			SUAS		
	 Operates at 3-V to 3.6-V V_{CC} Load Clock and Unload Clock Can Be 	DL PACKAGE (TOP VIEW)			
	Asynchronous or Coincident		561 OE		
	Low-Power Advanced CMOS Technology		55 Q17		
	Full, Empty, and Half-Full Flags	D16 3	54 Q16		
	Programmable Almost-Full/Almost-Empty	D15 🛛 4	53 Q15		
	Flag	D14 🛛 5	52 🛛 GND		
	Fast Access Times of 18 ns With a 50-pF	D13 [6	51 🛛 Q14		
	Load and All Data Outputs Switching	D12 🛛 7	50] V _{CC}		
	Simultaneously	D11 [8	49 Q13		
	Data Rates From 0 to 40 MHz	D10 []9	48 Q12		
	3-State Outputs	V _{CC} [] 10 D9 [] 11	47 011 46 010		
	Pin Compatible With SN74ACT7804	D9 [] 11 D8 [] 12	46 Q10 45 Q9		
	Packaged in Shrink Small-Outline 300-mil	GND 112	44 GND		
	Package (DL) Using 25-mil Center-to-Center	D7 🛛 14	43 Q8		
	Spacing	D6 🛮 15	42 🛛 Q7		
		D5 🛛 16	41 🛛 Q6		
des	cription	D4 🛛 17	40 🛛 Q5		
	A FIFO memory is a storage device that allows	D3 🛛 18	³⁹ V _{CC}		
	data to be written into and read from its array at	D2 [19	38 Q4		
	independent data rates. The SN74ALVC7804 is		37] Q3 36] Q2		
	an 18-bit FIFO with high speed and fast access	D0 [] 21 HF [] 22	36 Q2 35 GND		
	times. Data is processed at rates up to 40 MHz	PEN 23	34 Q1		
	with access times of 18 ns in a bit-parallel format. The SN74ALVC7804 is designed for 3-V to 3.6-V	AF/AE 24	33 Q0		
	V _{CC} operation.	LDCK 25	32 UNCK		
	Data is written into memory on a low-to-high	NC 🛛 26	31 🛛 NC		

Data is written into memory on a low-to-high transition of the load clock (LDCK) and is read out on a low-to-high transition of the unload clock (UNCK). The memory is full when the number of

words clocked in exceeds the number of words clocked out by 512. When the memory is full, LDCK has no effect on the data residing in memory. When the memory is empty, UNCK has no effect.

NC 127

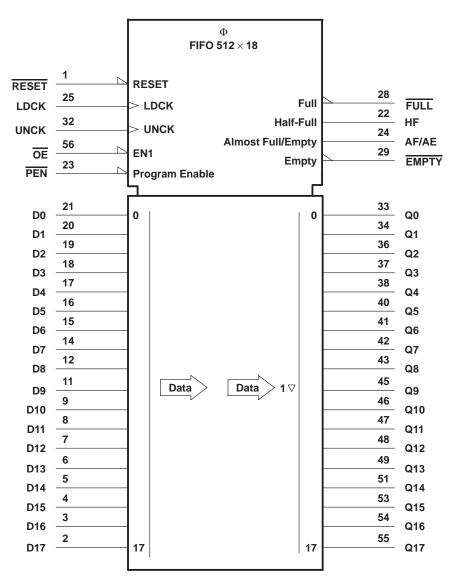
28

FULL

30 NC

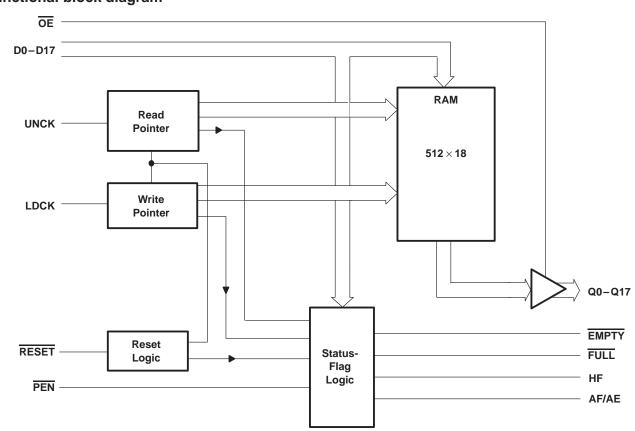
EMPTY

29


Status of the FIFO memory is monitored by the full (FULL), empty (EMPTY), half-full (HF), and almostfull/almost-empty (AF/AE) flags. The FULL output is low when the memory is full and high when the memory is not full. The EMPTY output is low when the memory is empty and high when it is not empty. The HF output is high whenever the FIFO contains 256 or more words and is low when it contains 255 or less words. The AF/AE status flag is a programmable flag. The first one or two low-to-high transitions of LDCK after reset are used to program the almost-empty offset value (X) and the almost-full offset value (Y), if program enable (PEN) is low. The AF/AE flag is high when the FIFO contains X or less words or (512 minus Y) or more words. The AF/AE flag is low when the FIFO contains between (X plus 1) and (511 minus Y) words.

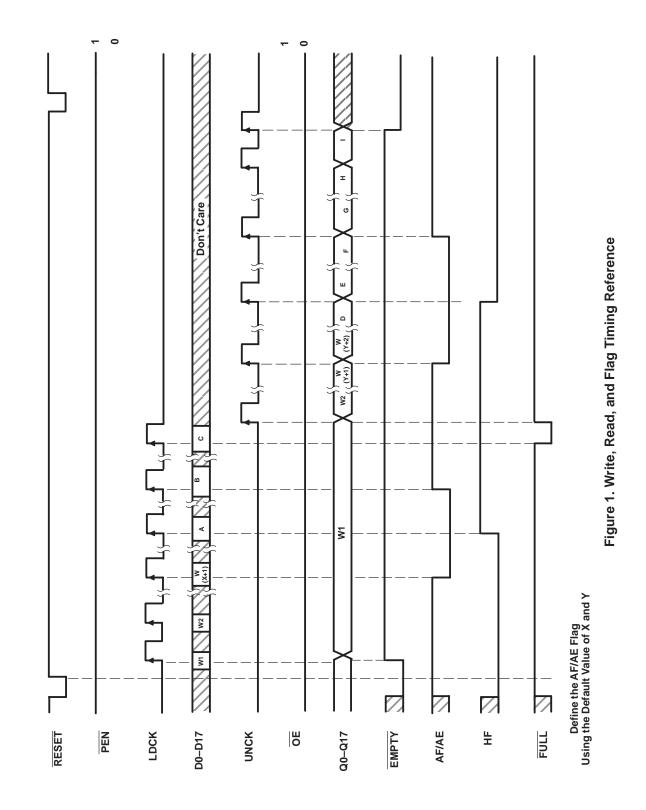
A low level on the reset (RESET) resets the internal stack pointers and sets FULL high, AF/AE high, HF low, and EMPTY low. The Q outputs are not reset to any specific logic level. The FIFO must be reset upon power up. The first word loaded into empty memory causes EMPTY to go high and the data to appear on the Q outputs. The data outputs are in the high-impedance state when the output-enable (OE) is high.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


SN74ALVC7804 512 × 18 FIRST-IN, FIRST-OUT MEMORY SCAS432 – JANUARY 1995

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


functional block diagram

Terminal Functions

TERMINAL		1/0	DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION		
AF/AE	24	0	Almost full/almost empty flag. Depth offset values can be programmed for AF/AE, or the default value of 64 can be used for both the almost empty offset (X) and the almost full offset (Y). AF/AE is high when memory contains X or less words or $(512 - Y)$ or more words. AF/AE is high after reset.		
D0-D17	21–14, 12–11, 9–2	I	18-bit data input port		
EMPTY	29	0	Empty flag. EMPTY is low when the FIFO is empty. A FIFO reset also causes EMPTY to go low.		
FULL	28	0	Full flag. FULL is low when the FIFO is full. A FIFO reset causes FULL to go high.		
HF	22	0	Half-full flag. HF is high when the FIFO memory contains 256 or more words. HF is low after reset.		
LDCK	25	I	Load clock. Data is written to the FIFO on the rising edge of LDCK when FULL is high.		
OE	56	I	Output enable. When \overline{OE} is high, the data outputs are in the high-impedance state.		
PEN			Program enable. After reset and before the first word is written to the FIFO, the binary value on D0–D7 is latched as an AF/AE offset value when PEN is low and WRTCLK is high.		
Q0-Q17	33–34, 36–38, 40–43, 45–49, 51, 53–55	0	18-bit data output port		
RESET	1	I	Reset. A low level on $\overrightarrow{\text{RESET}}$ resets the FIFO and drives AF/AE and $\overrightarrow{\text{FULL}}$ high and HF and $\overrightarrow{\text{EMPTY}}$ low.		
UNCK	32	I	Unload clock. Data is read from the FIFO on the rising edge of UNCK when $\overline{\text{EMPTY}}$ is high.		

SN74ALVC7804 512 × 18 FIRST-IN, FIRST-OUT MEMORY SCAS432 – JANUARY 1995

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

DATA WORD NUMBERS FOR FLAG TRANSITIONS									
DEVICE	TRANSITION WORD								
DEVICE	Α	В	С	D	E	F	G	Н	I
SN74ALVC7804	W256	W(512-Y)	W512	W257	W258	W(512-X)	W(513-X)	W511	W512

offset values for AF/AE

The AF/AE flag has two programmable limits: the almost-empty offset value (X) and the almost-full offset value (Y). They can be programmed after the FIFO is reset and before the first word is written to memory. The AF/AE flag is high when the FIFO contains X or less words or (512 minus Y) or more words.

To program the offset values, \overline{PEN} can be brought low after reset. On the following low-to-high transition of LDCK, the binary value on D0–D7 is stored as the almost empty offset value (X) and the almost full offset value (Y). Holding \overline{PEN} low for another low-to-high transition of LDCK reprograms Y to the binary value on D0–D7 at the time of the second LDCK low-to-high transition. Writes to the FIFO memory are disabled while the offsets are programmed. A maximum value of 255 can be programmed for either X or Y (see Figure 2). To use the default values of X = Y = 64, \overline{PEN} must be held high.

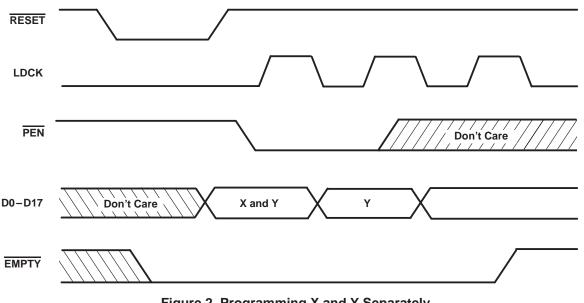


Figure 2. Programming X and Y Separately

SN74ALVC7804 512 × 18 FIRST-IN, FIRST-OUT MEMORY SCAS432 – JANUARY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings can be exceeded if the input and output clamp current ratings are observed.

2. This value is limited to 4.6 V maximum.

'ALVC7804-40 ALVC7804-25 $V_{CC} = 3.3 V \pm 0.3 V$ V_{CC} = 3.3 V \pm 0.3 V UNIT MIN MAX MIN MAX 2 V Vін High-level input voltage 2 Low-level input voltage 0.8 0.8 V VIL ٧ı V 0 Vcc 0 Vcc V ٧o 0 0 Vcc Vcc High-level output current, VCC = 3 V-8 -8 mΑ ЮН Q outputs, Flags Low-level output current, 16 16 mΑ IOL VCC = 3 VQ outputs, Flags **Clock frequency** 40 25 MHz fclock D0-D17 high or low 8 12 8 LDCK high or low 12 Pulse duration UNCK high or low 8 12 ns tw PEN low 8 12 **RESET** low 10 12 D0-D17 before LDCK↑ 5 5 LDCK inactive before RESET high 6 6 Setup time ns t_{su} PEN before LDCK1 8 8 D0-D17 after LDCK↑ 0 0 PEN high after LDCK low 0 0 Hold time ns th PEN low after LDCK↑ 3 3 LDCK inactive after RESET high 6 6 TA Operating free-air temperature 0 70 0 70 °C

recommended operating conditions

SN74ALVC7804 512 × 18 FIRST-IN, FIRST-OUT MEMORY

SCAS432 - JANUARY 1995

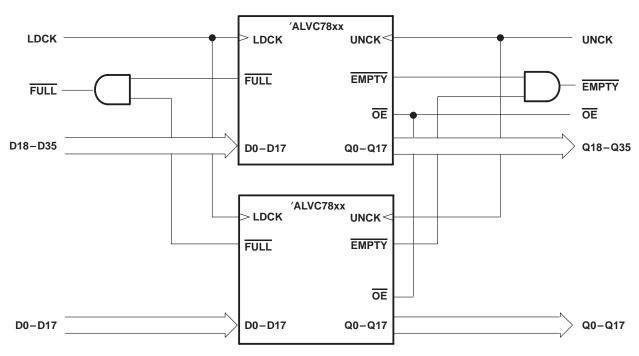
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		PARAMETER TEST CONDITIONS [†]		MIN TYP [‡]	MAX	UNIT
Veu		$V_{CC} = MIN$ to MAX,	I _{OH} = - 100 μA	V _{CC} -0.2		v
VOH	Flags, Q outputs	V _{CC} = 3 V,	I _{OH} = - 8 mA	2.4		v
	Flags, Q outputs	$V_{CC} = MIN$ to MAX,	I _{OL} = 100 μA		0.2	
VOL	Flags	$V_{CC} = 3 V,$	I _{OL} = 8 mA		0.4	V
	Q outputs	V _{CC} = 3 V,	I _{OL} = 16 mA		0.55	
Ц		V _{CC} = 3.6 V,	V _I =V _{CC} or GND		±5	μΑ
loz		V _{CC} = 3.6 V,	V _O =V _{CC} or GND	±		μΑ
Icc		V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND and $I_O = 0$		40	μΑ
∆ICC§		$V_{CC} = 3.6 V$, Other inputs at V_{CC} or GND	One input at V_{CC} – 0.6 V,		500	μΑ
Ci		V _{CC} = 3.3 V,	$V_{I} = V_{CC} \text{ or GND}$ 3			pF
Co		V _{CC} = 3.3 V,	$V_{O} = V_{CC} \text{ or } GND$	6		pF

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

§ This is the supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		UNIT
			MIN	MAX	MIN	MAX	
f _{max}	LDCK or UNCK		40		25		MHz
^t pd	LDCK↑	Any Q	9	22	9	24	ns
^t pd	UNCK↑	Ally Q	6	18	6	20	115
^t PLH	LDCK [↑]		6	17	6	19	
^t PHL	UNCK↑	EMPTY	6	17	6	19	ns
^t PHL	RESET low		4	18	4	20	
^t PHL	LDCK↑		6	17	6	19	
^t PLH	UNCK↑	FULL	6	17	6	19	ns
^t PLH	RESET low		4	20	4	22	
^t pd	LDCK [↑]		7	20	7	22	
^t pd	UNCK↑	AF/AE	7	20	7	22	ns
^t PLH	RESET low		2	12	2	14	
^t PLH	LDCK↑		5	20	5	22	
^t PHL	UNCK↑	HF	7	20	7	22	ns
^t PHL	RESET low		3	14	3	16	
t _{en}	ŌĒ	Any Q	2	10	2	11	200
^t dis	UE		2	11	2	12	ns

operating characteristics, V_{CC} = 3.3 V, T_A = 25° C

PARAMETER			TEST CON	TYP	UNIT	
C _{pd}	Power dissipation capacitance per FIFO channel	Outputs enabled	C _L = 50 pF,	f = 5 MHz	53	pF

APPLICATION INFORMATION

Figure 3. Word-Width Expansion: 512 imes 36 Bit

TYPICAL CHARACTERISTICS

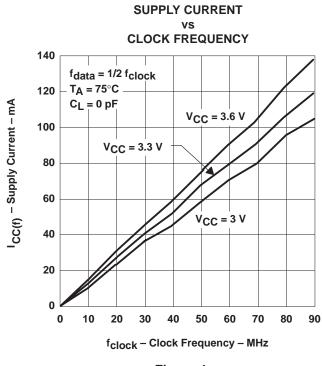


Figure 4

calculating power dissipation

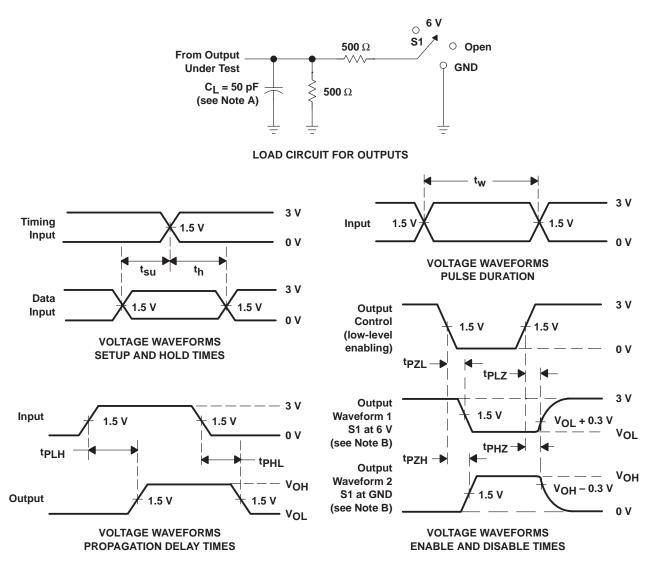
With $I_{CC(f)}$ taken from Figure 4, the dynamic power (P_d), based on all data outputs changing states on each read, can be calculated by using:

 $\mathsf{P}_{\mathsf{d}} = \mathsf{V}_{\mathsf{C}\mathsf{C}} \times [\mathsf{I}_{\mathsf{C}\mathsf{C}(\mathsf{f})} + (\mathsf{N} \times \Delta \mathsf{I}_{\mathsf{C}\mathsf{C}} \times \mathsf{d}\mathsf{c})] + \sum (\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_{\mathsf{o}})$

A more accurate total power (P_T) can be calculated if quiescent power (Pq) is also taken into consideration. Quiescent power (P_q) can be calculated using:

 $\mathsf{P}_{\mathsf{q}} = \mathsf{V}_{\mathsf{C}\mathsf{C}} \times [\mathsf{I}_{\mathsf{C}\mathsf{C}\mathsf{I}} + (\mathsf{N} \times \Delta \mathsf{I}_{\mathsf{C}\mathsf{C}} \times \mathsf{d}\mathsf{c})]$

Total power will be:


$$P_T = P_d + P_q$$

The above equations provide worst-case power calculations.

Where:

Ν	= number of inputs driven by TTL levels
ΔI_{CC}	increase in power supply current for each input at a TTL high level
dc	= duty cycle of inputs at a TTL high level of 3.4 V
C_L	 output capacitance load
f _o	 switching frequency of an output
ICCI	= idle current, supply current when FIFO is idle \approx pF \times f _{clock} = 0.2 \times f _{clock}
	(current is due to free-running clocks)
pF	 power factor (the slope of idle I_{CC} versus frequency)
I _{CC(f)}	 active current, supply current when FIFO is transferring data

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

3-STATE OUTFUTS (ANT Q)							
PAR	PARAMETER		c _L †	S1			
+	^t PZH	500 Ω	50 pF	GND			
ten	tPZL	500 12	50 pr	6 V			
+	^t PHZ	500 Ω	50 pF	GND			
^t dis	^t PLZ	500 22	50 pr	6 V			
^t pd	tPLH/tPHL	500 Ω	50 pF	Open			

3-STATE OUTPUTS (ANY Q)

[†] Includes probe and test-fixture capacitance

Figure 5. Standard CMOS Outputs (FULL, EMPTY, HF, AF/AE)

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com