 (IMR/IFR bits 10 and 11). When the '5421 is reset, the interrupts from these four DMA channels are deselected. The INTSEL bit field in the DMA channel priority and enable control (DMPREC) register can be used to select these interrupts, as shown in Table 11.

Table 11. DMA Channel Interrupt Selection

INTSEL Value	IMR/IFR[6]	IMR/IFR[7]	IMR/IFR[10]	IMR/IFR[11]
00b (reset)	BRINT2	BXINT2	BRINT1	BXINT1
01b	BRINT2	BXINT2	DMAC2	DMAC3
10b	DMAC0	DMAC1	DMAC2	DMAC3
11b		Rese	erved	

SPRS098 - DECEMBER 1999

subsystem communications

The '5421 device provides two options for efficient core-to-core communications:

- Core-to-core FIFO communications
- DMA global memory transfer

FIFO data communications

The subsystems' FIFO communications interface is shown in the '5421 functional block diagram (Figure 1). Two unidirectional 8-word-deep FIFOs are available in the device for efficient interprocessor communication: one configured for core A-to-core B data transfers, and the other configured for core B-to-core A data transfers. Each subsystem, by way of DMA control, can write to its respective output data FIFO and read from its respective input data FIFO. The FIFOs are accessed using the DMAs I/O space, which is completely independent of the CPU I/O space. The DMA transfers to or from the FIFOs can be synchronized to "receive FIFO not empty" and "transmit FIFO not full" events, providing protection from overflow and underflow. Subsystems can interrupt each other to flag when the FIFOs are either full or empty. The interprocessor interrupt request bit (IPIRQ) (bit 8 in the BSCR register (BSCR.8)) is set to 1 to generate a PINT in the other subsystem's IFR.14. See the *interrupts* section for more information.

DMA global memory transfers

The '5421 enables each subsystem to transfer data directly between the memories that are CPU local via DMA global memory transfers. The DMA global memory map is shown in Figure 13.

chip subsystem ID Register

The chip subsystem ID Register (CSIDR) is a read-only memory-mapped register located at 3Eh within each DSP subsystem. This register contains three elements for electrically readable device identification. The ChipID bits identify the type of 54x device (21h for 5421). The ChipRev bits contain the revision number of the device. Lastly, the SubSysID contains a unique subsystem identifier.

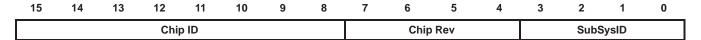


Figure 17. Chip subsystem ID Register

Table 12. Chip subsystem ID Register Bit Functions

BIT NO.	BIT FIELD NAME	FUNCTION				
15–8	Chip ID	4x device type. Contains 21h for '5421.				
7–4	Chip Rev	evision number of device (i.e., 0h for revision 0).				
3–0	SubSysID	Identifier for DSP subsystem: A = 0h, B = 1h.				

general-purpose I/O

In addition to the A_XF and B_XF pins, the '5421 has eight general-purpose I/O pins. These pins are:

A_GPIO0, A_GPIO1, A_GPIO2, A_GPIO3

B GPIO0, B GPIO1, B GPIO2, B GPIO3

Four general-purpose I/O pins are available to each core. Each GPIO pin can be individually selected as either an input or an output. Additionally, the timer output is selectable on GPIO pin 3. At core reset, all GPIO pins are configured as inputs. GPIO data and control bits are accessible through a memory-mapped register at 3Ch with the format shown in Figure 18.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
тоит		Reserved	I	GPIO DIR3	GPIO DIR2	GPIO DIR1	GPIO DIR0	ROM EN	CORE SEL	XIO GRAN T	XIO REQ	GPIO DAT3	GPIO DAT2	GPIO DAT1	GPIO DAT0
R/W				R/W	R/W	R/W	R/W	R/W	R	R	R/W,	R/W,	R/W,	R/W,	R/W,
+0				+0	+0	+0	+0	+0		+0	+0	+0	+0	+0	+0

Note: R = Read, W = Write, +0 = Value at reset

Figure 18. General-Purpose I/O Control Register

Table 13. General-Purpose I/O Control Register Bit Functions

BIT NO.	BIT NAME	BIT VALUE	FUNCTION
45	45 TOUT		Timer output disable. Uses GPIO3 as general-purpose I/O.
15	TOUT	1	Timer output enable. Overrides DIR3. Timer output is driven on GPIO3 and readable in DAT3.
14-12	Reserved	Х	Register bit is reserved. Read 0, write has no effect.
44.0	GPIO	0	GPIOn pin is used as an input.
11–8	DIRn†	1	GPIOn pin is used as an output.
	DOMEN	0	ROM is mapped out
7	ROMEN	1	ROM is mapped in
	CORE	0	cLEAD core A is selected for XIO REQ bit. DSP subsystem A is tied low internally for this bit.
6	SEL	1	cLEAD core B is selected for XIO REQ bit. DSP subsystem B is tied high internally for this bit.
	XIO	0	EMIF is not available to the cLEAD core determined by the CORE SEL bit.
5	GRANT	1	EMIF is granted to the cLEAD core determined by the CORE SEL bit.
4	XIO	0	EMIF is not requested for the cLEAD core indicated by the CORE SEL bit.
4	4 REQ	1	Request EMIF for the cLEAD core indicated by the CORE SEL bit.
0.0	GPIO	0	GPIOn is driven with a 0 (DIRn = 1). GPIOn is read as 0 (DIRn = 0).
3–0	DATn†	1	GPIOn is driven with a 1 (DIRn = 1). GPIOn is read as 1 (DIRn = 0).

 \dagger n = 3, 2, 1, or 0

Register bit 7 is used as ROMEN to enable and disable ROM space. In XIO mode, ROM enable (ROMEN) reflects the state of the A_GPIO0 and B_GPIO0 pins (GPIODAT0 input) to enable the applicable on-chip ROM after reset. Register bits (6:4) are used for XIO arbitration of external memory interface (EMIF) control between DSP subsystems. The timer out (TOUT) bit is used to multiplex the output of the timer and GPIO3. All GPIO pins are programmable as an input or output by the direction bit (DIRn). Data is either driven or read from the data bit field (DATn). DIR3 has no affect when TOUT = 1.

general-purpose I/O (continued)

GPIO2 is a special case where the logic level determines the operation of BIO-conditional instructions on the CPU. GPIO2 is always mapped as a general-purpose I/O, but the BIO function exists when this pin is configured as an input.

hardware timer

The '54x devices feature a 16-bit timing circuit with a 4-bit prescaler. The timer counter decrements by one at every CLKOUT cycle. Each time the counter decrements to zero, a timer interrupt is generated. The timer can be stopped, restarted, reset, or disabled by specific status bits. The timer output pulse is driven on GPIO3 when the TOUT bit is set to one in the general-purpose I/O control register. The device must be in HPI mode (XIO = 0) to drive TOUT on the GPIO3 pin.

software-programmable phase-locked loop (PLL)

The clock generator provides clocks to the '5421 device, and consists of a phase-locked loop (PLL) circuit. The clock generator requires a reference clock input, which must be provided by using an external clock source. The reference clock input is then divided by two (DIV mode) to generate clocks for the '5421 device. Alternately, the PLL circuit can be used (PLL mode) to generate the device clock by multiplying the reference clock frequency by a scale factor, allowing use of a clock source with a lower frequency than that of the CPU. The PLL is an adaptive circuit that, once synchronized, locks onto and tracks an input clock signal. When the PLL is initially started, it enters a transitional mode during which the PLL acquires lock with the input signal. Once the PLL is locked, it continues to track and maintain synchronization with the input signal. Then, other internal clock circuitry allows the synthesis of new clock frequencies for use as master clock for the '5421 device. Only subsystem A controls the PLL. Subsystem B cannot access the PLL registers.

The software-programmable PLL features a high level of flexibility, and includes a clock scaler that provides various clock multiplier ratios, capability to directly enable and disable the PLL, and a PLL lock timer that can be used to delay switching to PLL clocking mode of the device until lock is achieved. Devices that have a built-in software-programmable PLL can be configured in one of two clock modes:

- PLL mode. The input clock (CLKIN) is multiplied by 1 of 31 possible ratios. These ratios are achieved using the PLL circuitry.
- DIV (divider) mode. The input clock is divided by 2 or 4. Note that when DIV mode is used, the PLL can be completely disabled in order to minimize power dissipation.

The software-programmable PLL is controlled using the 16-bit memory-mapped (address 0058h) clock mode register (CLKMD). The CLKMD register is used to define the clock configuration of the PLL clock module. Figure 19 shows the bit layout of the clock mode register and Table 14 describes the bit functions.

Twhen in DIV mode (PLLSTATUS is low), PLLMUL, PLLDIV, PLLCOUNT, and PLLON/OFF are don't cares, and their contents are indeterminate. **LEGEND:** R = Read. W = Write

Figure 19. Clock Mode Register (CLKMD)

software-programmable phase-locked loop (PLL) (continued)

Table 14. Clock Mode Register (CLKMD) Bit Functions

BIT NO.	BIT NAME	FUNCTION						
15–12	PLLMUL†	PLL multiplier. PLLMUL defines the frequency multiplier in conjunction with PLLDIV and PLLNDIV. See Table 15						
		PLL divider. PLLDIV defines the frequency multiplier in conjunction with PLLMUL and PLLNDIV. See Table 15.						
11	PLLDIV†	PLLDIV = 0 Means that an integer multiply factor is used						
		PLLDIV = 1 Means that a noninteger multiply factor is used						
10–3	PLLCOUNT [†]	PLL counter value. PLLCOUNT specifies the number of input clock cycles (in increments of16 cycles) for the PLL lock timer to count before the PLL begins clocking the processor after the PLL is started. The PLL counter is a down-counter, which is driven by the input clock divided by 16; therefore, for every 16 input clocks, the PLL counter decrements by one. The PLL counter can be used to ensure that the processor is not clocked until the PLL is locked, so that only valid clock signals are sent to the device.						
2	PLLON/OFF†	PLL on/off. PLLON/OFF enables or disables the PLL part of the clock generator in conjunction with the PLLNDI bit (see Table 16). Note that PLLON/OFF and PLLNDIV can both force the PLL to run; when PLLON/OFF is high the PLL runs independently of the state of PLLNDIV.						
1	PLLNDIV	PLLNDIV configures PLL mode when high or DIV mode when low. PLLNDIV defines the frequency multiplier conjunction with PLLDIV and PLLMUL. See Table 15.						
0	STATUS	Indicates the PLL mode. STATUS = 0 Indicates DIV mode						
		STATUS = 1 Indicates PLL mode						

[†]When in DIV mode (PLLSTATUS is low), PLLMUL, PLLDIV, PLLCOUNT, and PLLON/OFF are don't cares, and their contents are indeterminate.

Table 15. Multiplier Related to PLLNDIV, PLLDIV, and PLLMUL

PLLNDIV	PLLDIV	PLLMUL	MULTIPLIER [‡]
0	Х	0–14	0.5
0	Х	15	0.25
1	0	0–14	PLLMUL + 1
1	0	15	bypass (multiply by 1)§
1	1	0 or even	(PLLMUL + 1)/2
1	1	odd	PLLMUL/4

[‡] CLKOUT = CLKIN * Multiplier

Table 16. VCO Truth Table

PLLON/OFF	PLLNDIV	VCO STATE
0	0	off
1	0	on
0	1	on
1	1	on

[§] Indicates the default clock mode after reset

SPRS098 - DECEMBER 1999

PLL clock programmable timer

During the lockup period, the PLL should not be used to clock the '5421. The PLLCOUNT programmable lock timer provides a convenient method of automatically delaying clocking of the device by the PLL until lock is achieved.

The PLL lock timer is a counter, loaded from the PLLCOUNT field in the CLKMD register, that decrements from its preset value to 0. The timer can be preset to any value from 0 to 255, and its input clock is CLKIN divided by 16. The resulting lockup delay can therefore be set from 0 to 255×16 CLKIN cycles.

The lock timer is activated when the operating mode of the clock generator is switched from DIV to PLL. During the lockup period, the clock generator continues to operate in DIV mode; after the PLL lock timer decrements to zero, the PLL begins clocking the '5421.

Accordingly, the value loaded into PLLCOUNT is chosen based on the following formula:

$$PLLCOUNT = \frac{Lockup\ Time}{16\ \times\ T_{CLKIN}}$$

where T_{CLKIN} is the input reference clock period and lockup time is the required VCO lockup time, as shown in Table 17.

Table 17. VCO Lockup Time

CLKOUT FREQUENCY (MHz)	LOCKUP TIME (μs)
5	23
10	17
20	16
40	19
60	24
80	29
100	35

memory-mapped registers

Table 18. Processor Memory-Mapped Registers for Each DSP Subsystem

NAME ADDRESS DEC HEX			DESCRIPTION			
IMR	0	0	Interrupt Mask Register			
IFR	1	1	Interrupt Flag Register			
_	2–5	2–5	Reserved for testing			
ST0	6	6	Status Register 0			
ST1	7	7	Status Register 1			
AL	8	8	Accumulator A Low Word (15–0)			
AH	9	9	Accumulator A High Word (31–16)			
AG	10	А	Accumulator A Guard Bits (39–32)			
BL	11	В	Accumulator B Low Word (15–0)			
ВН	12	С	Accumulator B High Word (31–16)			
BG	13	D	Accumulator B Guard Bits (39–32)			
TREG	14	Е	Temporary Register			
TRN	15	F	Transition Register			
AR0	16	10	Auxiliary Register 0			
AR1	17	11	Auxiliary Register 1			
AR2	18	12	Auxiliary Register 2			
AR3	19	13	Auxiliary Register 3			
AR4	20	14	Auxiliary Register 4			
AR5	21	15	Auxiliary Register 5			
AR6	22	16	Auxiliary Register 6			
AR7	23	17	Auxiliary Register 7			
SP	24	18	Stack Pointer			
BK	25	19	Circular Buffer Size Register			
BRC	26	1A	Block-Repeat Counter			
RSA	27	1B	Block-Repeat Start Address			
REA	28	1C	Block-Repeat End Address			
PMST	29	1D	Processor Mode Status Register			
XPC	30	1E	Extended Program Counter			
	31	1F	Reserved			

memory-mapped registers (continued)

Table 19. Peripheral Memory-Mapped Registers for Each DSP Subsystem

NAME ADDRESS		RESS	DECORIDATION			
NAME	DEC	HEX	DESCRIPTION			
DRR20	32	20	McBSP 0 Data Receive Register 2			
DRR10	33	21	McBSP 0 Data Receive Register 1			
DXR20	34	22	McBSP 0 Data Transmit Register 2			
DXR10	35	23	McBSP 0 Data Transmit Register 1			
TIM	36	24	Timer Register			
PRD	37	25	Timer Period Register			
TCR	38	26	Timer Control Register			
_	39	27	Reserved			
SWWSR	40	28	Software Wait-State Register			
BSCR	41	29	Bank-Switching Control Register			
_	42	2A	Reserved			
SWCR	43	2B	Software Wait-State Control Register			
HPIC	44	2C	HPI Control Register (HMODE=0 only)			
_	45–47	2D-2F	Reserved			
DRR22	48	30	McBSP 2 Data Receive Register 2			
DRR12	49	31	McBSP 2 Data Receive Register 1			
DXR22	50	32	McBSP 2 Data Transmit Register 2			
DXR12	51	33	McBSP 2 Data Transmit Register 1			
SPSA2	52	34	McBSP 2 Subbank Address Register [†]			
SPSD2	53	35	McBSP 2 Subbank Data Register [†]			
_	54–55	36–37	Reserved			
SPSA0	56	38	McBSP 0 Subbank Address Register [†]			
SPSD0	57	39	McBSP 0 Subbank Data Register [†]			
_	58–59	3A-3B	Reserved			
GPIO	60	3C	General-Purpose I/O Register			
_	61	3D	Reserved			
CSIDR	62	3E	Chip Subsystem ID register			
_	63	3F	Reserved			
DRR21	64	40	McBSP 1 Data Receive Register 2			
DRR11	65	41	McBSP 1 Data Receive Register 1			
DXR21	66	42	McBSP 1 Data Transmit Register 2			
DXR11	67	43	McBSP 1 Data Transmit Register 1			
_	68–71	44–47	Reserved			
SPSA1	72	48	McBSP 1 Subbank Address Register [†]			
SPSD1	73	49	McBSP 1 Subbank Data Register [†]			
_	74–83	4A-53	Reserved			
DMPREC	84	54	DMA Priority and Enable Control Register			
DMSA	85	55	DMA Subbank Address Register‡			
DMSDI	86	56	DMA Subbank Data Register with Autoincrement‡			
DMSDN	87	57	DMA Subbank Data Register‡			
CLKMD	88	58	Clock Mode Register (CLKMD)			
_	89–95	59–5F	Reserved			

[†] See Table 20 for a detailed description of the McBSP control registers and their subaddresses.

[‡] See Table 21 for a detailed description of the DMA subbank addressed registers.

McBSP control registers and subaddresses

The control registers for the multichannel buffered serial port (McBSP) are accessed using the subbank addressing scheme. This allows a set or subbank of registers to be accessed through a single memory location. The McBSP subbank address register (SPSA) is used as a pointer to select a particular register within the subbank. The McBSP data register (SPSDx) is used to access (read or write) the selected register. Table 20 shows the McBSP control registers and their corresponding subaddresses.

Table 20. McBSP Control Registers and Subaddresses

McBSP0		Мс	BSP1	Мс	BSP2		
NAME	ADDRESS	NAME	ADDRESS	NAME	ADDRESS	SUB- ADDRESS	DESCRIPTION
SPCR10	39h	SPCR11	49h	SPCR12	35h	00h	Serial port control register 1
SPCR20	39h	SPCR21	49h	SPCR22	35h	01h	Serial port control register 2
RCR10	39h	RCR11	49h	RCR12	35h	02h	Receive control register 1
RCR20	39h	RCR21	49h	RCR22	35h	03h	Receive control register 2
XCR10	39h	XCR11	49h	XCR12	35h	04h	Transmit control register 1
XCR20	39h	XCR21	49h	XCR22	35h	05h	Transmit control register 2
SRGR10	39h	SRGR11	49h	SRGR12	35h	06h	Sample rate generator register 1
SRGR20	39h	SRGR21	49h	SRGR22	35h	07h	Sample rate generator register 2
MCR10	39h	MCR11	49h	MCR12	35h	08h	Multichannel register 1
MCR20	39h	MCR21	49h	MCR22	35h	09h	Multichannel register 2
RCERA0	39h	RCERA1	49h	RCERA2	35h	0Ah	Receive channel enable register partition A
RCERB0	39h	RCERB1	49h	RCERB2	35h	0Bh	Receive channel enable register partition B
XCERA0	39h	XCERA1	49h	XCERA2	35h	0Ch	Transmit channel enable register partition A
XCERB0	39h	XCERB1	49h	XCERB2	35h	0Dh	Transmit channel enable register partition B
PCR0	39h	PCR1	49h	PCR2	35h	0Eh	Pin control register
RCERC0	39h	RCERC1	49h	RCERC2	35h	010h	Receive channel enable register partition C
RCERD0	39h	RCERD1	49h	RCERD2	35h	011h	Receive channel enable register partition D
XCERC0	39h	XCERC1	49h	XCERC2	35h	012h	Transmit channel enable register partition C
XCERD0	39h	XCERD1	49h	XCERD2	35h	013h	Transmit channel enable register partition D
RCERE0	39h	RCERE1	49h	RCERE2	35h	014h	Receive channel enable register partition E
RCERF0	39h	RCERF1	49h	RCERF2	35h	015h	Receive channel enable register partition F
XCERE0	39h	XCERE1	49h	XCERE2	35h	016h	Transmit channel enable register partition E
XCERF0	39h	XCERF1	49h	XCERF2	35h	017h	Transmit channel enable register partition F
RCERG0	39h	RCERG1	49h	RCERG2	35h	018h	Receive channel enable register partition G
RCERH0	39h	RCERH1	49h	RCERH2	35h	019h	Receive channel enable register partition H
XCERG0	39h	XCERG1	49h	XCERG2	35h	01Ah	Transmit channel enable register partition G
XCERH0	39h	XCERH1	49h	XCERH2	35h	01Bh	Transmit channel enable register partition H

DMA subbank addressed registers

The direct memory access (DMA) controller has several control registers associated with it. The main control register (DMPREC) is a standard memory-mapped register. However, the other registers are accessed using the subbank addressing scheme. This allows a set or subbank of registers to be accessed through a single memory location. The DMA subbank address (DMSA) register is used as a pointer to select a particular register within the subbank, while the DMA subbank data (DMSD) register or the DMA subbank data register with autoincrement (DMSDI) is used to access (read or write) the selected register.

DMA subbank addressed registers (continued)

When the DMSDI register is used to access the subbank, the subbank address is automatically postincremented so that a subsequent access affects the next register within the subbank. This autoincrement feature is intended for efficient, successive accesses to several control registers. If the autoincrement feature is not required, the DMSDN register should be used to access the subbank. Table 21 shows the DMA controller subbank addressed registers and their corresponding subaddresses.

Table 21. DMA Subbank Addressed Registers

NAME	ADDRESS	SUB- ADDRESS	DESCRIPTION			
DMSRC0	56h/57h	00h	DMA channel 0 source address register			
DMDST0	56h/57h	01h	DMA channel 0 destination address register			
DMCTR0	56h/57h	02h	DMA channel 0 element count register			
DMSFC0	56h/57h	03h	DMA channel 0 sync select and frame count register			
DMMCR0	56h/57h	04h	DMA channel 0 transfer mode control register			
DMSRC1	56h/57h	05h	DMA channel 1 source address register			
DMDST1	56h/57h	06h	DMA channel 1 destination address register			
DMCTR1	56h/57h	07h	DMA channel 1 element count register			
DMSFC1	56h/57h	08h	DMA channel 1 sync select and frame count register			
DMMCR1	56h/57h	09h	DMA channel 1 transfer mode control register			
DMSRC2	56h/57h	0Ah	DMA channel 2 source address register			
DMDST2	56h/57h	0Bh	DMA channel 2 destination address register			
DMCTR2	56h/57h	0Ch	DMA channel 2 element count register			
DMSFC2	56h/57h	0Dh	DMA channel 2 sync select and frame count register			
DMMCR2	56h/57h	0Eh	DMA channel 2 transfer mode control register			
DMSRC3	56h/57h	0Fh	DMA channel 3 source address register			
DMDST3	56h/57h	10h	DMA channel 3 destination address register			
DMCTR3	56h/57h	11h	DMA channel 3 element count register			
DMSFC3	56h/57h	12h	DMA channel 3 sync select and frame count register			
DMMCR3	56h/57h	13h	DMA channel 3 transfer mode control register			
DMSRC4	56h/57h	14h	DMA channel 4 source address register			
DMDST4	56h/57h	15h	DMA channel 4 destination address register			
DMCTR4	56h/57h	16h	DMA channel 4 element count register			
DMSFC4	56h/57h	17h	DMA channel 4 sync select and frame count register			
DMMCR4	56h/57h	18h	DMA channel 4 transfer mode control register			
DMSRC5	56h/57h	19h	DMA channel 5 source address register			
DMDST5	56h/57h	1Ah	DMA channel 5 destination address register			
DMCTR5	56h/57h	1Bh	DMA channel 5 element count register			
DMSFC5	56h/57h	1Ch	DMA channel 5 sync select and frame count register			
DMMCR5	56h/57h	1Dh	DMA channel 5 transfer mode control register			
DMSRCP	56h/57h	1Eh	DMA source program page address (common channel)			
DMDSTP	56h/57h	1Fh	DMA destination program page address (common channel)			
DMIDX0	56h/57h	20h	DMA element index address register 0			
DMIDX1	56h/57h	21h	DMA element index address register 1			
DMFRI0	56h/57h	22h	DMA frame index register 0			
DMFRI1	56h/57h	23h	DMA frame index register 1			

DMA subbank addressed registers (continued)

Table 21. DMA Subbank Addressed Registers (Continued)

NAME	ADDRESS	SUB- ADDRESS	DESCRIPTION			
DMGSA0	56h/57h	24h	DMA channel 0 global source address reload register			
DMGDA0	56h/57h	25h	DMA channel 0 global destination address reload register			
DMGCR0	56h/57h	26h	DMA channel 0 global count reload register			
DMGFR0	56h/57h	27h	DMA channel 0 global frame count reload register			
XSRCDP	56h/57h	28h	DMA extended source data page			
XDSTDP	56h/57h	29h	DMA extended destination data page			
DMGSA1	56h/57h	2Ah	DMA channel 1 global source address reload register			
DMGDA1	56h/57h	2Bh	DMA channel 1 global destination address reload register			
DMGCR1	56h/57h	2Ch	DMA channel 1 global count reload register			
DMGFR1	56h/57h	2Dh	DMA channel 1 global frame count reload register			
DMGSA2	56h/57h	2Eh	DMA channel 2 global source address reload register			
DMGDA2	56h/57h	2Fh	DMA channel 2 global destination address reload register			
DMGCR2	56h/57h	30h	DMA channel 2 global count reload register			
DMGFR2	56h/57h	31h	DMA channel 2 global frame count reload register			
DMGSA3	56h/57h	32h	DMA channel 3 global source address reload register			
DMGDA3	56h/57h	33h	DMA channel 3 global destination address reload register			
DMGCR3	56h/57h	34h	DMA channel 3 global count reload register			
DMGFR3	56h/57h	35h	DMA channel 3 global frame count reload register			
DMGSA4	56h/57h	36h	DMA channel 4 global source address reload register			
DMGDA4	56h/57h	37h	DMA channel 4 global destination address reload register			
DMGCR4	56h/57h	38h	DMA channel 4 global count reload register			
DMGFR4	56h/57h	39h	DMA channel 4 global frame count reload register			
DMGSA5	56h/57h	3Ah	DMA channel 5 global source address reload register			
DMGDA5	56h/57h	3Bh	DMA channel 5 global destination address reload register			
DMGCR5	56h/57h	3Ch	DMA channel 5 global count reload register			
DMGFR5	56h/57h	3Dh	DMA channel 5 global frame count reload register			

SPRS098 - DECEMBER 1999

Vector-relative locations and priorities for all internal and external interrupts are shown in Table 22.

Table 22. '5421 Interrupt Locations and Priorities for Each DSP Subsystem

NAME	LOCA	TION	PRIORITY	FUNCTION
NAME	DECIMAL	HEX	FRIORITI	FONCTION
RS, SINTR	0	00	1	Reset (Hardware and Software Reset)
NMI, SINT16	4	04	2	Nonmaskable Interrupt
SINT17	8	08	_	Software Interrupt #17
SINT18	12	0C	_	Software Interrupt #18
SINT19	16	10	_	Software Interrupt #19
SINT20	20	14	_	Software Interrupt #20
SINT21	24	18	_	Software Interrupt #21
SINT22	28	1C	_	Software Interrupt #22
SINT23	32	20	_	Software Interrupt #23
SINT24	36	24	_	Software Interrupt #24
SINT25	40	28	_	Software Interrupt #25
SINT26	44	2C	_	Software Interrupt #26
SINT27	48	30	_	Software Interrupt #27
SINT28	52	34	_	Software Interrupt #28
SINT29	56	38	_	Software Interrupt #29
SINT30	60	3C	_	Software Interrupt #30
INTO, SINTO	64	40	3	External User Interrupt #0
INT1, SINT1	68	44	4	External User Interrupt #1
INT2, SINT2	72	48	5	Reserved
TINT, SINT3	76	4C	6	External Timer Interrupt
BRINT0, SINT4	80	50	7	BSP #0 Receive Interrupt
BXINT0, SINT5	84	54	8	BSP #0 Transmit Interrupt
BRINT2, DMAC0	88	58	9	BSP #2 Receive Interrupt or DMA Channel 0
BXINT2, DMAC1	92	5C	10	BSP #2 Receive Interrupt or DMA Channel 1
INT3, SINT8	96	60	11	Reserved
HPINT, SINT9	100	64	12	HPI Interrupt (from DSPINT in HPIC)
BRINT1, DMAC2	104	68	13	BSP #1 Receive Interrupt or DMA Channel 2
BXINT1, DMAC3	108	6C	14	BSP #1 transmit Interrupt or DMA channel 3
DMAC4, SINT12	112	70	15	DMA Channel 4
DMAC5, SINT13	116	74	16	DMA Channel 5
IPINT, SINT14	120	78	17	Interprocessor Interrupt
_	124–127	7C-7F	_	Reserved

interrupts (continued)

The interprocessor interrupt (IPINT) bit of the interrupt mask register (IMR) and the interrupt flag register (IFR) allows the subsystem to perform interrupt service routines based on the other subsystem activity. Incoming IPINT interrupts are latched in IFR.14. Generating an interprocessor interrupt is performed by writing a "1" to the IPIRQ field of the bank-switching control register (BSCR). Subsequent interrupts must first clear the interrupt by writing "0" to the IPIRQ field. Figure 20 shows the bit layout of the IMR and the IFR. Table 23 describes the bit functions.

For example, if subsystem A is required to notify subsystem B of a completed task, subsystem A must write a "1" to the IPIRQ field to generate a IPINT interrupt on subsystem B. On subsystem B, the IPINT interrupt is latched in IFR.14. Figure 5 shows the bit layout of the BSCR and Table 6 describes the bit functions.

15	14	13	12	11	10	9	8
Reserved	IPINT	DMAC5	DMAC4	XINT1 or DMAC3	RINT1 or DMAC2	HPINT	Reserved
•	R/W		R/W	R/W	R/W	R/W	-
7	6	5	4	3	2	1	0
XINT2 or DMAC1	RINT2 or DMAC0	XINT0	RINT0	TINT	Reserved	INT1	INT0
R/W	R/W	R/W	R/W	R/W		R/W	R/W

LEGEND: R = Read, W = Write

Figure 20. Bit Layout of the IMR and IFR Registers for Subsystems A and B

SPRS098 - DECEMBER 1999

interrupts (continued)

Table 23. Bit Functions for IMR and IFR Registers for Each DSP Subsystem

BIT NO.	BIT NAME	BIT VALUE	FUNCTION
15	Reserved	Χ	Register bit is reserved.
14 IPINT		0	IFR/IMR: Interprocessor IRQ has no interrupt pending/is disabled (masked).
14	IPINI	1	IFR/IMR: Interprocessor IRQ has an interrupt pending/is enabled.
40	DMACE	0	IFR/IMR: DMA Channel 5 has no interrupt pending/is disabled (masked).
13	DMAC5	1	IFR/IMR: DMA Channel 5 has an interrupt pending/is enabled.
40	DMACA	0	IFR/IMR: DMA Channel 4 has no interrupt pending/is disabled (masked).
12	DMAC4	1	IFR/IMR: DMA Channel 4 has an interrupt pending/is enabled.
	VINITA	0	IFR/IMR: McBSP_1 has no transmit interrupt pending/is disabled (masked).
44	XINT1	1	IFR/IMR: McBSP_1 has a transmit interrupt pending/is enabled.
11		0	IFR/IMR: DMA Channel 3 has no interrupt pending/is disabled (masked).
	DMAC3	1	IFR/IMR: DMA Channel 3 has an interrupt pending/is enabled.
	DINITA	0	IFR/IMR: McBSP_1 has no receive interrupt pending/is disabled (masked).
	RINT1	1	IFR/IMR: McBSP_1 has a receive interrupt pending/is enabled.
10		0	IFR/IMR: DMA Channel 2 has no interrupt pending/is disabled (masked).
	DMAC2	1	IFR/IMR: DMA Channel 2 has an interrupt pending/is enabled.
_		0	IFR/IMR: Host-port interface has no DSPINT interrupt pending/is disabled (masked).
9	HPINT	1	IFR/IMR: Host-port interface has an DSPINT interrupt pending/is enabled.
8	Reserved	Х	Register bit is reserved.
		0	IFR/IMR: McBSP_2 has no transmit interrupt pending/is disabled (masked).
_	XINT2	1	IFR/IMR: McBSP_2 has a transmit interrupt pending/is enabled.
7	D14404	0	IFR/IMR: DMA Channel 1 has no interrupt pending/is disabled (masked).
	DMAC1	1	IFR/IMR: DMA Channel 1 has an interrupt pending/is enabled.
		0	IFR/IMR: McBSP_2 has no receive interrupt pending/is disabled (masked).
	RINT2	1	IFR/IMR: McBSP_2 has a receive interrupt pending/is enabled.
6		0	IFR/IMR: DMA Channel 0 has no interrupt pending/is disabled (masked).
	DMAC0	1	IFR/IMR: DMA Channel 0 has an interrupt pending/is enabled.
_	\/\!\!==	0	IFR/IMR: McBSP_0 has no receive interrupt pending/is disabled (masked).
5	XINT0	1	IFR/IMR: McBSP_0 has a receive interrupt pending/is enabled.
		0	IFR/IMR: McBSP_0 has no receive interrupt pending/is disabled (masked).
4	RINT0	1	IFR/IMR: McBSP_0 has a receive interrupt pending/is enabled.
_		0	IFR/IMR: Timer has no interrupt pending/is disabled (masked).
3	TINT	1	IFR/IMR: Timer has an interrupt pending/is enabled.
2	Reserved	Х	Register bit is reserved.
		0	IFR/IMR: Ext user interrupt pin 1 has no interrupt pending/is disabled (masked).
1	INT1	1	IFR/IMR: Ext user interrupt pin 1 has an interrupt pending/is enabled.
		0	IFR/IMR: Ext user interrupt pin 0 has no interrupt pending/is disabled (masked).
0	INT0	1	IFR/IMR: Ext user interrupt pin 0 has an interrupt pending/is enabled.

IDLE3 power-down mode

The IDLE1 and IDLE2 power-down modes operate as described in the *TMS320C54x DSP Reference Set*, *Volume 1: CPU and Peripherals* (literature number SPRU131). The IDLE3 mode is special in that the clocking circuitry is shut off to conserve power. The '5421 cannot enter an IDLE3 mode unless both subsystems execute an IDLE3 instruction. The power-reduced benefits of IDLE3 cannot be realized until both subsystems enter the IDLE3 state and the internal clocks are automatically shut off. The order in which subsystems enter IDLE3 does not matter.

emulating the '5421 device

The '5421 is a single device, but actually consists of two independent subboundary systems that contain register/status information used by the emulator tools. The emulator tools must be informed of the multicore device by modifying the **board.cfg** file. The board.cfg file is an ASCII file that can be modified with most editors. This provides the emulator with a description of the JTAG chain. The board.cfg file must identify two processors when using the '5421. The file contents would look something like this:

"CPU_B" TI320C5xx

"CPU_A" TI320C5xx

Use the compose program to make this file into a binary file (**board.dat**), readable by the emulation tools. Place the board.dat file in the directory that contains the emulator software.

The subsystems are serially connected together internally. Emulation information is serially transmitted into the device using TDI. The device responds with serial scan information transmitted out the TDO pin.

SPRS098 - DECEMBER 1999

documentation support

Extensive documentation supports all TMS320 family generations of devices from product announcement through applications development. The following types of documentation are available to support the design and use of the 'C5000 family of DSPs:

- TMS320C5000 DSP Family Functional Overview (literature number SPRU307)
- Device-specific data sheets (such as this document)
- Complete User Guides
- Development-support tools
- Hardware and software application reports

The five-volume TMS320C54x DSP Reference Set (literature number SPRU210) consists of:

- Volume 1: CPU and Peripherals (literature number SPRU131)
- Volume 2: Mnemonic Instruction Set (literature number SPRU172)
- Volume 3: Algebraic Instruction Set (literature number SPRU179)
- Volume 4: Applications Guide (literature number SPRU173)
- Volume 5: Enhanced Peripherals (literature number SPRU302)

The reference set describes in detail the '54x TMS320 products currently available and the hardware and software applications, including algorithms, for fixed-point TMS320 devices.

For general background information on DSPs and Texas Instruments (TI[™]) devices, see the three-volume publication *Digital Signal Processing Applications with the TMS320 Family* (literature numbers SPRA012, SPRA016, and SPRA017).

A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal processing research and education. The TMS320 newsletter, *Details on Signal Processing*, is published quarterly and distributed to update TMS320 customers on product information.

Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com uniform resource locator (URL).

TI is a trademark of Texas Instruments Incorporated.

absolute maximum ratings over specified temperature range (unless otherwise noted)†

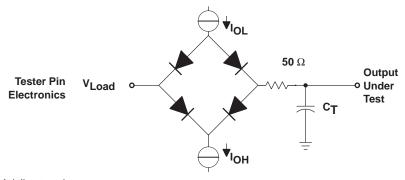
Supply voltage I/O range, DV _{DD} ‡		0.5 V to 4.0 V
Supply voltage core range, CV_{DD}^{\ddagger}		0.5 V to 2.4 V
Supply voltage analog PLL, AVDD‡		0.5 V to 2.4 V
Input voltage range, V _I	– 0.5 V to	$DV_{DD} + 0.5 V$
Output voltage range, V ₀	– 0.5 V to	DV _{DD} + 0.5 V
Operating case temperature range, T _C		. 0°C to 85°C
Storage temperature range T _{stq}		65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			MIN	NOM	MAX	UNIT
DV_{DD}	Device supply voltage, I/O		3.0	3.3	3.6	V
CV _{DD}	Device supply voltage, core		1.71	1.80	1.98	V
AV_{DD}	Device supply voltage, PLL		1.71	1.80	1.98	V
VSS	Supply voltage, GND			0		V
VIH	High-level input voltage, I/O	Schmitt triggered inputs $DV_{DD} = 3.3 \pm 0.3 \text{ V}$	0.7DV _{DD}		DV _{DD}	V
		All other inputs	2		DV_{DD}	
VIL	Low-level input voltage, I/O	Schmitt triggered inputs $DV_{DD} = 3.3 \pm 0.3 \text{ V}$	0		0.3DV _{DD}	V
	7	All other inputs	0		0.8	
IOH	High-level output current				-300	μΑ
loL	Low-level output current				1.5	mA
TC	Operating case temperature		0	•	85	°C

See Figure 21 for 3.3-V device test load circuit values.


[‡] All voltage values are with respect to VSS.

electrical characteristics over recommended operating case temperature range (unless otherwise noted)

	PARAMETE	ER .	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vон	High-level output voltage‡		$V_{DD} = 3.3 \pm 0.3 \text{ V, I}_{OH} = \text{MAX}$	2.4			V
VOL	Low-level output voltage‡		I _{OL} = MAX			0.4	V
Ι _{ΙΖ}	Input current in high imped	lance	$V_{DD} = MAX, V_{O} = V_{SS} \text{ to } V_{DD}$	-10		10	μΑ
		TRST	With internal pulldown	-10		35	
		See pin descriptions	With internal pullups	-35		10	
lį	Input current (VI = VSS to VDD)	PPD[15:0]	Bus holders enabled, $V_{DD} = MAX$, $V_{I} = V_{SS}$ to V_{DD}	-175		175	μΑ
		All other input-only pins		-10		10	
IDDC	Supply current, both core	CPUs	$CV_{DD} = 1.8 \text{ V}, f_X = 100 \text{ MHz}\$,$ $T_C = 25^{\circ}C$		90¶		mA
I _{DDP}	Supply current, pins		$DV_{DD} = 3.3 \text{ V, } f_{clock} = 100 \text{ MHz} \text{ I},$ $T_{C} = 25^{\circ}\text{C}^{\#}$		54		mA
I _{DDA}	Supply current, PLL				5		mA
	Complex assument atom the	IDLE2	PLL × n mode, 20 MHz input		2		mA
IDDC	Supply current, standby	IDLE3	PLL x n mode, 20 MHz input		600		μΑ
Ci	Input capacitance				10		pF
Co	Output capacitance				10		pF

[†] All values are typical unless otherwise specified.

PARAMETER MEASUREMENT INFORMATION

Where: I_{OL} = 1.5 mA (all outputs) I_{OH} = 300 μ A (all outputs)

 $V_{Load} = 1.5 V$

C_T = 40 pF typical load circuit capacitance

Figure 21. 3.3-V Test Load Circuit

[‡] All input and output voltage levels except RS, INTO, INT1, NMI, CLKIN, BCLKX, BCLKR, HAS, HCS, HDS1, HDS2, and HPIRS are LVTTL-compatible.

[§] Clock mode: PLL × 1 with external source

[¶] This value is based on 50% usage of MAC and 50% usage of NOP instructions. Actual operating current varies with the program being executed.

[#] This value was obtained using the following conditions: external memory writes at a rate of 20 million writes per second, CLKOFF = 0, full-duplex operation of all six McBSPs at a rate of 10 million bits per second each, and 15-pF loads on all outputs. For more details on how this calculation is performed, refer to the *Calculation of TMS320LC54x Power Dissipation Application Report* (literature number SPRA164).

divide-by-two, divide-by-four, and bypass clock option (PLL Disabled)

The frequency of the reference clock provided at the CLKIN pin can be divided by a factor of two or four to generate the internal machine cycle. The selection of the clock mode is described in the software-programmable phase-locked loop (PLL) section.

switching characteristics over recommended operating conditions $[H = 0.5t_{C(CO)}]^{\dagger}$ (see Figure 22, and the recommended operating conditions table)

	PARAMETER		'5421-200		
			TYP	MAX	UNIT
t _C (CO)	Cycle time, CLKOUT	40	2t _C (CI)	†	ns
t _C (CO)	Cycle time, CLKOUT – bypass mode	40	2t _C (CI)	†	ns
td(CIH-CO)	Delay time, CLKIN high to CLKOUT high/low	3	6	10	ns
t _f (CO)	Fall time, CLKOUT		2		ns
tr(CO)	Rise time, CLKOUT		2		ns
tw(COL)	Pulse duration, CLKOUT low	H-2	H–1	Н	ns
tw(COH)	Pulse duration, CLKOUT high	H–2	H–1	Н	ns

[†] This device utilizes a fully static design and therefore can operate with t_{C(CI)} approaching ∞. The device is characterized at frequencies approaching 0 Hz.

timing requirements (see Figure 22)

		'5421-200		UNIT
		MIN	MAX	UNII
t _{c(CI)}	Cycle time, CLKIN	20	†	ns
t _f (CI)	Fall time, CLKIN		8	ns
tr(CI)	Rise time, CLKIN		8	ns
tw(CIL)	Pulse duration, CLKIN low	5		ns
tw(CIH)	Pulse duration, CLKIN high	5		ns

[†] This device utilizes a fully static design and therefore can operate with t_{C(CI)} approaching ∞. The device is characterized at frequencies approaching 0 Hz.

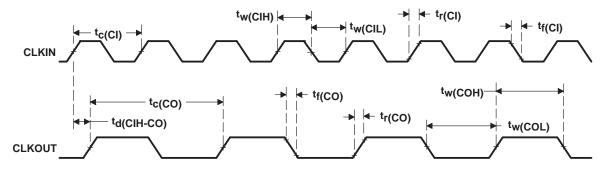


Figure 22. External Divide-by-Two Clock Timing

multiply-by-N clock option (PLL Enabled)

The frequency of the reference clock provided at the CLKIN pin can be multiplied by a factor of N to generate the internal machine cycle. The selection of the clock mode and the value of N is described in the software-programmable phase-locked loop (PLL) section.

switching characteristics over recommended operating conditions [H = $0.5t_{c(CO)}$] (see Figure 23)

	DADAMETED		'5421-200		
	PARAMETER	MIN	TYP	MAX	UNIT
t _C (CO)	Cycle time, CLKOUT	10	t _{c(CI)} /N†		ns
td(CI-CO)	Delay time, CLKIN high/low to CLKOUT high/low	4	10	16	ns
t _f (CO)	Fall time, CLKOUT		2		ns
tr(CO)	Rise time, CLKOUT		2		ns
tw(COL)	Pulse duration, CLKOUT low	H-2	H–1	Н	ns
tw(COH)	Pulse duration, CLKOUT high	H-2	H–1	Н	ns
tp	Transitory phase, PLL lock up time			30	μS

[†] N = Multiplication factor

timing requirements (see Figure 23)†

			'5421	-200	
			MIN MAX		UNIT
		Integer PLL multiplier N (N = 1–15)	20‡	200	
t _C (CI)	Cycle time, CLKIN	PLL multiplier N = x.5	20‡	100	ns
		PLL multiplier N = x.25, x.75	20‡	50	İ
t _f (CI)	Fall time, CLKIN	·		8	ns
tr(CI)	Rise time, CLKIN			8	ns
tw(CIL)	Pulse duration, CLKIN low		5		ns
tw(CIH)	Pulse duration, CLKIN high		5		ns

[†] N = Multiplication factor

[‡] The multiplication factor and minimum CLKIN cycle time should be chosen such that the resulting CLKOUT cycle time is within the specified range (tc(CO))

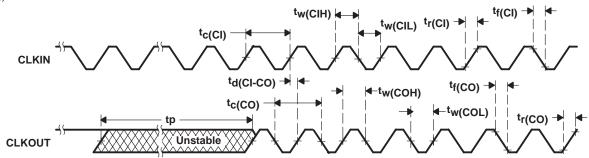


Figure 23. External Multiply-by-One Clock Timing

external memory interface timing

switching characteristics over recommended operating conditions for a memory read $(\overline{MSTRB}=0)^{\dagger}$ (see Figure 24)

	PARAMETER	MIN	MAX	UNIT
td(CLKL-A)	Delay time, CLKOUT low to address valid [‡]	-1	4	ns
td(CLKH-A)	Delay time, CLKOUT high (transition) to address valid§	-1	4	ns
td(CLKL-MSL)	Delay time, CLKOUT low to MSTRB low	-1	4	ns
^t d(CLKL-MSH)	Delay time, CLKOUT low to MSTRB high	- 1	4	ns
th(CLKL-A)R	Hold time, address valid after CLKOUT low [‡]	-1	4§	ns
th(CLKH-A)R	Hold time, address valid after CLKOUT high§	-1	4§	ns

[†] Address, \overline{PS} , and \overline{DS} timings are all included in timings referenced as address.

timing requirements for a memory read ($\overline{MSTRB} = 0$) [H = 0.5 $t_{c(CO)}$][†] (see Figure 24)

		MIN	MAX	UNIT
ta(A)M	Access time, read data access from address valid	2H		ns
ta(MSTRBL)	Access time, read data access from MSTRB low	2H		ns
t _{su(D)R}	Setup time, read data before CLKOUT low	Н		ns
th(D)R	Hold time, read data after CLKOUT low	0		ns
th(A-D)R	Hold time, read data after address invalid	0		ns
th(D)MSTRBH	Hold time, read data after MSTRB high	0		ns

[†] Address, PS, and DS timings are all included in timings referenced as address.

[‡] In the case of a memory read preceded by a memory read

[§] In the case of a memory read preceded by a memory write

external memory interface timing (continued)

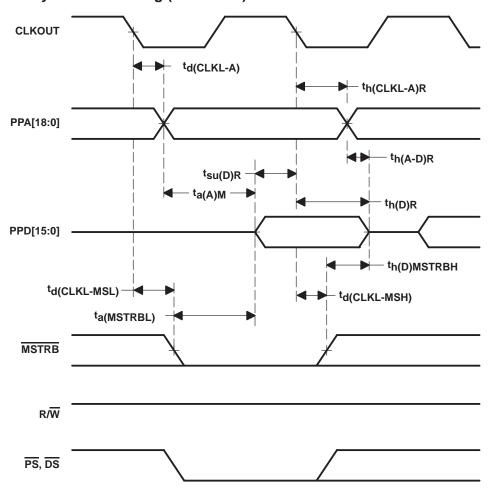


Figure 24. Memory Read ($\overline{MSTRB} = 0$)

external memory interface timing for a memory write

<u>switching</u> characteristics over recommended operating conditions for a memory write (MSTRB = 0) [H = 0.5 $t_{c(CO)}$][†] (see Figure 25)

	PARAMETER	MIN	MAX	UNIT
td(CLKH-A)	Delay time, CLKOUT high to address valid [‡]	– 1	4	ns
td(CLKL-A)	Delay time, CLKOUT low to address valid§	-1	4	ns
td(CLKL-MSL)	Delay time, CLKOUT low to MSTRB low	-1	4	ns
td(CLKL-D)W	Delay time, CLKOUT low to data valid	0	7	ns
td(CLKL-MSH)	Delay time, CLKOUT low to MSTRB high	– 1	5	ns
td(CLKH-RWL)	Delay time, CLKOUT high to R/W low	0	4	ns
td(CLKH-RWH)	Delay time, CLKOUT high to R/W high	-1	4	ns
^t d(RWL-MSTRBL)	Delay time, R/W low to MSTRB low	H – 2	H + 2	ns
th(A)W	Hold time, address valid after CLKOUT high [‡]	-1	4	ns

[†] Address, PS, and DS timings are all included in timings referenced as address.

timing requirements for a memory write ($\overline{MSTRB} = 0$) [H = 0.5 $t_{c(CO)}$][†] (see Figure 25)

		MIN	MAX	UNIT
th(D)MSH	Hold time, write data valid after MSTRB high	H-3	H +3§	ns
tw(SL)MS	Pulse duration, MSTRB low§	4H–4		ns
t _{su(A)W}	Setup time, address valid before MSTRB low	4H–4		ns
t _{su(D)MSH}	Setup time, write data valid before MSTRB high	4H-5	4H+5§	ns

[†] Address, PS, and DS timings are all included in timings referenced as address.

[‡] In the case of a memory write preceded by a memory write

[§] In the case of a memory write preceded by an I/O cycle

[§] In the case of a memory write preceded by an I/O cycle

external memory interface timing for a memory write (continued)

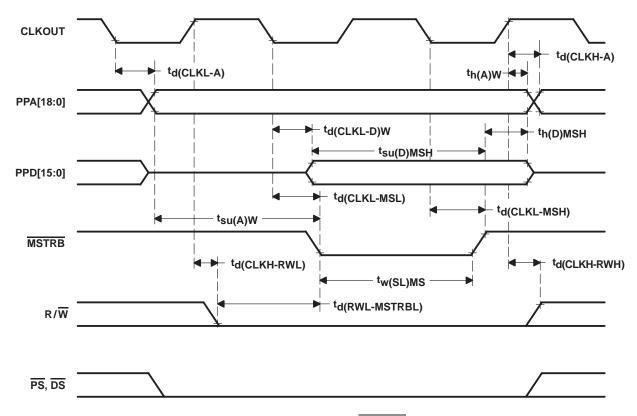


Figure 25. Memory Write ($\overline{MSTRB} = 0$)

ready timing for externally generated wait states

timing requirements for externally generated wait states $[H = 0.5 t_{C(CO)}]^{\dagger}$ (see Figure 26 and Figure 27)

		MIN	MAX	UNIT
t _{su(RDY)}	Setup time, READY before CLKOUT low	5		ns
th(RDY)	Hold time, READY after CLKOUT low	0		ns
tv(RDY)MSTRB	Valid time, READY after MSTRB low [‡]		4H-8	ns
th(RDY)MSTRB	Hold time, READY after MSTRB low [‡]	4H		ns

[†] The hardware wait states can be used only in conjunction with the software wait states to extend the bus cycles. To generate wait states by READY, at least two software wait states must be programmed. READY is not sampled until the completion of the internal software wait states.

[‡] These timings are included for reference only. The critical timings for READY are those referenced to CLKOUT

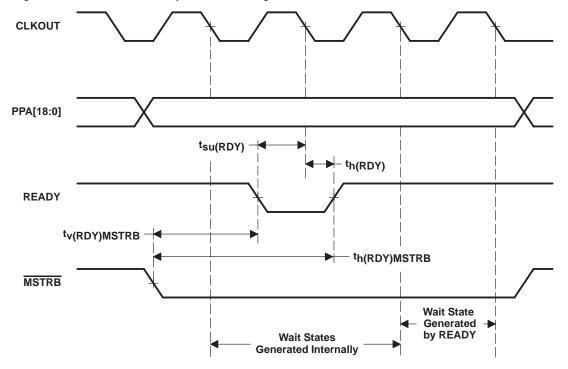


Figure 26. Memory Read With Externally Generated Wait States

ready timing for externally generated wait states (continued)

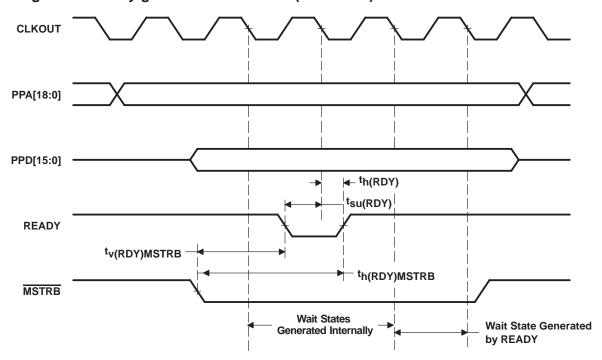


Figure 27. Memory Write With Externally Generated Wait States

parallel I/O interface timing

<u>switching</u> characteristics over recommended operating conditions for a parallel I/O port read (IOSTRB = 0)[†] (see Figure 28)

	PARAMETER	MIN	MAX	UNIT
td(CLKL-A)	Delay time, CLKOUT low to address valid	0	4	ns
td(CLKH-ISTRBL)	Delay time, CLKOUT high to IOSTRB low	0	4	ns
td(CLKH-ISTRBH)	Delay time, CLKOUT high to IOSTRB high	0	4	ns
th(A)IOR	Hold time, address after CLKOUT low	0	4	ns

[†] Address and IS timings are included in timings referenced as address.

timing requirements for a parallel I/O port read ($\overline{\text{IOSTRB}} = 0$) [H = 0.5 t_{c(CO)}][†] (see Figure 28)

		MIN	MAX	UNIT
ta(A)IO	Access time, read data access from address valid		5H-3	ns
ta(ISTRBL)IO	Access time, read data access from IOSTRB low		2H-3	ns
t _{su(D)IOR}	Setup time, read data before CLKOUT high	4		ns
th(D)IOR	Hold time, read data after CLKOUT high	0		ns
th(ISTRBH-D)R	Hold time, read data after IOSTRB high	0		ns

[†] Address and IS timings are included in timings referenced as address.

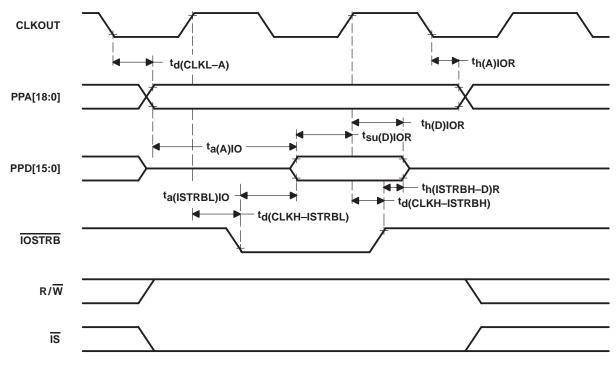


Figure 28. Parallel I/O Port Read (IOSTRB=0)

parallel I/O interface timing (continued)

<u>switching</u> characteristics over recommended operating conditions for a parallel I/O port write (IOSTRB = 0) [H = 0.5 $t_{c(CO)}$][†] (see Figure 29)

	` ,			
	PARAMETER	MIN	MAX	UNIT
td(CLKL-A)	Delay time, CLKOUT low to address valid	-1	4	ns
td(CLKH-ISTRBL)	Delay time, CLKOUT high to IOSTRB low	0	4	ns
td(CLKH-D)IOW	Delay time, CLKOUT high to write data valid	H-5	H+3	ns
td(CLKH-ISTRBH)	Delay time, CLKOUT high to IOSTRB high	-1	4	ns
td(CLKL-RWL)	Delay time, CLKOUT low to R/W low	0	4	ns
td(CLKL-RWH)	Delay time, CLKOUT low to R/W high	0	4	ns
th(A)IOW	Hold time, address valid after CLKOUT low	-1	4	ns
th(D)IOW	Hold time, write data after IOSTRB high	H-3	H+7	ns
t _{su(D)} IOSTRBH	Setup time, write data before IOSTRB high	H-5	H+1	ns
t _{su(A)IOSTRBL}	Setup time, address valid before IOSTRB low	H–3	H+3	ns

[†] Address and IS timings are included in timings referenced as address.

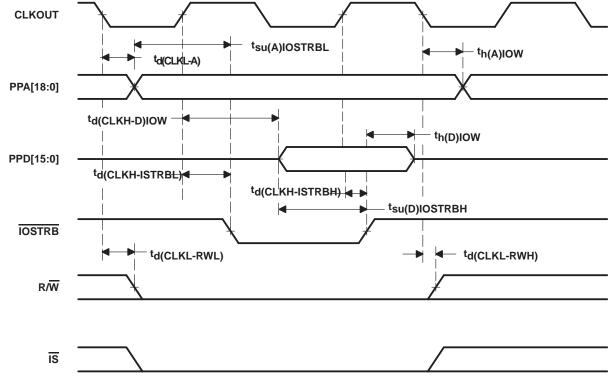


Figure 29. Parallel I/O Port Write (IOSTRB=0)

externally generated wait states timing

timing requirements for externally generated wait states $[H = 0.5 t_{C(CO)}]^{\dagger}$ (see Figure 30 and Figure 31)

		MIN	MAX	UNIT
t _{su(RDY)}	Setup time, READY before CLKOUT low	5		ns
th(RDY)	Hold time, READY after CLKOUT low	0		ns
t _V (RDY)IOSTRB	Valid time, READY after IOSTRB low‡		5H-8	ns
th(RDY)IOSTRB	Hold time, READY after IOSTRB low‡	5H		ns

[†] The hardware wait states can be used only in conjunction with the software wait states to extend the bus cycles. To generate wait states using READY, at least two software wait states must be programmed.

[‡]These timings are included for reference only. The critical timings for READY are those referenced to CLKOUT.

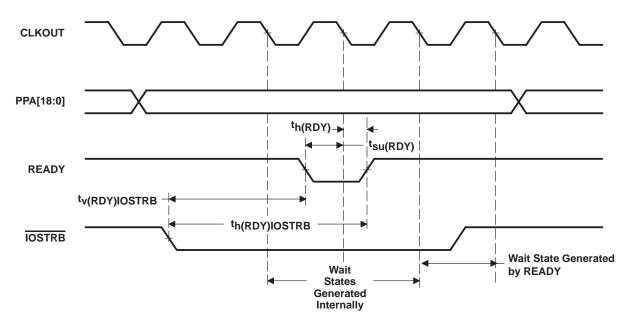


Figure 30. I/O Port Read With Externally Generated Wait States

externally generated wait states timing (continued)

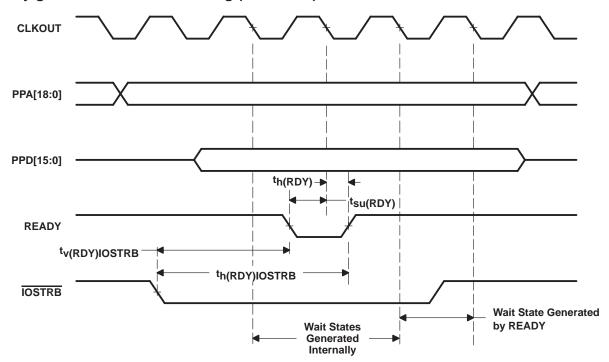


Figure 31. I/O Port Write With Externally Generated Wait States

reset, BIO, interrupt, and XIO timings

timing requirements for reset, \overline{BIO} , interrupt, and XIO [H = 0.5 $t_{c(CO)}$] (see Figure 32, Figure 33, and Figure 34)

		MIN	MAX	UNIT
th(RS)	Hold time, RS after CLKOUT low	0		ns
th(BIO)	Hold time, BIO after CLKOUT low	0		ns
th(INT)	Hold time, INTn, NMI, after CLKOUT low [†]	0		ns
th(XIO)	Hold time, XIO after CLKOUT low	0		ns
tw(RSL)	Pulse duration, RS low‡§	4H+5		ns
tw(BIO)A	Pulse duration, BIO low, asynchronous†	5H		ns
tw(INTH)A	Pulse duration, INTn, NMI high (asynchronous)†	4H		ns
tw(INTL)A	Pulse duration, INTn, NMI low (asynchronous)†	4H		ns
tw(INTL)WKP	Pulse duration, INTn, NMI low for IDLE2/IDLE3 wakeup [†]	8		ns
t _{su(RS)}	Setup time, RS before CLKIN low§	5		ns
tsu(BIO)	Setup time, BIO before CLKOUT low	9	12	ns
t _{su(INT)}	Setup time, INTn, NMI, RS before CLKOUT low	9	13	ns
t _{su(XIO)}	Setup time, XIO before CLKOUT low [†]	10	8	ns

[†] The external interrupts (INTO-INT1, NMI) are synchronized to the core CPU by way of a two flip-flop synchronizer which samples these inputs with consecutive falling edges of CLKOUT. The input to the interrupt pins is required to represent a 1-0-0 sequence at the timing that is corresponding to a three-CLKOUT sampling sequence.

[§] RS can cause a change in clock frequency, changing the value of H (see the software-programmable phase-locked loop (PLL) section).

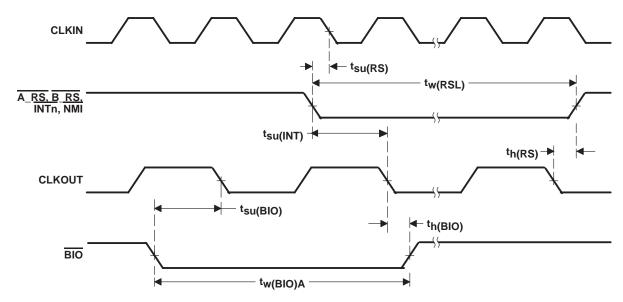


Figure 32. Reset and BIO Timings

[‡] If the PLL mode is selected, then at power-on sequence, or at wakeup from IDLE3, $\overline{\text{RS}}$ must be held low for at least 50 μs to ensure synchronization and lock-in of the PLL.

reset, BIO, interrupt, and XIO timings (continued)

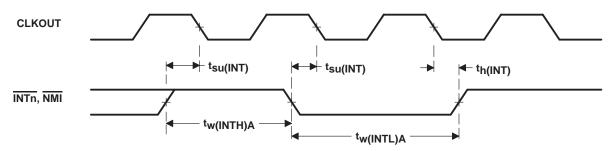


Figure 33. Interrupt Timing

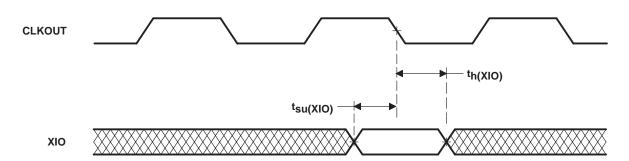


Figure 34. XIO Timing

HOLD and **HOLDA** timing

switching characteristics over recommended operating conditions for memory control signals and HOLDA [H = 0.5 $t_{c(CO)}$] (see Figure 35)

	PARAMETER	MIN	MAX	UNIT
^t v(HOLDA)	Valid time, HOLDA low after CLKOUT low	0	5	ns
	Valid time, HOLDA high after CLKOUT low	-2	3	ns
tw(HOLDA)	Pulse duration, HOLDA low duration	2H-3		ns

timing requirements for $\overline{\text{HOLD}}$ [H = 0.5 $t_{\text{C(CO)}}$] (see Figure 35)

		MAX	MIN	UNIT
tw(HOLD)	Pulse duration, HOLD low duration	4H+10		ns
tsu(HOLD)	Setup time, HOLD low/high before CLKOUT low	10		ns

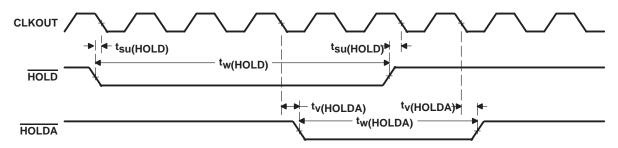


Figure 35. $\overline{\text{HOLD}}$ and $\overline{\text{HOLDA}}$ Timing (HM = 1)

external flag and timer output timing

switching characteristics over recommended operating conditions for external flag (XF) and TOUT [H = 0.5 $t_{c(CO)}$] (see Figure 36 and Figure 37)

	PARAMETER		MAX	UNIT
	Delay time, CLKOUT low to XF high	-2	3	
^t d(XF)	Delay time, CLKOUT low to XF low	0	5	ns
td(TOUTH)	Delay time, CLKOUT low to TOUT high	-2	3	ns
td(TOUTL)	Delay time, CLKOUT low to TOUT low	-2	3	ns
tw(TOUT)	Pulse duration, TOUT	2H-10	2H	ns

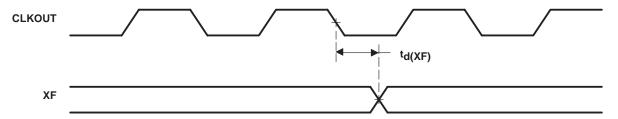


Figure 36. External Flag (XF) Timing

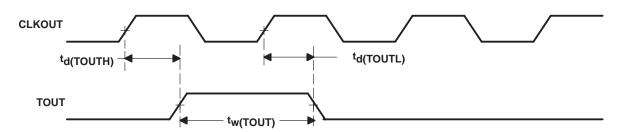


Figure 37. Timer (TOUT) Timing

general-purpose input output (GPIO) timing

timing requirements for GPIO (see Figure 38)

		MIN M	AX U	INIT
tsu(GPIO-COH)	Setup time, GPIOx input valid before CLKOUT high, GPIOx configured as general-purpose input.	7	r	ns
th(GPIO-COH)	Hold time, GPIOx input valid after CLKOUT high, GPIOx configured as general-purpose input.	0	r	ns

switching characteristics for GPIO (see Figure 38)

	PARAMETER	MIN	MAX	UNIT
td(COH-GPIO)	Delay time, CLKOUT high to GPIOx output change. GPIOx configured as general-purpose output.	0	5	ns

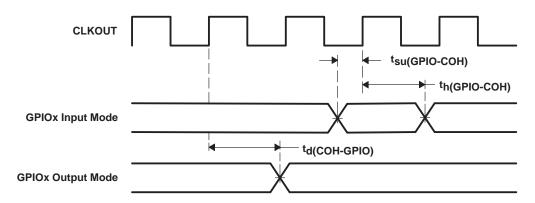


Figure 38. GPIO Timings

SPRS098 - DECEMBER 1999

multichannel buffered serial port timing

timing requirements for the McBSP † [H=0.5 $t_{\text{C(CO)}}$] (see Figure 39 and Figure 40)

		_	MIN	MAX	UNIT	
t _c (BCKRX)	Cycle time, BCLKR/X	BCLKR/X ext	4H		ns	
tw(BCKRX)	Pulse duration, BCLKR/X low or BCLKR/X high	BCLKR/X ext	6		ns	
[†] h(BCKRL-BFRH)	Hold time, external BFSR high after BCLKR low	BCLKR int	0		ns	
		BCLKR ext	4			
[†] h(BCKRL-BDRV)	Hold time, BDR valid after BCLKR low	BCLKR int	0		ns	
		BCLKR ext	5			
[†] h(BCKXL-BFXH)	Hold time, external BFSX high after BCLKX low	BCLKX int	0			
		BCLKX ext	4		ns	
t _{su} (BFRH-BCKRL)	Setup time, external BFSR high before BCLKR low	BCLKR int	10			
		BCLKR ext	4		ns	
t _{su} (BDRV-BCKRL)	Setup time, BDR valid before BCLKR low	BCLKR int	10		ns	
		BCLKR ext	3			
t _{su(BFXH-BCKXL)}	Setup time, external BFSX high before BCLKX low	BCLKX int	10		ns	
		BCLKX ext	6			
t _r (BCKRX)	Rise time, BCLKR/X	BCLKR/X ext		8	ns	
t _f (BCKRX)	Fall time, BCLKR/X	BCLKR/X ext		8	ns	

[†] Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

ADVANCE INFORMATION

multichannel buffered serial port timing (continued)

switching characteristics for the McBSP[†] [H=0.5t_{c(CO)}] (see Figure 39 and Figure 40)

PARAMETER						UNIT
tc(BCKRX)	Cycle time, BCLKR/X	BCLKR/X int	4H		ns	
tw(BCKRXH)	Pulse duration, BCLKR/X high		BCLKR/X int	D-4 [‡]	D+1 [‡]	ns
tw(BCKRXL)	Pulse duration, BCLKR/X low		BCLKR/X int	C-4 [‡]	C+1 [‡]	ns
td(BCKRH-BFRV)	Delay time, BCLKR high to internal BFSR valid		BCLKR int	-3	3	ns
	Delay time, BCLKX high to internal BFSX valid		BCLKX int	-3	8	ns
^t d(BCKXH-BFXV)			BCLKX ext	2	15	
*	Disable time, BCLKX high to BDX high impedance following last data bit		BCLKX int	-8	5	ns
^t dis(BCKXH-BDXHZ)			BCLKX ext	1	19	
	Delay time, BCLKX high to BDX valid. This applies to all bits except the first bit transmitted.		BCLKX int	0	11	
			BCLKX ext	5	20	
	Delay time, BCLKX high to BDX valid.§ Only applies to first bit transmitted when in Data Delay 1 or 2 (XDATDLY=01b or 10b) modes	DXENA = 0	BCLKX int		11	ns
^t d(BCKXH-BDXV)			BCLKX ext		20	
		DXENA = 1	BCLKX int		25	
			BCLKX ext		27	
^t en(BCKXH-BDX)	Enable time, BCLKX high to BDX driven.§ Only applies to first bit transmitted when in Data Delay 1 or 2 (XDATDLY=01b or 10b) modes	DXENA = 0	BCLKX int	-4		ns
			BCLKX ext	2		
		DXENA = 1	BCLKX int	6		
			BCLKX ext	12		
[†] d(BFXH-BDXV)	Delay time, BFSX high to BDX valid.§ Only applies to first bit transmitted when in Data Delay 0 (XDATDLY=00b) mode.	DXENA = 0	BFSX int		9	ns
			BFSX ext		12	
		DXENA = 1	BFSX int		25	
			BFSX ext		26	
^t en(BFXH-BDX)	Enable time, BFSX high to BDX driven.§ Only applies to first bit transmitted when in Data Delay 0 (XDATDLY=00b) mode	DXENA = 0	BFSX int	-1		ns
			BFSX ext	2		
		DXENA = 1	BFSX int	9		
	,		BFSX ext	13		

[†] Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

[‡]T=BCLKRX period = (1 + CLKGDV) * 2H

C=BCLKRX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even D=BCLKRX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even

[§] See the TMS320C54x Enhanced Peripherals Reference Set, Volume 5 (literature number SPRU302) for a description of the DX enable (DXENA) and data delay features of the McBSP.

multichannel buffered serial port timing (continued)

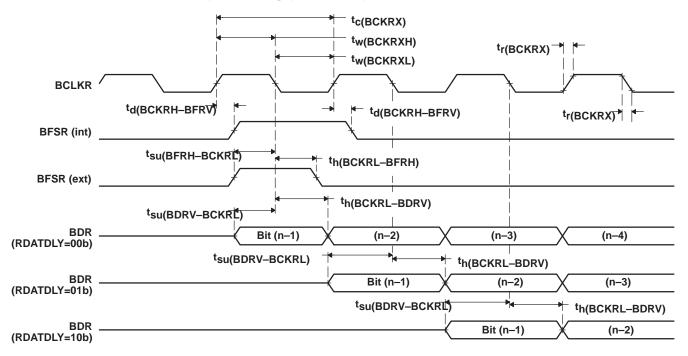


Figure 39. McBSP Receive Timings

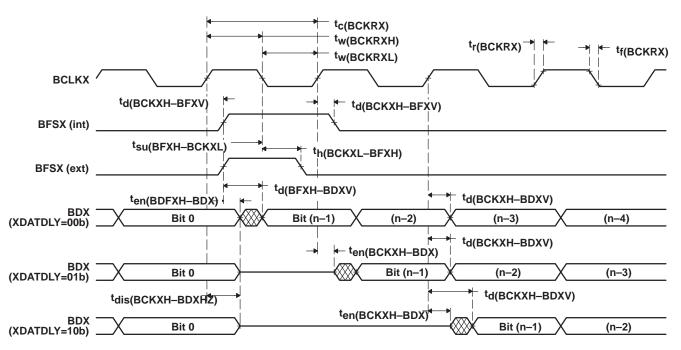
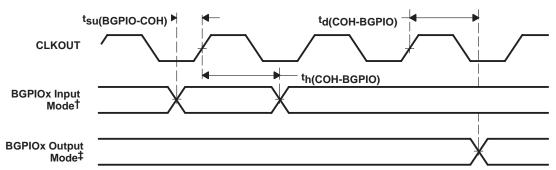


Figure 40. McBSP Transmit Timings

timing requirements for McBSP general-purpose I/O (see Figure 41)


		MIN	MAX	UNIT
t _{su} (BGPIO-COH)	Setup time, BGPIOx input mode before CLKOUT high [†]	9		ns
th(COH-BGPIO)	Hold time, BGPIOx input mode after CLKOUT high [†]	0		ns

[†] BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.

switching characteristics for McBSP general-purpose I/O (see Figure 41)

PARAMETER	MIN	MAX	UNIT
td(COH-BGPIO) Delay time, CLKOUT high to BGPIOx output mode [‡]	-10	10	ns

BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.

[†]BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.

Figure 41. McBSP General-Purpose I/O Timings

^{\$} BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.

timing requirements for McBSP as SPI master or slave: $[H=0.5t_{C(CO)}]$ CLKSTP = 10b, CLKXP = 0[†] (see Figure 42)

		MAST	ER	SLAVE X MIN MAX 2-12H	/E	UNIT
		MIN MAX MIN MAX 12 2 – 12H 4 6 + 12H 10	UNIT			
t _{su} (BDRV-BCKXL)	Setup time, BDR valid before BCLKX low	12		2 – 12H		ns
th(BCKXL-BDRV)	Hold time, BDR valid after BCLKX low	4		6 + 12H		ns
tsu(BFXL-BCKXH)	Setup time, BFSX low before BCLKX high			10		ns
t _c (BCKX)	Cycle time, BCLKX	12H		32H		ns

[†] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

switching characteristics for McBSP as SPI master or slave: [H=0.5 $t_{c(CO)}$] CLKSTP = 10b, CLKXP = 0[†] (see Figure 42)

	PARAMETER	MAS	TER‡	SL	AVE	UNIT
	PARAIMETER	MIN	MAX	MIN	MAX	UNIT
th(BCKXL-BFXL)	Hold time, BFSX low after BCLKX low§	T – 5	T + 5			ns
td(BFXL-BCKXH)	Delay time, BFSX low to BCLKX high¶	C – 5	C + 5			ns
td(BCKXH-BDXV)	Delay time, BCLKX high to BDX valid	-2	12	6H + 4	10H + 19	ns
tdis(BCKXL-BDXHZ)	Disable time, BDX high impedance following last data bit from BCLKX low $$	C – 2	C +10			ns
tdis(BFXH-BDXHZ)	Disable time, BDX high impedance following last data bit from BFSX high			4H+ 4	8H + 17	ns
td(BFXL-BDXV)	Delay time, BFSX low to BDX valid			4H + 4	8H + 17	ns

[†] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (BCLKX).

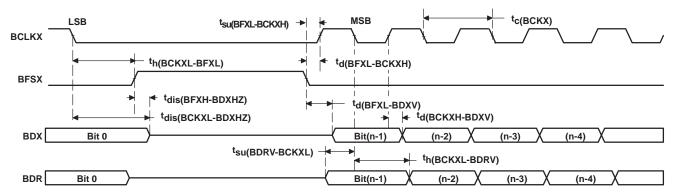


Figure 42. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0

[‡]T = BCLKX period = (1 + CLKGDV) * 2H

C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even

[§] FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX and BFSR is inverted before being used internally.

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

timing requirements for McBSP as SPI master or slave: $[H=0.5t_{C(CO)}]$ CLKSTP = 11b, CLKXP = 0^{\dagger} (see Figure 43)

		MAST	ER	SLAV	Έ	UNIT
		MIN	MAX	SLAVE X MIN MAX 2 – 12H 5 +12H 10 32H	UNII	
t _{su} (BDRV-BCKXH)	Setup time, BDR valid before BCLKX high	12		2 – 12H		ns
th(BCKXH-BDRV)	Hold time, BDR valid after BCLKX high	4		5 +12H		ns
tsu(BFXL-BCKXH)	Setup time, BFSX low before BCLKX high			10		ns
t _c (BCKX)	Cycle time, BCLKX	12H		32H		ns

[†] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

switching characteristics for McBSP as SPI master or slave: $[H=0.5t_{c(CO)}]$ CLKSTP = 11b, CLKXP = 0^{+} (see Figure 43)

	PARAMETER Hold time, BFSX low after BCLKX low Delay time, BFSX low to BCLKX high Delay time, BCLKX low to BDX valid Disable time, BDX high impedance following last data bit from BCLKX low	MAST	ΓER [‡]	SLAVE		UNIT
	PARAMETER	MIN	MAX	MIN	MAX	UNIT
th(BCKXL-BFXL)	Hold time, BFSX low after BCLKX low§	C – 5	C + 5			ns
td(BFXL-BCKXH)	Delay time, BFSX low to BCLKX high¶	T – 5	T + 5			ns
td(BCKXL-BDXV)	Delay time, BCLKX low to BDX valid	-2	12	6H + 4	10H + 19	ns
tdis(BCKXL-BDXHZ)	Disable time, BDX high impedance following last data bit from BCLKX low $$	-2	10	6H + 4	10H + 17	ns
t _d (BFXL-BDXV)	Delay time, BFSX low to BDX valid	D – 2	D +10	4H – 4	8H + 17	ns

[†] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

- CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP
- CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (BCLKX).

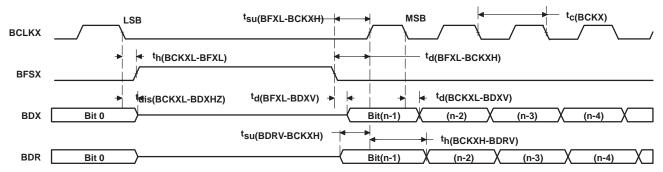


Figure 43. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0

T = BCLKX period = (1 + CLKGDV) * 2H

C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even

D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even

[§] FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX and BFSR is inverted before being used internally.

timing requirements for McBSP as SPI master or slave: $[H=0.5t_{C(CO)}]$ CLKSTP = 10b, CLKXP = 1[†] (see Figure 44)

		MAST	ER	SLAV	'E	UNIT
		MASTER SLAVE MIN MAX MIN MAX 12 2 - 12H 4 6 + 12H 4 6 + 12H 10 12H 32H 32H	ONIT			
t _{su} (BDRV-BCKXH)	Setup time, BDR valid before BCLKX high	12		2 – 12H		ns
th(BCKXH-BDRV)	Hold time, BDR valid after BCLKX high	4		6 + 12H		ns
tsu(BFXL-BCKXL)	Setup time, BFSX low before BCLKX low			10		ns
t _c (BCKX)	Cycle time, BCLKX	12H		32H		ns

[†] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

switching characteristics for McBSP as SPI master or slave: $[H=0.5t_{c(CO)}]$ CLKSTP = 10b, CLKXP = 1^{†‡} (see Figure 44)

	DADAMETED	MAS	TER	SL	AVE	UNIT
	Delay time, BFSX low to BCLKX low Delay time, BCLKX low to BDX valid Disable time, BDX high impedance following last data bit from BCLKX high Disable time, BDX high impedance following last data bit from BFSX	MIN	MAX	MIN	MAX	UNIT
th(BCKXH-BFXL)	Hold time, BFSX low after BCLKX high§	T – 5	T + 5			ns
td(BFXL-BCKXL)	Delay time, BFSX low to BCLKX low¶	D – 5	D + 5			ns
td(BCKXL-BDXV)	Delay time, BCLKX low to BDX valid	-2	12	6H + 4	10H + 19	ns
tdis(BCKXH-BDXHZ)	Disable time, BDX high impedance following last data bit from BCLKX high	D – 2	D +10			ns
tdis(BFXH-BDXHZ)	Disable time, BDX high impedance following last data bit from BFSX high			4H + 4	8H + 17	ns
td(BFXL-BDXV)	Delay time, BFSX low to BDX valid		·	4H – 4	8H + 17	ns

[†] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

[¶]BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (BCLKX).

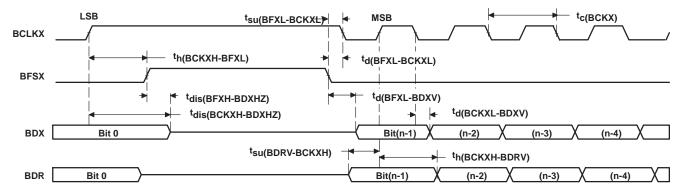


Figure 44. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1

[‡]T = BCLKX period = (1 + CLKGDV) * 2H

D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even

[§] FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX and BFSR is inverted before being used internally.

timing requirements for McBSP as SPI master or slave: $[H=0.5t_{C(CO)}]$ CLKSTP = 11b, CLKXP = 1[†] (see Figure 45)

		MAST	ER	SLAVE MIN MAX 2 – 12H	UNIT	
		MIN MAX M 12 2-1: 4 6+1:	MIN	MAX	UNII	
tsu(BDRV-BCKXL)	Setup time, BDR valid before BCLKX low	12		2 – 12H		ns
th(BCKXL-BDRV)	Hold time, BDR valid after BCLKX low	4		6 + 12H		ns
tsu(BFXL-BCKXL)	Setup time, BFSX low before BCLKX low			10		ns
t _c (BCKX)	Cycle time, BCLKX	12H		32H		ns

[†] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

switching characteristics for McBSP as SPI master or slave: [H=0.5 $t_{c(CO)}$] CLKSTP = 11b, CLKXP = 1^{†‡} (see Figure 45)

	BFXL-BCKXL) Delay time, BFSX low to BCLKX low BCKXH-BDXV) Delay time, BCLKX high to BDX valid Disable time, BDX high impedance following last data bit from BCLK high	MASTER [‡]		SLAVE		UNIT
		MIN	MAX	MIN	MAX	UNIT
th(BCKXH-BFXL)	Hold time, BFSX low after BCLKX high§	D-5	D + 5			ns
td(BFXL-BCKXL)	Delay time, BFSX low to BCLKX low¶	T – 5	T + 5			ns
td(BCKXH-BDXV)	Delay time, BCLKX high to BDX valid	-2	12	6H + 4	10H + 19	ns
tdis(BCKXH-BDXHZ)	Disable time, BDX high impedance following last data bit from BCLKX high	-2	10	6H + 4	10H + 17	ns
td(BFXL-BDXV)	Delay time, BFSX low to BDX valid	C – 2	C +10	4H – 4	8H + 17	ns

[†] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

- CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP
- CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (BCLKX).

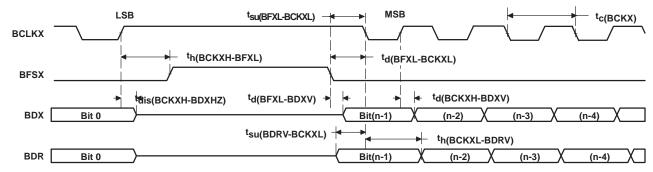


Figure 45. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1

[‡]T = BCLKX period = (1 + CLKGDV) * 2H

C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even

D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even

[§] FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX and BFSR is inverted before being used internally.

HPI16 timing

switching characteristics over recommended operating conditions $^{\dagger \pm \$}$ [H = 0.5t_{c(CO)}] (see Figure 46 and Figure 53)

	PARAMETER		MIN	MAX	UNIT
^t d(DSL-HDD)	Delay time, DS low to HD driven§		3	20	ns
Id(DSL-HDD) Delay time, DS low to HD driven§ 3 2 Case 1a: Memory accesses when DMAC is active in 16-bit mode and tw(DSH) ≥ 18H 18H+20 - tw(DSH) ≥ 18H 18H+20 - tw(DSH) ≥ 18H 2 Case 1b: Memory accesses when DMAC is active in 16-bit mode and tw(DSH) ≥ 18H 2 26H+20 - tw(DSH) ≥ 18H 2 Case 1c: Memory access when DMAC is active in 32-bit mode and tw(DSH) ≥ 18H 2 2 2 Case 1c: Memory access when DMAC is active in 32-bit mode and tw(DSH) ≥ 10H 2 2 2 Case 1c: Memory access when DMAC is inactive and tw(DSH) ≥ 10H 2 2 2 Case 2a: Memory accesses when DMAC is inactive and tw(DSH) ≥ 10H 2 2 Case 2b: Memory accesses when DMAC is inactive and tw(DSH) ≥ 10H 2 2 Case 2b: Memory accesses when DMAC is inactive and tw(DSH) ≥ 10H 2 2 Case 2b: Memory accesses when DMAC is inactive and tw(DSH) ≥ 10H 2 2 Case 2b: Memory accesses when DMAC is inactive and tw(DSH) ≥ 10H 2 2 Case 2b: Memory accesses when DMAC is inactive and tw(DSH) ≥ 10H 2 2 Case 2b: Memory accesses when DMAC is inactive and tw(DSH) ≥ 10H 2 2 Case 2b: Memor	DMAC is active in 16-bit mode and		18H+20 - t _W (DSH)		
	DMAC is active in 16-bit mode and		20		
	26H+20 - t _W (DSH)	ns			
	byte of an HPI read	DMAC is active in 32-bit mode and		20	115
				10H+20 - t _{w(DSH)}	
				20	
		Case 3: Register accesses		20	
^t d(DSL-HDV2)	Multiplexed reads with autoincrement. F	Prefetch completed.	3 20 18H+20 - t _w (DSH) 20 26H+20 - t _w (DSH) 20 10H+20 - t _w (DSH) 20 20 3 20 12H+5 18H+5 26H+5 4H+5 7	ns	
		No DMA channel active		12H+5	
	Delay time, DS high to HRDY high§			18H+5	ns
^t d(DSH-HYH)				26H+5	
		Writes to DSPINT and HINT		4H + 5	
t _v (HYH-HDV)	Valid time, HD valid after HRDY high			7	ns
	Hold time, HD valid after DS rising edge	e, read§	0	10	ns
td(COH-HYH)	Delay time, CLKOUT rising edge to HR	DY high		5	ns
^t d(DSL-HYL)	Delay time, HDS low to HRDY low§			12	ns
td(COH-HTX)	Delay time, CLKOUT rising edge to HIN	IT change		5	ns

[†] HAD stands for HCNTL0, HCNTL1, and HR/W.

[‡] HDS refers to either HDS1 or HDS2.

[§] DS refers to the logical OR of HCS and HDS.

timing requirements [H = $0.5t_{c(CO)}$] (see Figure 46 and Figure 53)

				MIN	MAX	UNIT
t _{su(HBV-DSL)}	Setup time, HAD valid before DS falling	g edge†‡		5		ns
th(DSL-HBV)	Hold time, HAD valid after DS falling ed	lge†‡		5		ns
t _{su(HBV-HSL)}	Setup time, HAD valid before HAS fallir	ng edge†		5		ns
th(HSL-HBV)	Hold time, HAD valid after HAS falling e	edge†		5		ns
tsu(HAV-DSH)	Setup time, address valid before DS ris	ing edge (nonmultiplexed write)		5		ns
tsu(HAV-DSL)	Setup time, address valid before DS fall	ling edge (nonmultiplexed mode)‡		-4H - 5		ns
th(DSH-HAV)	Hold time, address valid after DS rising	edge (nonmultiplexed mode)‡		1		ns
tsu(HSL-DSL)	Setup time, HAS low before DS falling	edge‡		5		ns
th(HSL-DSL)	Hold time, HAS low after DS falling edg	_{le} ‡		2		ns
tw(DSL)	Pulse duration, DS low [‡]			30		ns
tw(DSH)	Pulse duration, DS high‡			10		ns
		Nonmultiplexed or multiplexed mode	Reads	12H		ns
		(no increment) with no DMA activity.	Writes	14H		ns
	Cycle time, DS rising edge to next DS	Nonmultiplexed or multiplexed mode (no increment) with no DMA activity. Nonmultiplexed or multiplexed mode (no increment) with 16-bit DMA activity. Nonmultiplexed or multiplexed mode (no increment) with 16-bit DMA activity. Nonmultiplexed or multiplexed mode (no increment) with 32-bit DMA activity. Writes 12H Writes 14H Writes 20H Reads 26H Writes 28H	ns			
	rising edge [‡]	(no increment) with 16-bit DMA activity.	Writes	20H	5 5 5 5 5 5 -4H-5 1 5 2 30 10 12H 14H 18H 20H 26H	
			Reads	26H		ns
		(no increment) with 32-bit DMA activity.	Writes	5 5 5 5 5 7 4H - 5 1 5 2 30 10 10 ds 12H es 14H ds 18H es 20H ds 26H es 28H MA 12H MA 18H MA 26H 8H 10 0 5		
^t c(DSH-DSH)	Cycle time, DS rising edge to next DS rising edge [‡]	Multiplexed (autoincrement) with no activity.	o DMA		ns	
c(DSH-DSH)	(In autoincrement mode, WRITE	Multiplexed (autoincrement) with 16-b activity.	oit DMA	18H		ns
	timings are the same as READ timings.)	Multiplexed (autoincrement) with 32-b activity.	oit DMA	26H		ns
	Cycle time, DS rising edge to next DS r	rising edge writes to DSPINT and HINT		8H		ns
t _{su(HDV-DSH)}	Setup time, HD valid before DS rising e	edge [‡]		10		ns
th(DSH-HDV)W	Hold time, HD valid after DS rising edge	e, write [‡]		0		ns
t _{su(SELV-DSL)}	Setup time, SELA/B valid before DS fall	ling edge [‡]		5		ns
th(DSH-SELV)	Hold time, SELA/B valid after DS rising	edge [‡]		0		ns

[†] HAD stands for HCNTL0, HCNTL1, and HR/W. ‡ DS refers to the logical OR of HCS and HDS.

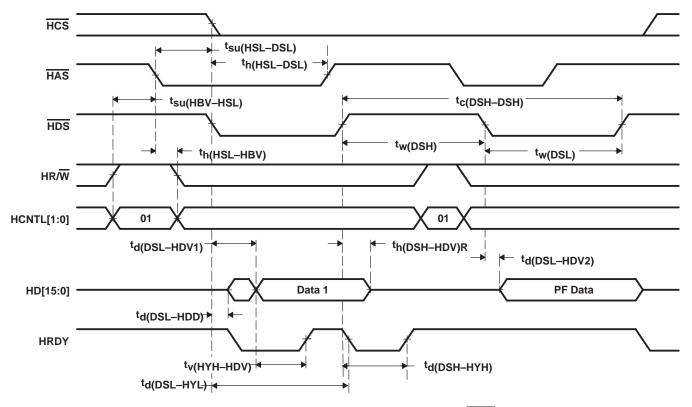


Figure 46. Multiplexed Read Timings Using HAS

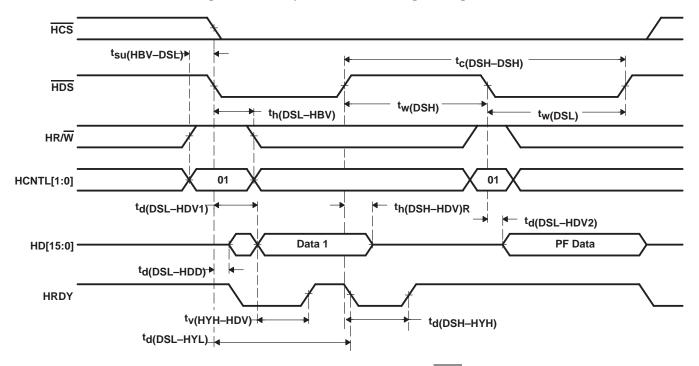


Figure 47. Multiplexed Read Timings With HAS Held High

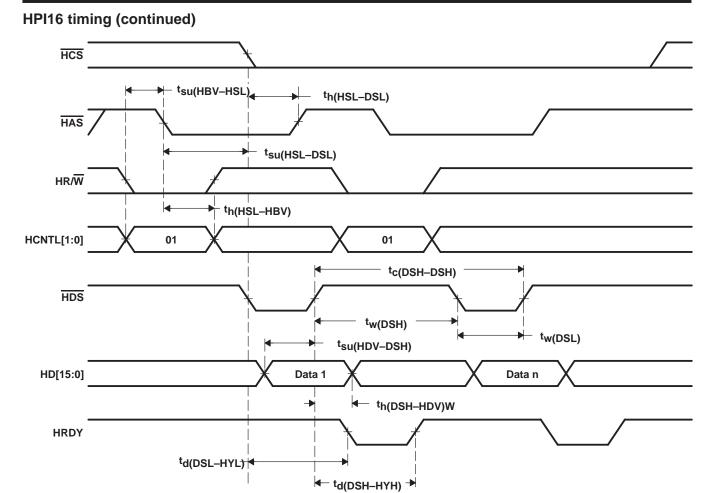


Figure 48. Multiplexed Write Timings Using HAS

Figure 49. Multiplexed Write Timings With HAS Held High

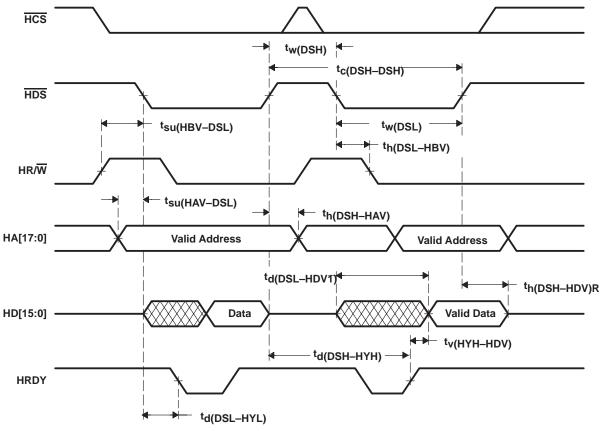


Figure 50. Nonmultiplexed Read Timings

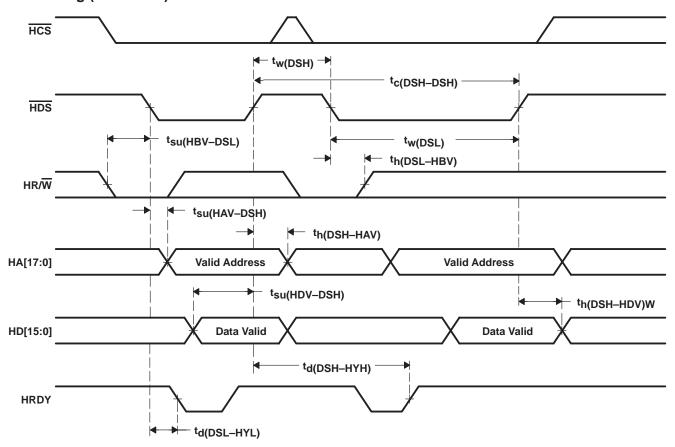


Figure 51. Nonmultiplexed Write Timings

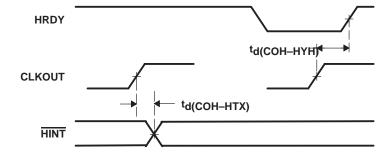


Figure 52. HRDY and HINT Relative to CLKOUT

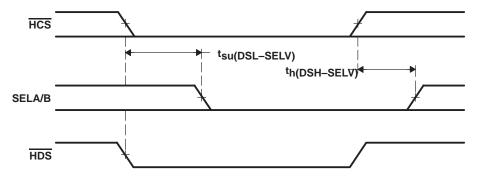
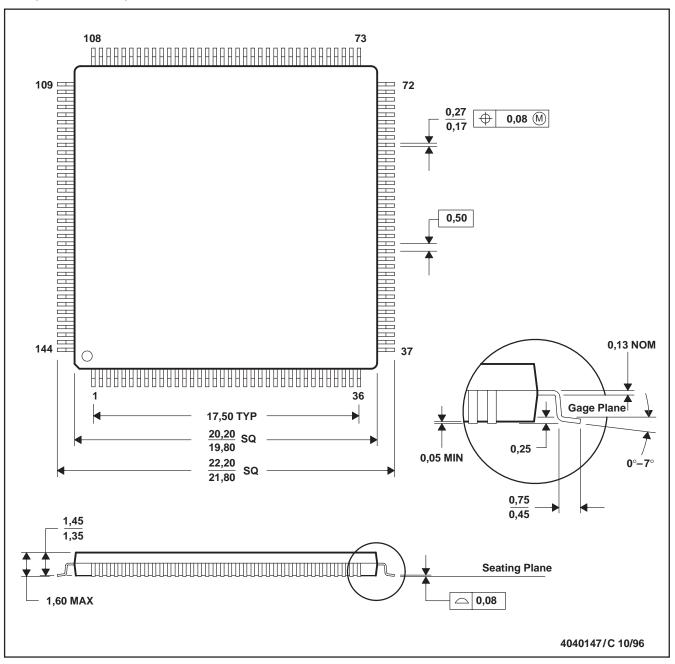



Figure 53. SELA/B Timing

MECHANICAL DATA

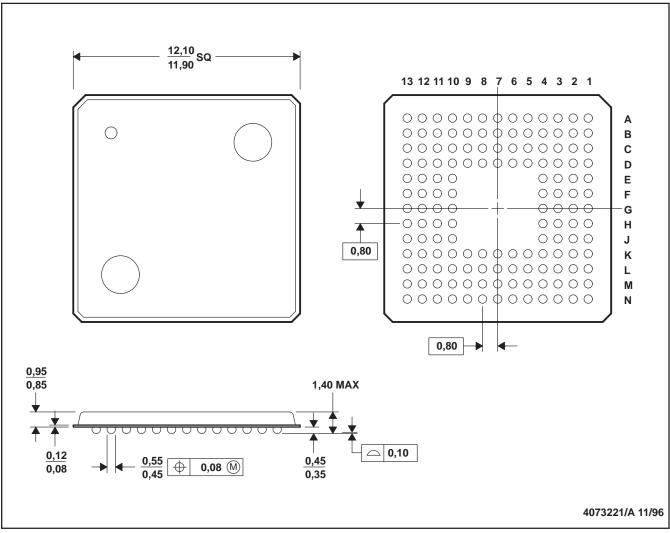
PGE (S-PQFP-G144)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-136

Thermal Resistance Characteristics


PARAMETER	°C/W
R_{\ThetaJA}	56
$R_{\Theta JC}$	5

MECHANICAL DATA

GGU (S-PBGA-N144)

PLASTIC BALL GRID ARRAY PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

Thermal Resistance Characteristics

PARAMETER	°C/W
$R_{\Theta JA}$	38
R _⊖ JC	5

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com