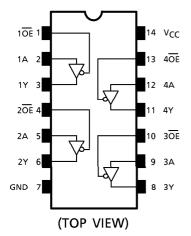

<u>TOSHIBA</u>

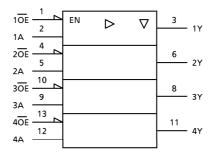
ADVANCE TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T C 7 4 V C X 1 2 5 F T

LOW-VOLTAGE QUAD BUS BUFFER WITH 3.6V TOLERANT INPUTS AND OUTPUTS


(Note 1) To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
The products described in this document are subject to foreign exchange and foreign trade laws.
The products described in this presented only as a guide for the applications of our products. No responsibility


The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

TOSHIBA

PIN ASSIGNMENT

IEC LOGIC SYMBOL

TRUTH TABLE

INP	UTS	OUTPUTS	DRFIIMINARY
ŌĒ	A	Y	PRELIMINAKY
Н	Х	Z	PKELIWIN
L	L	L	
L	Н	Н	

X : Don't Care

Z : High Impedance

MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Power Supply Voltage	Vcc	-0.5~4.6	V
DC Input Voltage	VIN	-0.5~4.6	V
DC Quitput Valtage	Value	-0.5~4.6 (Note 1)	v
DC Output Voltage	Vout	-0.5~V _{CC} +0.5 (Note 2)	v
Input Diode Current	IК	– 50	mA
Output Diode Current	lок	±50 (Note 3)	mA
DC Output Current	ΙΟυτ	± 50	mA
Power Dissipation	PD	180	mW
DC V _{CC} /Ground Current	ICC/IGND	± 100	mA
Storage Temperature	T _{stg}	- 65~150	°C

(Note 1) Off-State

(Note 2) High or Low State. IOUT absolute maximum rating must be observed.

(Note 3) V_{OUT} < GND, V_{OUT} > V_{CC}

RECOMMENDED OPERATING RANGE

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	Maa	1.8~3.6	v
Supply Voltage	Vcc	1.2~3.6 (Note 4)	
Input Voltage	VIN	-0.3~3.6	V
Output Voltage	Maria	0~3.6 (Note 5)	v
Output voltage	Vout	0~ V _{CC} (Note 6)	
		±24 (Note 7)	
Output Current	IOH / IOL	± 18 (Note 8)	mA
		±6 (Note 9)	
Operating Temperature	T _{opr}	- 40~85	°C
Input Rise And Fall Time	dt/dv	0~10 (Note 10)	ns / V

(Note 4) Data Retention Only

- (Note 5) Off-State
- (Note 7) $V_{CC} = 3.0 \sim 3.6V$ **PRELIMINARY** (Note 8) $V_{CC} = 2.3 \sim 2.7V$

- (Note 9) V_{CC} = 1.8V
- (Note 10) $V_{IN} = 0.8 \sim 2.0 V$, $V_{CC} = 3.0 V$

ELECTRICAL CHARACTERISTICS

DC characteristics (Ta = $-40 \sim 85^{\circ}$ C, 2.7V < V_{CC} \leq 3.6V)

PARAMETER		SYMBOL	TEST CON	DITION	V _{CC} (V)	MIN.	MAX.	UNIT
Input	"H" Level	VIH			2.7~3.6	2.0		v
Voltage	"L" Level	VIL			2.7~3.6		0.8	V
				I _{OH} = – 100μA	2.7~3.6	V _{CC} - 0.2		
	"H" Level	∨он	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -12mA$	2.7	2.2	_	
0				I _{OH} = – 18mA	3.0	2.4	_	
Output				$I_{OH} = -24mA$	3.0	2.2		V
Voltage		V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	l _{OL} = 100μA	2.7~3.6	_	0.2	
	"L" Level			I _{OL} = 12mA	2.7	_	0.4	
				I _{OL} = 18mA	3.0	_	0.4	
				$I_{OL} = 24mA$	3.0	_	0.55	
Input Leaka	age Current	^I IN	V _{IN} = 0~3.6V	•	2.7~3.6	_	± 5.0	μA
3-State Out Off-State C	•	loz	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0 \sim 3.6V$		2.7~3.6	_	± 10.0	μΑ
Power Off Leakage Current		lOFF	V _{IN} , V _{OUT} = 0~3.6V		0	_	10.0	μΑ
Quiescent Supply			$V_{IN} = V_{CC}$ or GND		2.7~3.6	_	20.0	•
Current			2.7~3.6	_	±20.0	μΑ		
Increase In Input	ICC Per	∆ا∠C	V _{IH} = V _{CC} – 0.6V		2.7~3.6		750	μΑ

ELECTRICAL CHARACTERISTICS

DC characteristics (Ta = $-40 \sim 85^{\circ}$ C, $2.3V \leq V_{CC} \leq 2.7V$)

PARAMETER		SYMBOL	TEST CONDITION		V _{CC} (V)	MIN.	MAX.	UNIT
Input	"H" Level	VIH			2.3~2.7	1.6		v
Voltage	"L" Level	VIL			2.3~2.7	_	0.7	
				I _{OH} = – 100μA	2.3~2.7	V _{CC} - 0.2	_	
	"H" Level	Vон	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -6mA$	2.3	2.0	_	V
Output Voltage				$I_{OH} = -12mA$	2.3	1.8	_	
				I _{OH} = – 18mA	2.3	1.7	_	
		V _{OL}	V _{IN} =V _{IH} or V _{IL}	l _{OL} = 100μA	2.3~2.7	_	0.2	
	"L" Level			I _{OL} = 12mA	2.3	_	0.4	
				I _{OL} = 18mA	2.3	_	0.6	
Input Leakag	ge Current	IN	V _{IN} = 0~3.6V		2.3~2.7	_	± 5.0	μΑ
3-State Output Off-State Current		loz	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0 \sim 3.6V$		2.3~2.7	_	± 10.0	μΑ
Power Off Leakage Current		IOFF	V _{IN} , V _{OUT} = 0~3.6V		0	_	10.0	μA
Quiescent Supply			V _{IN} = V _{CC} or GND		2.3~2.7	_	20.0	
Current		lcc	V _{CC} ≦ (V _{IN} , V _{OUT})≦ 3.6V _{CC}		2.3~2.7	-2.7 <u> </u>	±20.0	μΑ

PRELIMINARY

ELECTRICAL CHARACTERISTICS

DC characteristics (Ta = $-40 \sim 85^{\circ}$ C, $1.8V \le V_{CC} < 2.3V$)

PARAI	METER	SYMBOL	TEST CONDITION		V _{CC} (V)	MIN.	MAX.	UNIT
Input	"H" Level	VIH			1.8~2.3	0.7 x V _{CC}	_	v
Voltage "L" Leve		VIL			1.8~2.3	_	0.2 x V _{CC}	v
	"H" Level		V _{IN} = V _{IH} or V _{IL}	I _{OH} = -100μA	1.8	V _{CC} - 0.2	_	
Output		Voн		$I_{OH} = -6mA$	1.8	1.4	_	V
Voltage	"L" Level	V _{OL}	$V_N = V_{IH}$ or V_{IL}	l _{OL} = 100μA	1.8	—	0.2	
				I _{OL} = 6mA	1.8		0.3	
Input Leaka	Input Leakage Current		V _{IN} = 0~3.6V		1.8	—	± 5.0	μA
3-State Output Off-State Current		loz	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0 \sim 3.6V$		1.8	-	± 10.0	μΑ
Power Off Leakage Current		lOFF	V _{IN} , V _{OUT} = 0~3.6V		0	_	10.0	μΑ
Quiescent S	Quiescent Supply		$V_{IN} = V_{CC}$ or GND		1.8	_	20.0	
Current		lcc	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3.6V$		1.8		±20.0	μΑ

AC characteristics (Ta = $-40 \sim 85^{\circ}$ C, Input t_r = t_f = 2.0ns, C_L = 30pF, R_L = 500 Ω)

PARAMETER	SYMBOL	TRANSPORT	V _{CC} (V)	MIN.	MAX.	UNIT
Propagation Dolay			1.8	1.5	TBD	
Propagation Delay Time	∰L ∪pL # ••• •••	(Fig.1, 2)	2.5 ± 0.2	1.0	TBD	ns
line	^t pHL		3.3±0.3	0.8	TBD	
2 State Output Enable	+		1.8	1.5	TBD	
3-State Output Enable Time	t _{pZL}	(Fig.1, 3)	2.5 ± 0.2	1.0	TBD	ns
Time	^t pZH		3.3±0.3	0.8	TBD	
2 State Output Disable	+		1.8	1.5	TBD	
3-State Output Disable Time	t _{pLZ}	(Fig.1, 3)	2.5 ± 0.2	1.0	TBD	ns
	^t pHZ		3.3 ± 0.3	0.8	TBD	
Output To Output	+		1.8	_	TBD	
Output To Output Skew	tosLH	(Note 11)	2.5 ± 0.2	_	TBD	ns
JNEW	^t osHL		3.3±0.3	_	TBD	

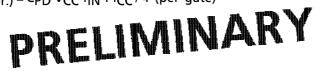
For $C_L = 50pF$, add approximately 300ps to the AC maximum specification.

(Note 11) Parameter guaranteed by design. $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

PARAMETER	SYMBOL	TEST CONDITI	ON	V _{CC} (V)	TYP.	UNIT
		V _{IH} = 1.8V, V _{IL} = 0V	(Note 12)	1.8	TBD	
Quiet Output Maximum	VOLP	$V_{IH} = 2.5V, V_{IL} = 0V$	(Note 12)	2.5	TBD	v
Dynamic V _{OL}		V _{IH} = 3.3V, V _{IL} = 0V	(Note 12)	3.3	TBD	
Quiat Qutaut Minimum	VOLV	V _{IH} = 1.8V, V _{IL} = 0V	(Note 12)	1.8	TBD	
Quiet Output Minimum Dynamic V _{OL}		$V_{IH} = 2.5V, V_{IL} = 0V$	(Note 12)	2.5	TBD	V
		V _{IH} = 3.3V, V _{IL} = 0V	(Note 12)	3.3	TBD	
Quiet Qutput Minimum	Vohv	$V_{IH} = 1.8V, V_{IL} = 0V$	(Note 12)	1.8	TBD	
Quiet Output Minimum Dynamic V _{OH}		$V_{IH} = 2.5V, V_{IL} = 0V$	(Note 12)	2.5	TBD	V
		V _{IH} = 3.3V, V _{IL} = 0V	(Note 12)	3.3	TBD	

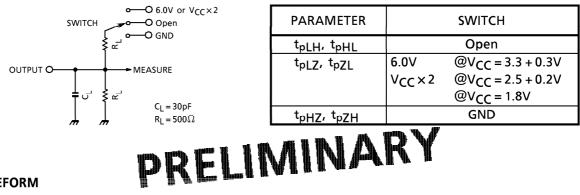
Dynamic switching characteristics (Ta = 25° C, Input t_r = t_f = 2.0ns, C_L = 30pF)

(Note 12) Parameter guaranteed by design.


Capacitive characteristics $(Ta = 25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	V _{CC} (V)	TYP.	UNIT
Input Capacitance	C _{IN}		1.8, 2.5, 3.3	TBD	рF
Output Capacitance	COUT		1.8, 2.5, 3.3	TBD	pF
Power Dissipation Capacitance	C _{PD}	f _{IN} = 10MHz (Note 13)	1.8, 2.5, 3.3	TBD	pF

(Note 13) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation :

 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 4$ (per gate)

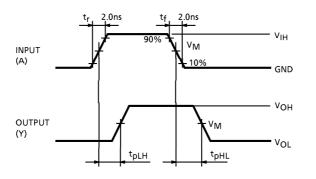
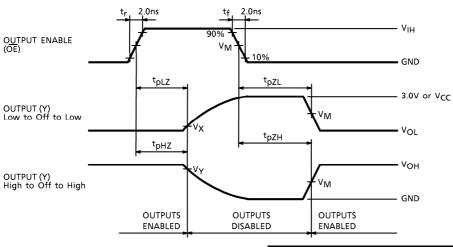

TOSHIBA

Fig.1 Test Circuit



AC WAVEFORM

Fig.2 t_{pLH}, t_{pHL}

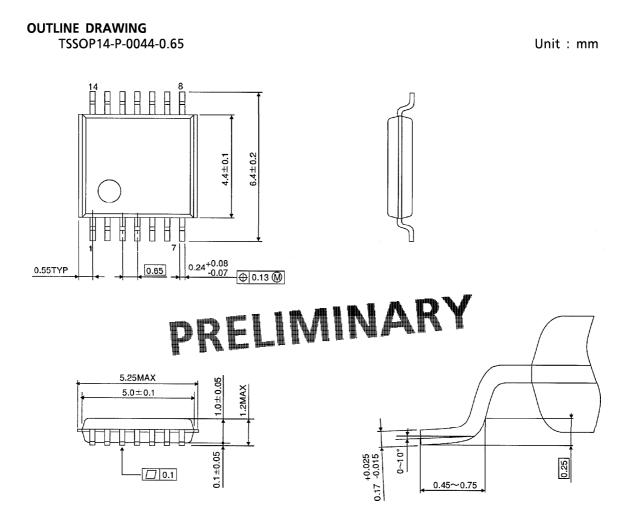


Fig.3 t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}

SYMBOL	V _{CC}						
3 TIVIBOL	3.3±0.3V	2.5±0.2V	1.8V				
VIH	2.7V	Vcc	V _{CC}				
٧ _M	1.5V	V _{CC} /2	V _{CC} /2				
٧ _X	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V				
٧ _Y	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V				

1998-09-01 7/8

Weight : 0.06g (Typ.)

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com