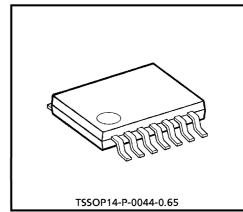
TOSHIBA TC74VCX08FT


TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC74VCX08FT

LOW-VOLTAGE QUAD 2-INPUT AND GATE WITH 3.6 V TOLERANT INPUTS AND OUTPUTS

The TC74VCX08FT is a high performance CMOS 2-input AND gate. Designed for use in 1.8, 2.5 or 3.3 Volt systems, it achieves high speed operation while maintaining the CMOS low power dissipation. It is also designed with over voltage tolerant inputs and outputs up to 3.6V

All inputs are equipped with protection circuits against static discharge.

Weight: 0.06 g (Typ.)

FEATURES

Low Voltage Operation: V_{CC} = 1.8~3.6 V

• High Speed Operation : $t_{pd} = 2.8 \text{ ns (max)}$ at $V_{CC} = 3.0 \sim 3.6 \text{ V}$

 $t_{pd} = 3.7 \text{ ns (max) at V}_{CC} = 2.3 \sim 2.7 \text{ V}$ $t_{pd} = 7.4 \text{ ns (max) at V}_{CC} = 1.8 \text{ V}$

• Output Current : $I_{OH}/I_{OL} = \pm 24 \text{ mA (min)}$ at $V_{CC} = 3.0 \text{ V}$

 $I_{OH}/I_{OL} = \pm 18 \text{ mA (min)}$ at $V_{CC} = 2.3 \text{ V}$ $I_{OH}/I_{OL} = \pm 6 \text{ mA (min)}$ at $V_{CC} = 1.8 \text{ V}$

Latch-up Performance : ±300 mA

ESD Performance : Human body model > ±2000 V

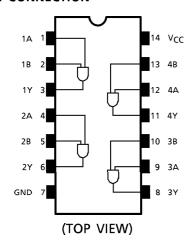
Machine model > ±200 V

Package : TSSOP

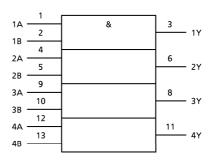
(Thin Shrink Small Outline Package)

• Power down protection is provided on all inputs and outputs.

980910EBA1


■ The products described in this document are subject to the foreign exchange and foreign trade laws.
■ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.


TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to the foreign exchange and foreign trade laws.

PIN CONNECTION

IEC LOGIC SYMBOL

TRUTH TABLE

INP	UTS	OUTPUTS
Α	В	Υ
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

MAXIMUM RATINGS

MAXIMOM KATINGS				
PARAMETER	SYMBOL	RATING	UNIT	
Power Supply Voltage	VCC	-0.5~4.6	V	
DC Input Voltage	VIN	-0.5~4.6	٧	
DC Output Voltage	\/ - -	−0.5~4.6 (Note 1)	V	
DC Output Voltage	Vout	-0.5~V _{CC} + 0.5 (Note 2)	"	
Input Diode Current	ΙΚ	– 50	mA	
Output Diode Current	loк	±50 (Note 3)	mΑ	
DC Output Current	IOUT	± 50	mA	
Power Dissipation	PD	180	mW	
DC V _{CC} /Ground Current	I _{CC} /I _{GND}	± 100	mA	
Storage Temperature	T _{stg}	−65~150	°C	

(Note 1) : $V_{CC} = 0 V$ (Note 2) : High or Low State. I_{OUT} absolute maximum rating must be observed.

(Note 3) : $V_{OUT} < GND$, $V_{OUT} > V_{CC}$

RECOMMENDED OPERATING RANGE

PARAMETER	SYMBOL	RATING	UNIT
Supply Valtage	Van	1.8~3.6	V
Supply Voltage	Vcc	1.2~3.6 (Note 4)] '
Input Voltage	VIN	-0.3~3.6	V
Output Voltage	\/a	0~3.6 (Note 5)	V
Cutput Voltage	VOUT	0~ V _{CC} (Note 6)] '
		± 24 (Note 7)	
Output Current	IOH / IOL	± 18 (Note 8)	mA
		±6 (Note 9)]
Operating Temperature	ure T _{opr} – 40~85		°C
Input Rise And Fall Time	·		ns / V

(Note 4) : Data Retention Only

(Note 5) : $V_{CC} = 0 V$ (Note 6) : High or Low State (Note 7) : $V_{CC} = 3.0 \sim 3.6 \text{ V}$ (Note 8) : $V_{CC} = 2.3 \sim 2.7 \text{ V}$ (Note 9) : $V_{CC} = 1.8 \text{ V}$ (Note 10) : $V_{IN} = 0.8 \sim 2.0 \text{ V}$, $V_{CC} = 3.0 \text{ V}$

ELECTRICAL CHARACTERISTICS

DC characteristics (Ta = $-40\sim85^{\circ}$ C, 2.7 V < V_{CC} \leq 3.6 V)

PARAN	/IETER	SYMBOL	TEST CON	DITION	V _{CC} (V)	MIN	MAX	UNIT
Input	"H" Level	V_{IH}			2.7~3.6	2.0	_	V
Voltage	"L" Level	V _{IL}			2.7~3.6	_	0.8	·
-				I _{OH} = -100 μA	2.7~3.6	V _{CC} - 0.2	-	
	"H" Level	Voн	V _{IN} = V _{IH}	$I_{OH} = -12 \text{ mA}$	2.7	2.2	_	
				$I_{OH} = -18 \text{mA}$	3.0	2.4	_	
Output				$I_{OH} = -24 \text{mA}$	3.0	2.2	_	V
Voitage	Voltage	Vol	V _{OL} V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 100 \mu A$	2.7~3.6	_	0.2	
	"L" Level			$I_{OL} = 12 \text{ mA}$	2.7		0.4	
	Level	VOL		I _{OL} = 18 mA	3.0	_	0.4	
				$I_{OL} = 24 \text{mA}$	3.0		0.55	
Input Leaka	ge Current	ΙΝ	V _{IN} = 0~3.6 V		2.7~3.6		± 5.0	μ A
Power Off L Current	eakage	lOFF	V _{IN} , V _{OUT} = 0~3.6 V		0		10.0	μ A
Quiescent Su	ıpply		V _{IN} = V _{CC} or GND		2.7~3.6		20.0	^
Current		lcc	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		2.7~3.6	_	± 20.0	μ A
Increase In I Input	CC Per	ΔΙCC	V _{IH} = V _{CC} - 0.6 V		2.7~3.6		750	μΑ

ELECTRICAL CHARACTERISTICS DC characteristics (Ta = $-40 \sim 85^{\circ}$ C, 2.3 V \leq V_{CC} \leq 2.7 V)

PARAI	METER	SYMBOL	TEST CON	DITION	V _{CC} (V)	MIN	MAX	UNIT
Input	"H" Level	V_{IH}			2.3~2.7	1.6	_	V
Voltage	"L" Level	V _{IL}			2.3~2.7	_	0.7	V
			I _{OH} = -100 μA	2.3~2.7	V _C C - 0.2			
	"H" Level	Voн	V _{IN} = V _{IH}	$I_{OH} = -6 \text{mA}$	2.3	2.0	_	
Output				$I_{OH} = -12 \text{ mA}$	2.3	1.8	_	v
Voltage				$I_{OH} = -18 \text{mA}$	2.3	1.7	_	V
				$I_{OL} = 100 \mu A$	2.3~2.7	_	0.2	
	"L" Level	v_{OL}	V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 12 \text{ mA}$	2.3	_	0.4	
				I _{OL} = 18 mA	2.3	_	0.6	
Input Leaka	ge Current	IN	V _{IN} = 0~3.6 V		2.3~2.7	_	± 5.0	μΑ
Power Off I Current	_eakage	lOFF	V _{IN} , V _{OUT} = 0~3.6 V		0	_	10.0	μΑ
Quiescent Supply		laa	V _{IN} = V _{CC} or GND		2.3~2.7	_	20.0	
Current		lcc	$V_{CC} \le V_{IN} \le 3.6 V$		2.3~2.7	_	± 20.0	μ A

ELECTRICAL CHARACTERISTICS

DC characteristics (Ta = $-40 \sim 85$ °C, 1.8 V \leq V_{CC} < 2.3 V)

PARAM	METER	SYMBOL	TEST CON	DITION	V _{CC} (V)	MIN	MAX	UNIT
Input	"H" Level	V _{IH}		1.8~2.3	0.7 × V _{CC}	1	٧	
Voltage	"L" Level	V _{IL}			1.8~2.3	_	0.2 × V _{CC}	V
"H" l	"H" Level	"H" Level VOH	V _{IN} = V _{IH}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	
Output				$I_{OH} = -6 \text{mA}$	1.8	1.4	_	V
Voltage	"L" Level	VOL	V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 100 \mu A$	1.8	_	0.2	
	L Level	VOL	$I_{OL} = 6 \text{ mA}$		1.8		0.3	
Input Leaka	ge Current	IN	V _{IN} = 0~3.6 V		1.8		± 5.0	μ A
Power Off L Current	eakage	lOFF	V _{IN} , V _{OUT} = 0~3.6 V		0	_	10.0	μ A
Quiescent Su	upply	laa	V _{IN} = V _{CC} or GND		1.8	_	20.0	
Current		ICC	$V_{CC} \le V_{IN} \le 3.6 V$		1.8		± 20.0	μ A

AC characteristics (Ta = $-40 \sim 85$ °C, Input t_r = t_f = 2.0 ns, C_L = 30 pF, R_L = 500 Ω)

PARAMETER	SYMBOL	TEST CONDITION	V _{CC} (V)	MIN	MAX	UNIT
Propagation Dolay	+		1.8	1.0	7.4	
Propagation Delay	^t pLH +	(Fig.1, 2)	2.5 ± 0.2	0.8	3.7	ns
Time	^t pHL		3.3 ± 0.3	0.6	2.8	
Output To Output	4		1.8	_	0.5	
Output To Output Skew	^t osLH ^t osHL	(Note 11)	2.5 ± 0.2	_	0.5	ns
SKEW			3.3 ± 0.3	_	0.5	

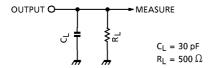
For $C_L = 50 \, pF$, add approximately 300 ps to the AC maximum specification.

(Note 11) : Parameter guaranteed by design.
$$(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \ t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$$

Dynamic switching	characteristics	(Ta = 25)	°C, Input t	tr = tf =	2.0 ns, Cı	= 30 pF)
-------------------	-----------------	-----------	-------------	-----------	------------	-----------

PARAMETER	SYMBOL	TEST CONDITIC	N	V _{CC} (V)	TYP.	UNIT
Quiet Qutnut Maximum		V _{IH} = 1.8 V, V _{IL} = 0 V	(Note 12)	1.8	0.25	
Quiet Output Maximum	VOLP	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note 12)	2.5	0.6	V
Dynamic V _{OL}		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note 12)	3.3	0.8	
Ouist Outset Misimum	V _{OLV}	V _{IH} = 1.8 V, V _{IL} = 0 V	(Note 12)	1.8	- 0.25	
Quiet Output Minimum Dynamic VOI		$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$	(Note 12)	2.5	- 0.6	V
Dynamic vOL		V _{IH} = 3.3 V, V _{IL} = 0 V	(Note 12)	3.3	- 0.8	
Quiet Output Minimum Dynamic VOH		V _{IH} = 1.8 V, V _{IL} = 0 V	(Note 12)	1.8	1.5	
	VOHV	V _{IH} = 2.5 V, V _{IL} = 0 V	(Note 12)	2.5	1.9	V
Dynamic vOH		V _{IH} = 3.3 V, V _{IL} = 0 V	(Note 12)	3.3	2.2	

(Note 12): Parameter guaranteed by design.


Capacitive characteristics (Ta = 25°C)

PARAMETER	SYMBOL	TEST CONDITION	V _{CC} (V)	TYP.	UNIT
Input Capacitance	CIN		1.8, 2.5, 3.3	6	рF
Power Dissipation Capacitance	C _{PD}	f _{IN} = 10 MHz (Note 13)	1.8, 2.5, 3.3	20	pF

(Note 13): CpD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC}(opr.) = CpD \cdot V_{CC} \cdot f_{IN} + I_{CC}/4 \text{ (per gate)}$

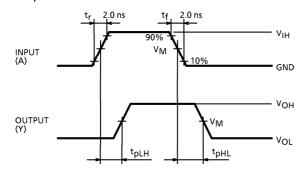
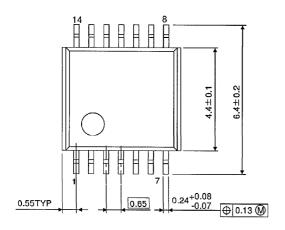
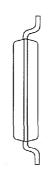

TEST CIRCUIT

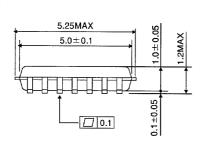
Fig.1

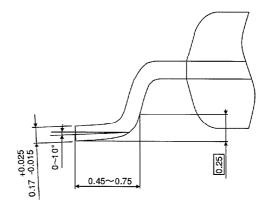
AC WAVEFORM

Fig.2 t_{pLH}, t_{pHL}




SYMBOL	V _{CC}					
3 TIVIBOL	3.3 ± 0.3 V	2.5 ± 0.2 V	1.8 V			
V_{IH}	2.7 V	V _{CC}	V _{CC}			
٧ _M	1.5 V	V _{CC/2}	V _{CC/2}			


Unit: mm


OUTLINE DRAWING

TSSOP14-P-0044-0.65

Weight: 0.06 g (Typ.)

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com