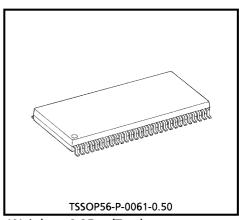
TOSHIBA TC74VCX16500FT

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

# TC74VCX16500FT


## LOW-VOLTAGE 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3.6 V TOLERANT INPUTS AND OUTPUTS

The TC74VCX16500FT is a high performance CMOS 18-bit UNIVERSAL BUS TRANSCEIVER. Designed for use in 1.8, 2.5 or 3.3 Volt systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

It is also designed with over voltage tolerant inputs and outputs up to 3.6 V.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CKAB and CKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CKAB is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the high-to-low transition

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CKBA. When the OE input is high, the outputs are in a high impedance state. This device is designed to be used with 3-state memory address drivers,



Weight: 0.25 g (Typ.)

All inputs are equipped with protection circuits against static discharge.

### **FEATURES**

Low Voltage Operation :  $V_{CC} = 1.8 \sim 3.6 \text{ V}$ 

:  $t_{pd} = 2.9 \text{ ns (max)}$  at  $V_{CC} = 3.0 \sim 3.6 \text{ V}$ High Speed Operation

 $t_{pd} = 3.5 \text{ ns (max)}$  at  $V_{CC} = 2.3 \sim 2.7 \text{ V}$   $t_{pd} = 7.0 \text{ ns (max)}$  at  $V_{CC} = 1.8 \text{ V}$ 

3.6 V Tolerant inputs and outputs.

**Output Current**  $: I_{OH}/I_{OL} = \pm 24 \text{ mA (min) at } V_{CC} = 3.0 \text{ V}$ 

:  $I_{OH}/I_{OL} = \pm 18 \text{ mA (min)}$  at  $V_{CC} = 2.3 \text{ V}$ :  $I_{OH}/I_{OL} = \pm 6 \text{ mA (min)}$  at  $V_{CC} = 1.8 \text{ V}$ 

: ±300 mA Latch-up Performance

**ESD Performance** : Human Body Model > ±2000 V

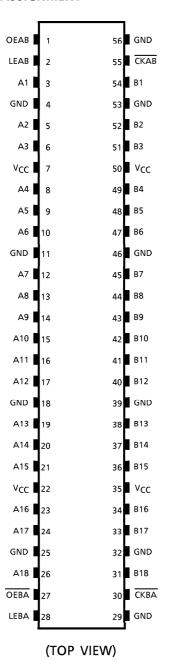
: Machine Model > ±200 V

: TSSOP (Thin Shrink Small Outline Package) Package

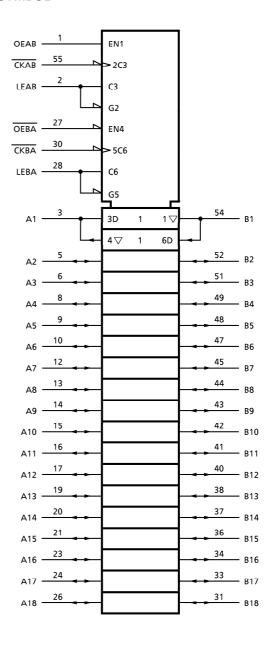
Bidirectional interface between 2.5 V and 3.3 V signals.

- Power Down Protection is provided on all inputs and outputs.
- Supports live insertion / withdrawal (Note 3)

(Note 1): Do not apply a signal to any bus terminal when it is in the output mode. Damage may


(Note 2): All floating (high impedance) bus terminal must have their input level fixed by means of pull up or pull down resistors.

(Note 3): To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to V<sub>CC</sub> through a pullup resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.


980910EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

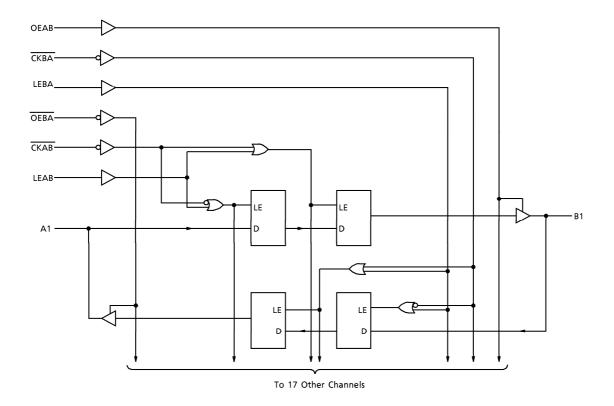
### **PIN ASSIGNMENT**



### **SYMBOL**



980910EBA2'


The products described in this document are subject to the foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

### **TRUTH TABLE \***

|      | INPUTS |            |   |      |  |  |  |
|------|--------|------------|---|------|--|--|--|
| OEAB | LEAB   | CKAB       | Α | В    |  |  |  |
| L    | Х      | Х          | Х | Z    |  |  |  |
| Н    | Н      | Х          | L | L    |  |  |  |
| Н    | Н      | Х          | Н | Н    |  |  |  |
| Н    | L      | ٦ <u>ـ</u> | L | L    |  |  |  |
| Н    | L      | 7_         | Н | Н    |  |  |  |
| Н    | L      | Н          | Х | B0** |  |  |  |
| Н    | L      | L          | Х | B0** |  |  |  |

- \* A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CKBA.
- \*\* Output level before the indicated steady-state input conditions were established, provided that CKAB was low or high before LEAB went low.

### SYSTEM DIAGRAM



### **MAXIMUM RATINGS**

| PARAMETER                                             | SYMBOL            | RATING                              | UNIT       |  |
|-------------------------------------------------------|-------------------|-------------------------------------|------------|--|
| Power Supply Voltage                                  | V <sub>CC</sub>   | -0.5~4.6                            | V          |  |
| DC Input Voltage (OEAB, OEBA, LEAB, LEBA, CKAB, CKBA) | V <sub>IN</sub>   | - 0.5~4.6                           | ٧          |  |
| DC Bus I /O Voltage                                   | V/                | -0.5~4.6 (Note 1)                   | V          |  |
| DC Bus I/O Voltage                                    | V <sub>I</sub> /O | -0.5~V <sub>CC</sub> + 0.5 (Note 2) | ] <b>'</b> |  |
| Input Diode Current                                   | ΙΚ                | <b>–</b> 50                         | mA         |  |
| Output Diode Current                                  | loк               | ± 50 (Note 3)                       | mA         |  |
| DC Output Current                                     | lout              | ± 50                                | mA         |  |
| Power Dissipation                                     | PD                | 400                                 | mW         |  |
| DC V <sub>CC</sub> / Ground Current Per Supply Pin    | ICC / IGND        | ± 100                               | mA         |  |
| Storage Temperature                                   | T <sub>stg</sub>  | <b>-65∼150</b>                      | °C         |  |

(Note 1) : Off-State

(Note 2) : High or Low State.  $I_{\mbox{OUT}}$  absolute maximum rating must be observed.

(Note 3) :  $V_{OUT} < GND$ ,  $V_{OUT} > V_{CC}$ 

### RECOMMENDED OPERATING RANGE

| PARAMETER                                          | SYMBOL            | RATING                      | UNIT   |
|----------------------------------------------------|-------------------|-----------------------------|--------|
| Supply Voltage                                     | \/                | 1.8~3.6                     | V      |
| Supply Voltage                                     | VCC               | 1.2~3.6 (Note 4)            | V      |
| Input Voltage (OEAB, OEBA, LEAB, LEBA, CKAB, CKBA) | V <sub>IN</sub>   | -0.3~3.6                    | ٧      |
| Pus I/O Voltage                                    | \/                | 0~3.6 (Note 5)              | V      |
| Bus I/O Voltage                                    | V <sub>I</sub> /O | 0~ V <sub>CC</sub> (Note 6) | V      |
|                                                    |                   | ± 24 (Note 7)               |        |
| Output Current                                     | IOH/IOL           | ± 18 (Note 8)               | mA     |
|                                                    |                   | ±6 (Note 9)                 |        |
| Operating Temperature                              | T <sub>opr</sub>  | - 40~85                     | °C     |
| Input Rise And Fall Time                           | dt/dv             | 0~10 (Note 10)              | ns / V |

(Note 4) : Data Retention Only

(Note 5) : Off-State

(Note 5): On-state
(Note 6): High or Low State
(Note 7): V<sub>CC</sub> = 3.0~3.6 V
(Note 8): V<sub>CC</sub> = 2.3~2.7 V
(Note 9): V<sub>CC</sub> = 1.8 V
(Note 10): V<sub>IN</sub> = 0.8~2.0 V, V<sub>CC</sub> = 3.0 V

### **ELECTRICAL CHARACTERISTICS**

DC characteristics (Ta =  $-40\sim85^{\circ}$ C, 2.7 V < V<sub>CC</sub>  $\leq$  3.6 V)

| PARA                       | METER               | SYMBOL          | TEST                                                    | CONDITION                 | V <sub>CC</sub> (V) | MIN                      | MAX                                | UNIT                    |     |   |     |  |
|----------------------------|---------------------|-----------------|---------------------------------------------------------|---------------------------|---------------------|--------------------------|------------------------------------|-------------------------|-----|---|-----|--|
| Input                      | "H" Level           | V <sub>IH</sub> |                                                         |                           | 2.7~3.6             | 2.0                      | _                                  | V                       |     |   |     |  |
| Voltage                    | "L" Level           | V <sub>IL</sub> |                                                         |                           | 2.7~3.6             | _                        | 0.8                                | V                       |     |   |     |  |
|                            |                     |                 | .,                                                      | I <sub>OH</sub> = -100 μA | 2.7~3.6             | V <sub>CC</sub><br>- 0.2 |                                    |                         |     |   |     |  |
|                            | "H" Level           | Voн             | V <sub>IN</sub> =                                       | $I_{OH} = -12 \text{ mA}$ | 2.7                 | 2.2                      |                                    |                         |     |   |     |  |
| 044                        |                     |                 | V <sub>IH</sub> or V <sub>IL</sub>                      | $I_{OH} = -18  \text{mA}$ | 3.0                 | 2.4                      |                                    |                         |     |   |     |  |
| Output                     |                     |                 |                                                         | $I_{OH} = -24  \text{mA}$ | 3.0                 | 2.2                      |                                    | V                       |     |   |     |  |
| Voltage                    |                     |                 |                                                         | l <sub>OL</sub> = 100 μA  | 2.7~3.6             | _                        | 0.2                                |                         |     |   |     |  |
|                            | "L" Level           | V <sub>OL</sub> | V <sub>IN</sub> =                                       | I <sub>OL</sub> = 12 mA   | 2.7                 | _                        | 0.4                                |                         |     |   |     |  |
|                            | L Level             | VOL             | V <sub>IH</sub> or V <sub>IL</sub>                      | VIH or VIL                | VIH or VIL          | VIH or VIL               | V <sub>IH</sub> or V <sub>IL</sub> | I <sub>OL</sub> = 18 mA | 3.0 | _ | 0.4 |  |
|                            |                     |                 |                                                         | I <sub>OL</sub> = 24 mA   | 3.0                 | _                        | 0.55                               |                         |     |   |     |  |
| Input Leaka                | age Current         | IN              | $V_{IN} = 0 \sim 3$ .                                   | 6 V                       | 2.7~3.6             | _                        | ± 5.0                              | $\mu$ A                 |     |   |     |  |
| 3-State Out<br>Off-State C |                     | loz             | V <sub>IN</sub> = V <sub>IH</sub> V <sub>OUT</sub> = 0~ |                           | 2.7~3.6             |                          | ± 10.0                             | μΑ                      |     |   |     |  |
| Power Off<br>Current       | Leakage             | lOFF            | V <sub>IN</sub> , V <sub>OUT</sub> = 0~3.6 V            |                           | 0                   | 1                        | 10.0                               | $\mu$ A                 |     |   |     |  |
| Quiescent S                | Supply              | laa             | $V_{IN} = V_{CC}$ or GND                                |                           | 2.7~3.6             |                          | 20.0                               |                         |     |   |     |  |
| Current                    |                     | lcc             | $V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 V$                |                           | 2.7~3.6             |                          | ± 20.0                             | $\mu$ A                 |     |   |     |  |
| Increase In<br>Input       | I <sub>CC</sub> Per | ∆ارح            | V <sub>IH</sub> = V <sub>CC</sub> - 0.6 V               |                           | 2.7~3.6             | _                        | 750                                | $\mu$ A                 |     |   |     |  |

### **ELECTRICAL CHARACTERISTICS**

DC characteristics (Ta =  $-40\sim85^{\circ}$ C, 2.3 V  $\leq$  V<sub>CC</sub>  $\leq$  2.7 V)

| PARA                       | METER       | SYMBOL            | TEST                                                                     | CONDITION                     | V <sub>CC</sub> (V)      | MIN  | MAX    | UNIT    |  |  |  |                     |                         |     |   |     |
|----------------------------|-------------|-------------------|--------------------------------------------------------------------------|-------------------------------|--------------------------|------|--------|---------|--|--|--|---------------------|-------------------------|-----|---|-----|
| Input                      | "H" Level   | V <sub>IH</sub>   |                                                                          |                               | 2.3~2.7                  | 1.6  |        | V       |  |  |  |                     |                         |     |   |     |
| Voltage                    | "L" Level   | $V_{IL}$          |                                                                          |                               | 2.3~2.7                  | _    | 0.7    | · '     |  |  |  |                     |                         |     |   |     |
|                            |             |                   | I <sub>OH</sub> = -100 μA                                                | 2.3~2.7                       | V <sub>CC</sub><br>- 0.2 |      |        |         |  |  |  |                     |                         |     |   |     |
|                            | "H" Level   | Voн               | V <sub>IN</sub> =                                                        | $I_{OH} = -6  \text{mA}$      | 2.3                      | 2.0  | _      |         |  |  |  |                     |                         |     |   |     |
| Output                     |             |                   |                                                                          | I <sub>OH</sub> = -12 mA      | 2.3                      | 1.8  | _      | v       |  |  |  |                     |                         |     |   |     |
| Voltage                    |             |                   |                                                                          | I <sub>OH</sub> = -18 mA      | 2.3                      | 1.7  | _      | , v     |  |  |  |                     |                         |     |   |     |
|                            |             |                   | V <sub>IN</sub> =                                                        | I <sub>OL</sub> = 100 μA      | 2.3~2.7                  | _    | 0.2    |         |  |  |  |                     |                         |     |   |     |
|                            | "L" Level   | $v_{OL}$          |                                                                          |                               |                          |      |        |         |  |  |  | VIN -<br>VIH or VIL | I <sub>OL</sub> = 12 mA | 2.3 | _ | 0.4 |
|                            |             |                   | VIH OI VIL                                                               | I <sub>OL</sub> = 18 mA       | 2.3                      | _    | 0.6    |         |  |  |  |                     |                         |     |   |     |
| Input Leak                 | age Current | ΙΝ                | $V_{IN} = 0 \sim 3$ .                                                    | 6 V                           | 2.3~2.7                  | _    | ± 5.0  | $\mu$ A |  |  |  |                     |                         |     |   |     |
| 3-State Out<br>Off-State C |             | loz               | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$V_{OUT} = 0 \sim 3.6 \text{ V}$ |                               | 2.3~2.7                  | _    | ± 10.0 | $\mu$ A |  |  |  |                     |                         |     |   |     |
| Power Off<br>Current       | Leakage     | lOFF              | V <sub>IN</sub> , V <sub>OUT</sub> = 0~3.6 V                             |                               | 0                        | _    | 10.0   | $\mu$ A |  |  |  |                     |                         |     |   |     |
| Quiescent Supply VIN = VCC |             | $V_{IN} = V_{CC}$ | or GND                                                                   | 2.3~2.7                       |                          | 20.0 |        |         |  |  |  |                     |                         |     |   |     |
| Current                    |             | lcc               | $V_{CC} \leq (V_{IN})$                                                   | ı, V <sub>OUT</sub> ) ≦ 3.6 V | 2.3~2.7                  | _    | ± 20.0 | $\mu$ A |  |  |  |                     |                         |     |   |     |

### **ELECTRICAL CHARACTERISTICS**

DC characteristics (Ta =  $-40\sim85^{\circ}$ C,  $1.8 \text{ V} \leq \text{V}_{CC} < 2.3 \text{ V}$ )

| PARA                       | METER       | SYMBOL          | TEST                                                                     | CONDITION                  | V <sub>CC</sub> (V) | MIN                      | MAX                       | UNIT        |
|----------------------------|-------------|-----------------|--------------------------------------------------------------------------|----------------------------|---------------------|--------------------------|---------------------------|-------------|
| Input                      | "H" Level   | V <sub>IH</sub> |                                                                          |                            | 1.8~2.3             | 0.7 ×<br>V <sub>CC</sub> |                           | <b>&gt;</b> |
| Voltage                    | "L" Level   | V <sub>IL</sub> |                                                                          |                            | 1.8~2.3             | _                        | 0.2 x<br>V <sub>C</sub> C | V           |
| O. stan. st                | "H" Level   | Voн             |                                                                          | I <sub>OH</sub> = -100 μA  | 1.8                 | V <sub>CC</sub><br>- 0.2 | _                         |             |
| Output<br>Voltage          |             |                 | V <sub>IH</sub> or V <sub>IL</sub>                                       | $I_{OH} = -6  \text{mA}$   | 1.8                 | 1.4                      | _                         | V           |
| Voltage                    | "L" Level   |                 | V <sub>IN</sub> =                                                        | I <sub>OL</sub> = 100 μA   | 1.8                 | _                        | 0.2                       |             |
|                            | L Level     | V <sub>OL</sub> | V <sub>IH</sub> or V <sub>IL</sub>                                       | I <sub>OL</sub> = 6 mA     | 1.8                 | _                        | 0.3                       |             |
| Input Leak                 | age Current | IN              | $V_{IN} = 0 \sim 3$ .                                                    | 6 V                        | 1.8                 | _                        | ± 5.0                     | $\mu$ A     |
| 3-State Out<br>Off-State C |             | loz             | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$V_{OUT} = 0 \sim 3.6 \text{ V}$ |                            | 1.8                 |                          | ± 10.0                    | μΑ          |
| Power Off<br>Current       | Leakage     | lOFF            | V <sub>IN</sub> , V <sub>OUT</sub> = 0~3.6 V                             |                            | 0                   |                          | 10.0                      | $\mu$ A     |
| Quiescent Supply           |             | lee             | V <sub>IN</sub> = V <sub>CC</sub> or GND                                 |                            | 1.8                 |                          | 20.0                      | Λ           |
| Current                    |             | lcc             | \v_C \( \left\) (\v_{IN}                                                 | , $V_{OUT}$ ) $\leq 3.6 V$ | 1.8                 |                          | ± 20.0                    | $\mu$ A     |

| PARAMETER                  | SYMBOL                               | TEST CONDITION | V <sub>CC</sub> (V) | MIN | MAX | UNIT |
|----------------------------|--------------------------------------|----------------|---------------------|-----|-----|------|
| Marine Clark               |                                      |                | 1.8                 | 100 | _   |      |
| Maximum Clock<br>Frequency | fMAX                                 | (Fig.1, 2)     | 2.5 ± 0.2           | 200 | _   | MHz  |
| riequency                  |                                      |                | 3.3 ± 0.3           | 250 | _   |      |
| Propagation Delay Time     | +                                    |                | 1.8                 | 1.5 | 7.0 |      |
| (An, Bn-Bn, An)            | t <sub>pLH</sub>                     | (Fig.1, 2)     | 2.5 ± 0.2           | 0.8 | 3.5 | ns   |
| (All, Bil-Bil, All)        | <sup>t</sup> pHL                     |                | 3.3 ± 0.3           | 0.6 | 2.9 |      |
| Propagation Delay Time     | +                                    |                | 1.8                 | 1.5 | 9.8 |      |
| (CKAB, CLKBA-Bn, An)       | t <sub>pLH</sub>                     | (Fig.1, 3)     | 2.5 ± 0.2           | 0.8 | 5.3 | ns   |
| (CRAB, CERBA-BII, AII)     | <sup>t</sup> pHL                     |                | 3.3 ± 0.3           | 0.6 | 4.2 |      |
| Propagation Delay Time     | <b>.</b>                             |                | 1.8                 | 1.5 | 9.8 |      |
| (LEAB, LEBA-Bn, An)        | t <sub>pLH</sub>                     | (Fig.1, 4)     | 2.5 ± 0.2           | 0.8 | 4.9 | ns   |
| (LLAB, LLBA-BII, AII)      | <sup>t</sup> pHL                     |                | 3.3 ± 0.3           | 0.6 | 3.8 |      |
| Output Enable Time         | <sup>t</sup> pZL<br><sup>t</sup> pZH |                | 1.8                 | 1.5 | 9.8 |      |
| (OEAB, OEBA-Bn, An)        |                                      | (Fig.1, 5, 6)  | 2.5 ± 0.2           | 0.8 | 4.9 | ns   |
| (OLAB, OLBA-BII, AII)      |                                      |                | 3.3 ± 0.3           | 0.6 | 3.8 |      |
| Output Disable Time        | +                                    |                | 1.8                 | 1.5 | 7.6 | ns   |
| (OEAB, OEBA-Bn, An)        | t <sub>pLZ</sub>                     | (Fig.1, 5, 6)  | 2.5 ± 0.2           | 8.0 | 4.2 |      |
| (OLAB, OLBA-BII, AII)      | <sup>t</sup> pHZ                     |                | 3.3 ± 0.3           | 0.6 | 3.7 |      |
|                            | +                                    |                | 1.8                 | 4.0 | _   |      |
| Minimum Pulse Width        | tw (H)                               | (Fig.1, 3, 4)  | 2.5 ± 0.2           | 1.5 | _   | ns   |
|                            | t <sub>w (L)</sub>                   |                | 3.3 ± 0.3           | 1.5 | _   |      |
|                            |                                      |                | 1.8                 | 2.5 | _   |      |
| Minimum Set-up Time        | t <sub>s</sub>                       | (Fig.1, 3, 4)  | 2.5 ± 0.2           | 1.5 | _   | ns   |
|                            |                                      |                | 3.3 ± 0.3           | 1.5 | _   |      |
| Minimum Hold Time          |                                      |                | 1.8                 | 1.0 | _   |      |
|                            | t <sub>h</sub>                       | (Fig.1, 3, 4)  | 2.5 ± 0.2           | 1.0 | _   | ns   |
|                            |                                      |                | 3.3 ± 0.3           | 1.0 | _   |      |
|                            | +                                    |                | 1.8                 |     | 0.5 |      |
| Output to Output Skew      | <sup>t</sup> osLH                    | (Note 11       | 2.5 ± 0.2           |     | 0.5 | ns   |
|                            | <sup>t</sup> osHL                    |                | 3.3 ± 0.3           | _   | 0.5 |      |

For  $C_L = 50 \, pF$ , add approximately 300 ps to the AC maximum specification.

(Note 11) : Parameter guaranteed by design. 
$$(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \ t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$$

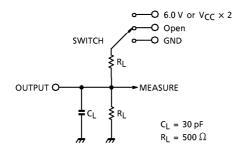
| Dynamic switching characteri | tics ( $Ta = 25^{\circ}C$ , | Input $t_r = t_f$ | $f = 2.0 \text{ ns}, C_1$ | = 30 pF) |
|------------------------------|-----------------------------|-------------------|---------------------------|----------|
|------------------------------|-----------------------------|-------------------|---------------------------|----------|

| PARAMETER                                       | SYMBOL           | TEST CONDITIO                                  | ON        | V <sub>CC</sub> (V) | TYP.   | UNIT |
|-------------------------------------------------|------------------|------------------------------------------------|-----------|---------------------|--------|------|
| Quiet Quitnut Maximum                           |                  | $V_{IH} = 1.8  V,  V_{IL} = 0  V$              | (Note 12) | 1.8                 | 0.25   |      |
| Quiet Output Maximum  Dynamic VOL               | VOLP             | $V_{IH} = 2.5 V, V_{IL} = 0 V$                 | (Note 12) | 2.5                 | 0.6    | V    |
| Dynamic VOL                                     |                  | V <sub>IH</sub> = 3.3 V, V <sub>IL</sub> = 0 V | (Note 12) | 3.3                 | 0.8    |      |
| Quiet Quanut Minimum                            | V <sub>OLV</sub> | V <sub>IH</sub> = 1.8 V, V <sub>IL</sub> = 0 V | (Note 12) | 1.8                 | - 0.25 |      |
| Quiet Output Minimum  Dynamic VOI               |                  | $V_{IH} = 2.5 V, V_{IL} = 0 V$                 | (Note 12) | 2.5                 | - 0.6  | V    |
| Dynamic vOL                                     |                  | $V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ | (Note 12) | 3.3                 | - 0.8  |      |
| Ouist Output Minimum                            |                  | V <sub>IH</sub> = 1.8 V, V <sub>IL</sub> = 0 V | (Note 12) | 1.8                 | 1.5    |      |
| Quiet Output Minimum<br>Dynamic V <sub>OH</sub> | VOHV             | $V_{IH} = 2.5  V,  V_{IL} = 0  V$              | (Note 12) | 2.5                 | 1.9    | V    |
| Dynamic VOH                                     |                  | V <sub>IH</sub> = 3.3 V, V <sub>IL</sub> = 0 V | (Note 12) | 3.3                 | 2.2    |      |

(Note 12): Parameter guaranteed by design.

### Capacitive characteristics (Ta = 25°C)

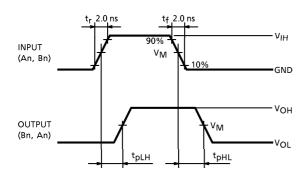
| PARAMETER                     | SYMBOL            | TEST CONDI               | TION      | V <sub>CC</sub> (V) | TYP. | UNIT |
|-------------------------------|-------------------|--------------------------|-----------|---------------------|------|------|
| Input Capacitance             | CIN               |                          |           | 1.8, 2.5, 3.3       | 6    | рF   |
| Bus I/O Capacitance           | C <sub>I</sub> /O | _                        |           | 1.8, 2.5, 3.3       | 7    | рF   |
| Power Dissipation Capacitance | C <sub>PD</sub>   | f <sub>IN</sub> = 10 MHz | (Note 13) | 1.8, 2.5, 3.3       | 20   | рF   |


(Note 13): CpD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

ICC (opr.) = CpD · VCC · fIN + ICC / 18 (per bit)

**TEST CIRCUIT** 


Fig.1



| PARAMETER                           | SWITCH                                                                                                 |
|-------------------------------------|--------------------------------------------------------------------------------------------------------|
| t <sub>pLH</sub> , t <sub>pHL</sub> | Open                                                                                                   |
| t <sub>pLZ</sub> , t <sub>pZL</sub> | $6.0 \text{ V}$ $@V_{CC} = 3.3 \pm 0.3 \text{ V}$                                                      |
|                                     | $6.0 \text{ V}$ $@V_{CC} = 3.3 \pm 0.3 \text{ V}$<br>$V_{CC} \times 2 @V_{CC} = 2.5 \pm 0.2 \text{ V}$ |
|                                     | @V <sub>CC</sub> = 1.8 V                                                                               |
| t <sub>pHZ</sub> , t <sub>pZH</sub> | GND                                                                                                    |

### **AC WAVEFORM**

Fig.2 t<sub>pLH</sub>, t<sub>pHL</sub>



| SYMBOL          | V <sub>CC</sub>         |                          |                          |
|-----------------|-------------------------|--------------------------|--------------------------|
|                 | 3.3 ± 0.3 V             | 2.5 ± 0.2 V              | 1.8 V                    |
| V <sub>IH</sub> | 2.7 V                   | V <sub>CC</sub>          | V <sub>CC</sub>          |
| ٧M              | 1.5 V                   | V <sub>CC</sub> /2       | V <sub>CC</sub> /2       |
| ٧x              | $V_{OL} + 0.3 V$        | V <sub>OL</sub> + 0.15 V | V <sub>OL</sub> + 0.15 V |
| ۷Y              | V <sub>OH</sub> - 0.3 V | V <sub>OH</sub> - 0.15 V | V <sub>OH</sub> - 0.15 V |

Fig.3  $t_{pLH}$ ,  $t_{pHL}$ ,  $t_{w}$ ,  $t_{s}$ ,  $t_{h}$ 

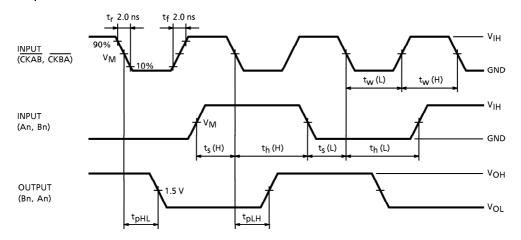



Fig.4  $t_{pLH}$ ,  $t_{pHL}$ ,  $t_{w}$ ,  $t_{s}$ ,  $t_{h}$ 

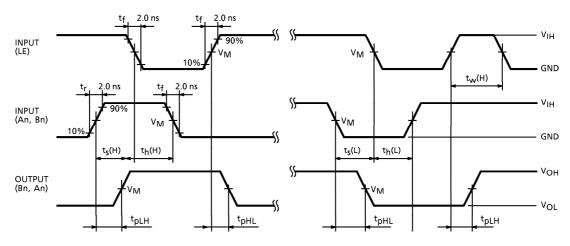



Fig.5  $t_{pLZ}$ ,  $t_{pHZ}$ ,  $t_{pZL}$ ,  $t_{pZH}$ 

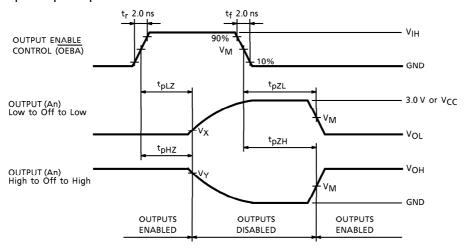
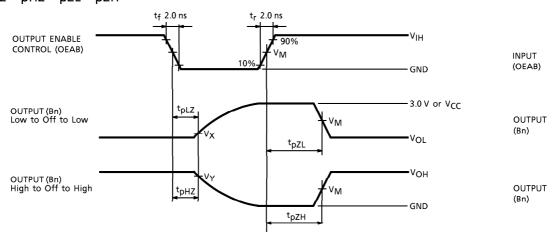
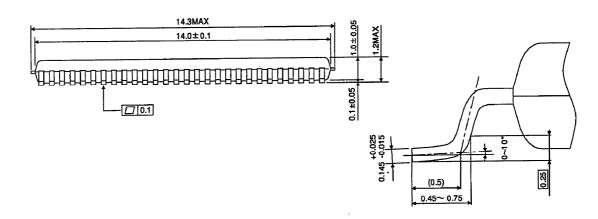





Fig.6 t<sub>pLZ</sub>, t<sub>pHZ</sub>, t<sub>pZL</sub>, t<sub>pZH</sub>



# OUTLINE DRAWING TSSOP56-P-0061-0.50 Unit: mm 0.25TYP 0.25TYP



Weight: 0.25 g (Typ.)

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com