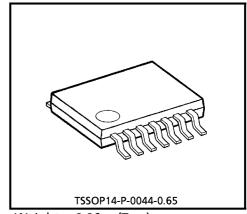
<u>TOSHIBA</u>

TENTATIVE

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC


T C 7 4 V C X 1 4 F T

LOW-VOLTAGE HEX SCHMITT INVERTER WITH 3.6 V TOLERANT INPUTS AND OUTPUTS

The TC74VCX14FT is a high performance CMOS schmitt inverter. Designed for use in 1.8, 2.5 or 3.3 Volt systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

It is also designed with over voltage tolerant inputs and outputs up to $3.6 \, \text{V}$.

Pin configuration and function are the same as the TC74VCX04 but the inputs have hysteresis and with its schmitt trigger function, the TC74VCX14 can be used as a line receivers which will receive slow input signals. All inputs are equipped with protection circuits against static discharge.

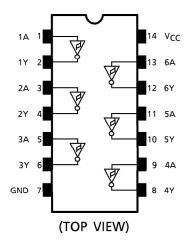
Weight: 0.06 g (Typ.)

FEATURES

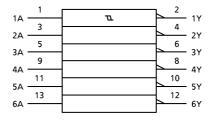
• Low voltage operation : $V_{CC} = 1.8 \sim 3.6 V$

•	High speed operation	:	t_{pd} = TBD (max) at V _{CC} = 3.0~3.6 V
			t_{pd} = TBD (max) at V _{CC} = 2.3~2.7 V
			t_{pd} = TBD (max) at V _{CC} = 1.8 V
•	Output current	:	$I_{OH}/I_{OL} = \pm 24 \text{ mA} \text{ (min) at } V_{CC} = 3.0 \text{ V}$
			$I_{OH}/I_{OL} = \pm 18 \text{ mA} \text{ (min)} \text{ at } V_{CC} = 2.3 \text{ V}$
			$I_{OH}/I_{OL} = \pm 6 \text{ mA}$ (min) at $V_{CC} = 1.8 \text{ V}$
•	Latch-up performance	:	± 300 mA
•	ESD performance	:	Human body model > ±2000 V
			Machine model > ±200 V
•	Package	:	TSSOP
			(Thin Shrink Small Outline Package)

Power down protection is provided on all inputs and outputs.

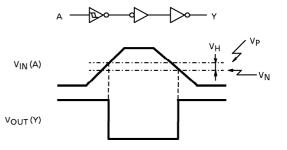

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.


980910EBA1

TOSHIBA

PIN ASSIGNMENT


IEC LOGIC SYMBOL

TRUTH TABLE

INPUTS	OUTPUTS
А	Y
L	н
Н	L

SYSTEM DIAGRAM, WAVEFORM

PARAMETER	SYMBOL	RATING	UNIT	
Power Supply Voltage	V _{CC}	-0.5~4.6	V	
DC Input Voltage	VIN	-0.5~4.6	V	
DC Output Voltage	Maxim	-0.5~4.6 (Note 1)	v	
DC Output voltage	Vout	-0.5~V _{CC} + 0.5 (Note 2)		
Input Diode Current	IК	– 50	mA	
Output Diode Current	юк	±50 (Note 3)	mA	
DC Output Current	Ιουτ	± 50	mA	
Power Dissipation	PD	180	mW	
DC V _{CC} /Ground Current	ICC / IGND	± 100	mA	
Storage Temperature	T _{stg}	- 65~150	°C	

MAXIMUM RATINGS

RECOMMENDED OPERATING RANGE

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	Maa	1.8~3.6	v
Supply Voltage			
Input Voltage	VIN	-0.3~3.6	V
Quitmut Valtaga	Maxim	0~3.6 (Note 5)	v
Output Voltage	VIN Vout	0~ V _{CC} (Note 6)	v
		±24 (Note 7)	
Output Current	IOH / IOL	± 18 (Note 8)	mA
		±6 (Note 9)	
Operating Temperature	T _{opr}	- 40~85	°C

ELECTRICAL CHARACTERISTICS

DC characteristics (Ta = $-40{\sim}85^\circ\text{C},~2.7~\text{V} < \text{V}_{\text{CC}} \leq 3.6~\text{V})$

PARA	METER	SYMBOL	TEST	CONDITION	V _{CC} (V)	MIN	ΜΑΧ	UNIT
	"H" Level						TBD	
Input	n Level	VP			3.0	_	TBD	v
Voltage	"L" Level	Max			3.6	TBD	—	v
	L Level	VIN			3.0	TBD	—	
Hystoresis V	altaga	N			3.6	TBD	TBD	V
Hysteresis Voltage		VH			3.0	TBD	TBD	v
				I _{OH} = -100 μA	2.7~3.6	V _{СС} – 0.2	—	
	"H" Level "L" Level	Vон	V _{IN} = V _{IL}	$I_{OH} = -12 \text{ mA}$	2.7	2.2	_	V
Quatra ant				$I_{OH} = -18 \text{ mA}$	3.0	2.4	_	
Output				$I_{OH} = -24 \text{ mA}$	3.0	2.2	—	
Voltage		Vol	V _{IN} = V _{IH}	l _{OL} = 100 μA	2.7~3.6	_	0.2	
				I _{OL} = 12 mA	2.7	_	0.4	
		VOL		I _{OL} = 18 mA	3.0	_	0.4	
				I _{OL} = 24 mA	3.0	_	0.55	
Input Leaka	ige Current	^I IN	V _{IN} = 0∼3.	.6 V	2.7~3.6	_	± 5.0	μA
Power Off Leakage Current		lOFF	VIN, VOUT	V _{IN} , V _{OUT} = 0~3.6 V		_	10.0	μΑ
Quiescent Supply			$V_{IN} = V_{CC}$	V _{IN} = V _{CC} or GND		_	20.0	
Current		lcc	$V_{CC} \leq V_{IN}$	≦ 3.6 V	2.7~3.6	_	±20.0	μA
Increase In Input	I _{CC} Per	⊿ICC	V _{IH} = V _{CC}	– 0.6 V	2.7~3.6	_	750	μΑ

PARA	METER	SYMBOL	TEST CC	ONDITION	V _{CC} (V)	MIN	MAX	UNIT
Input	"H" Level	VP			2.3	_	TBD	v
Voltage	"L" Level	VN			2.3	TBD	_	
Hysteresis V	/oltage	v_{H}			2.3	TBD	TBD	V
			$V_{IN} = V_{IL}$ $V_{IN} = V_{IH}$	I _{OH} = -100 μA	2.3~2.7	V _{CC} - 0.2		V
		V _{OH}		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
Output				$I_{OH} = -12 \text{ mA}$	2.3	1.8	_	
Voltage				$I_{OH} = -18 \text{ mA}$	2.3	1.7	_	
		V _{OL}		l _{OL} = 100 μA	2.3~2.7	_	0.2	
				I _{OL} = 12 mA	2.3	_	0.4	
				I _{OL} = 18 mA	2.3	_	0.6	
Input Leakage Current		IIN	V _{IN} = 0~3.6 V		2.3~2.7	_	± 5.0	μA
Power Off Leakage Current		IOFF	$V_{IN}, V_{OUT} = 0 \sim 3.6 V$		0	_	10.0	μA
Quiescent S	Quiescent Supply		V _{IN} = V _{CC} or GND		2.3~2.7	_	20.0	
Current		lcc	$V_{CC} \leq V_{IN} \leq 3.6 V$		2.3~2.7	_	±20.0	μΑ

DC characteristics (Ta = $-40 \sim 85^{\circ}$ C, 2.3 V $\leq V_{CC} \leq 2.7$ V)

DC characteristics (Ta = $-40 \sim 85^{\circ}$ C, $1.8 V \leq V_{CC} < 2.3 V$)

PARAN	METER	SYMBOL	TEST CC	ONDITION	V _{CC} (V)	MIN	ΜΑΧ	UNIT
Input	nput "H" Level Vp		1.8	_	TBD	v		
Voltage	"L" Level	VN			1.8	TBD	_	v
Hysteresis Vo	oltage	VH			1.8	TBD	TBD	V
Output	"H" Level	V _{OH}	V _{IN} = V _{IL}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2		
Output Voltage				$I_{OH} = -6 \text{mA}$	1.8	1.4		V
voltage	"L" Level	V _{OL}	V _{IN} = V _{IH}	I _{OL} = 100 μA	1.8		0.2	
				I _{OL} = 6 mA	1.8		0.3	
Input Leakage Current		IIN	$V_{IN} = 0 \sim 3.6 V$		1.8	_	± 5.0	μA
Power Off Leakage Current		IOFF	V _{IN} , V _{OUT} = 0~3.6 V		0	_	10.0	μΑ
Quiescent Supply			V _{IN} = V _{CC} or GND		1.8	_	20.0	
Current		lcc	$V_{CC} \leq V_{IN} \leq 3.6 V$		1.8		±20.0	μΑ

AC characteristics (Ta = $-40 \sim 85^{\circ}$ C, Input t_r = t_f = 2.0 ns, C_L = 30 pF, R_L = 500 Ω)

PARAMETER	SYMBOL	TEST CONDITION	V _{CC} (V)	MIN	ΜΑΧ	UNIT
Propagation Dolay	+		1.8	1.0	TBD	
Propagation Delay Time	t _{pLH} t _{pHL}	(Fig. 1, 2)	2.5 ± 0.2	0.8	TBD	ns
Time			3.3 ± 0.3	0.6	TBD	
Output To Output	+		1.8	—	0.5	
Output To Output Skew	Output ^t osLH ^t osHL	(Note 10)	2.5 ± 0.2		0.5	ns
JNEW			3.3 ± 0.3		0.5	

For $C_L = 50 \text{ pF}$, add approximately 300 ps to the AC maximum specification.

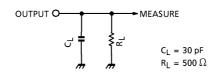
 $(Note 10): Parameter guaranteed by design. \\ (t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

Dynamic switching characteristics (Ta = 25° C, Input t_r = t_f = 2.0 ns, C_L = 30 pF)

PARAMETER	SYMBOL	TEST CONDITIC	N	V _{CC} (V)	TYP.	UNIT
Quiet Qutput Maximum		$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note 11)	1.8	0.25	
Quiet Output Maximum Dynamic V _{OL}	VOLP	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note 11)	2.5	0.6	V
		$V_{IH} = 3.3 V, V_{IL} = 0 V$	(Note 11)	3.3	0.8	
Quiet Qutput Minimum	VOLV	$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note 11)	1.8	- 0.25	v
Quiet Output Minimum Dynamic V _{OI}		$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note 11)	2.5	- 0.6	
		$V_{IH} = 3.3 V, V_{IL} = 0 V$	(Note 11)	3.3	- 0.8	
Quiet Qutput Minimum		$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note 11)	1.8	1.5	
Quiet Output Minimum Dynamic V _{OH}	VOHV	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note 11)	2.5	1.9	V
		V _{IH} = 3.3 V, V _{IL} = 0 V	(Note 11)	3.3	2.2	

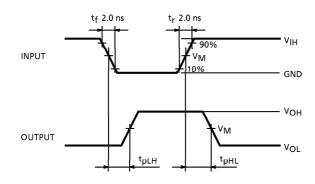
(Note 11) : Parameter guaranteed by design.

Capacitive characteristics ($Ta = 25^{\circ}C$)


PARAMETER	SYMBOL	TEST CONDITIC	N	V _{CC} (V)	TYP.	UNIT
Input Capacitance	C _{IN}			1.8, 2.5, 3.3	6	рF
Power Dissipation Capacitance	C _{PD}	f _{IN} = 10 MHz (N	Note 12)	1.8, 2.5, 3.3	20	рF

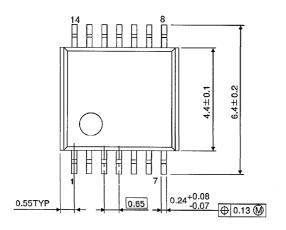
(Note 12) : C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation :

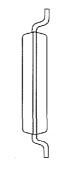
 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 6 (Per gate)$

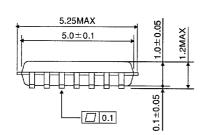

<u>TOSHIBA</u>

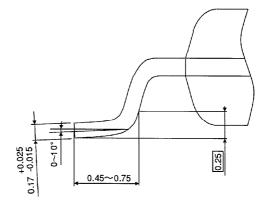
TEST CIRCUIT Fig.1

AC WAVEFORM


Fig.2 t_{pLH}, t_{pHL}




SYMBOL	V _{CC}						
STIVIBOL	3.3 ± 0.3 V	2.5 ± 0.2 V	1.8 V				
VIH	2.7 V	Vcc	V _{CC}				
VM	1.5 V	V _{CC} / 2	V _{CC} / 2				


Unit : mm

OUTLINE DRAWING TSSOP14-P-0044-0.65

Weight : 0.06 g (Typ.)

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com