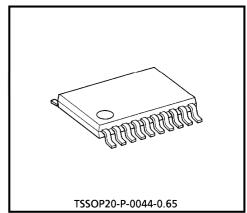
<u>TOSHIBA</u>

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC


T C 7 4 V C X 2 4 4 F T

LOW-VOLTAGE OCTAL BUS BUFFER WITH 3.6 V TOLERANT INPUTS AND OUTPUTS

The TC74VCX244FT is a high performance CMOS OCTAL BUS BUFFER. Designed for use in 1.8, 2.5 or 3.3 Volt systems, it achieves high speed operation while maintaining the CMOS low power dissipation. It is also designed with over voltage tolerant inputs and outputs up to 3.6 V.

This device is non-inverting 3 – state buffer having four active-low output enables. When the \overline{OE} input is high, the outputs are in a high impedance state. This device is designed to be used with 3 – state memory address drivers, etc.

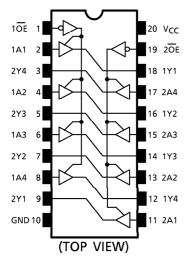
All inputs are equipped with protection circuits against static discharge.

Weight : 0.08 g (Typ.)

FEATURES

- Low Voltage Operation : V_{CC} = 1.8~3.6 V
- High Speed Operation : $t_{pd} = 3.5 \text{ ns} (\text{max.}) \text{ at } V_{CC} = 3.0 \sim 3.6 \text{ V}$
 - : $t_{pd} = 4.2 \text{ ns} (\text{max.}) \text{ at } V_{CC} = 2.3 \sim 2.7 \text{ V}$
 - : t_{pd} = 8.4 ns (max.) at V_{CC} = 1.8 V
- 3.6 V Tolerant inputs and outputs.
- Output Current : $I_{OH} / I_{OL} = \pm 24 \text{ mA} \text{ (min.)}$ at $V_{CC} = 3.0 \text{ V}$: $I_{OH} / I_{OL} = \pm 18 \text{ mA} \text{ (min.)}$ at $V_{CC} = 2.3 \text{ V}$
 - $|OH/|OL = \pm 6 \text{ mA (min.) at } VCC = 1.8 \text{ V}$
- Latch-up Performance : ± 300 mA
- ESD Performance : Human Body Model > ± 2000 V
- : Machine Model > ±200 V
- Package : TSSOP
- (Thin Shrink Small Outline Package)
- Power Down Protection is provided on all inputs and outputs.
- Supports live insertion / withdrawal (Note 1)

(Note 1): To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.
980910EBA1


TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
The product described in this document are subject to the foreign exchange and foreign trade laws.

The products described in this document are subject to the foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

1999-09-07 1/8

<u>TOSHIBA</u>

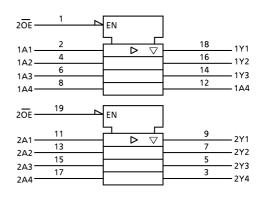
PIN ASSIGNMENT

TRUTH TABLE

INP	UTS	OUTPUTS	
ŌĒ	An	0011013	
L	L	L	
L	Н	Н	
Н	Х	Z	

X : Don't Care

Z : High Impedance


MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Power Supply Voltage	Vcc	-0.5~4.6	V
DC Input Voltage	VIN	- 0.5~4.6	V
	N	-0.5~4.6 (Note 1)	v
DC Output Voltage	VOUT	-0.5~V _{CC} + 0.5 (Note 2)	
Input Diode Current	lік	- 50	mA
Output Diode Current	юк	± 50 (Note 3)	mA
DC Output Current	Ιουτ	± 50	mA
Power Dissipation	PD	180	mW
DC V _{CC} /Ground Current	ICC / IGND	± 100	mA
Storage Temperature	T _{stg}	- 65~150	°C

(Note 1): Off-State

(Note 2): High or Low State. I_{OUT} absolute maximum rating must be observed. (Note 3): V_{OUT} < GND, V_{OUT} > V_{CC}

IEC LOGIC SYMBOL

RECOMMENDED OPERATING RANGE

PARAMETER	SYMBOL	RATING	UNIT
Supply Valtage	Maa	1.8~3.6	v
Supply Voltage	Vcc	1.2~3.6 (Note 4)	v
Input Voltage	VIN	-0.3~3.6	V
	Value	0~3.6 (Note 5)	v
Output Voltage	VOUT	0~ V _{CC} (Note 6)	v
		±24 (Note 7)	
Output Current	IOH / IOL	± 18 (Note 8)	mA
		±6 (Note 9)	
Operating Temperature	T _{opr}	- 40~85	°C
Input Rise And Fall Time	dt/dv	0~10 (Note 10)	ns / V

(Note 4): Data Retention Only (Note 5): Off-State (Note 6): High or Low State (Note 7): $V_{CC} = 3.0 \sim 3.6 V$ (Note 8): $V_{CC} = 2.3 \sim 2.7 V$ (Note 9): $V_{CC} = 1.8 V$ (Note 10): $V_{IN} = 0.8 \sim 2.0 V$, $V_{CC} = 3.0 V$

ELECTRICAL CHARACTERISTICS

DC characteristics (Ta = $-40 \sim 85^{\circ}$ C, 2.7 V < V_{CC} \leq 3.6 V)

PARA	METER	SYMBOL	TEST	CONDITION	V _{CC} (V)	MIN.	MAX.	UNIT
Input	"H" Level	VIH			2.7~3.6	2.0	_	v
Voltage	"L" Level	VIL			2.7~3.6	—	0.8	v
		.,	I _{OH} = -100 μA	2.7~3.6	V _{CC} – 0.2	_		
	"H" Level	∨он	VIN =	$I_{OH} = -12 \text{ mA}$	2.7	2.2		
Quitaut			VIH or VIL	$I_{OH} = -18 \text{ mA}$	3.0	2.4	—	
Output				$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	V
Voltage		V _{OL}	V _{IN} = V _{IH} or V _{IL}	l _{OL} = 100 μA	2.7~3.6	—	0.2	
	"L" Level			I _{OL} = 12 mA	2.7	_	0.4	
	L Level			I _{OL} = 18 mA	3.0		0.4	
				I _{OL} = 24 mA	3.0		0.55	
Input Leaka	age Current	^I IN	$V_{IN} = 0 \sim 3.$	6 V	2.7~3.6	_	± 5.0	μA
3-State Out Off-State C		loz	V _{IN} = V _{IH} (V _{OUT} = 0~		2.7~3.6	_	± 10.0	μΑ
Power Off Current	Leakage	^I OFF	VIN, VOUT	= 0~3.6 V	0		10.0	μΑ
Quiescent S	Supply		$V_{IN} = V_{CC}$	or GND	2.7~3.6		20.0	
Current		lcc	$V_{CC} \leq (V_{IN})$, V _{OUT}) ≦ 3.6 V	2.7~3.6	—	±20.0	μA
Increase In Input	ICC Per	∆ا∠	V _{IH} = V _{CC}	– 0.6 V	2.7~3.6		750	μΑ

TOSHIBA

ELECTRICAL CHARACTERISTICS

DC characteristics (Ta = $-40 \sim 85^{\circ}$ C, 2.3 V $\leq V_{CC} \leq 2.7$ V)

PARA	METER	SYMBOL	TEST	CONDITION	V _{CC} (V)	MIN.	MAX.	UNIT												
Input	"H" Level	v_{H}			2.3~2.7	1.6		V												
Voltage	"L" Level	VIL			2.3~2.7	_	0.7	v												
				I _{OH} = −100 μA	2.3~2.7	V _{CC} - 0.2	Ι													
	"H" Level	∨он	VIN =	$I_{OH} = -6 \text{mA}$	2.3	2.0														
Output			VIH or VIL	VIH or VIL					VIH or VIL	VIH or VIL	VIH or VIL	VIH or VIL	VIH or VIL	VIH or VIL	VIH or VIL	VIH or VIL	$I_{OH} = -12 \text{ mA}$	2.3	1.8	— v
Voltage				I _{OH} = -18 mA	2.3	1.7	_	v												
			V _{IN} = V _{IH} or V _{IL}	l _{OL} = 100 μA	2.3~2.7		0.2													
	"L" Level	VOL							I _{OL} = 12 mA	2.3	_	0.4								
				I _{OL} = 18 mA	2.3	_	0.6													
Input Leaka	age Current	^I IN	$V_{IN} = 0 \sim 3.$	6 V	2.3~2.7	_	± 5.0	μA												
3-State Out Off-State C		loz	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \sim 3.6 \text{ V}$		2.3~2.7	—	± 10.0	μΑ												
Power Off Current	Leakage	lOFF	V _{IN} , V _{OUT} = 0~3.6 V		0	—	10.0	μΑ												
Quiescent Supply			$V_{IN} = V_{CC}$	or GND	2.3~2.7	_	20.0													
Current		lcc	$V_{CC} \leq (V_{IN})$, V _{OUT}) \leq 3.6 V	2.3~2.7	_	±20.0	μΑ												

<u>TOSHIBA</u>

ELECTRICAL CHARACTERISTICS

PARA	METER	SYMBOL	TEST	CONDITION	V _{CC} (V)	MIN.	MAX.	UNIT
Input	"H" Level	VIH			1.8~2.3	0.7 x V _{CC}	_	v
Voltage	"L" Level	VIL			1.8~2.3	_	0.2 × V _{CC}	v
Quitmut	"H" Level	Vон	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	
Output Voltage				VIH OF VIL	I _{OH} = -6 mA	1.8	1.4	
voltage	"L" Level	Max	V _{IN} =	l _{OL} = 100 μA	1.8	_	0.2	
	L Level	VOL	V _{IH} or V _{IL}	l _{OL} = 6 mA	1.8	_	0.3	
Input Leaka	age Current	^I IN	$V_{IN} = 0 \sim 3.$	6 V	1.8	_	± 5.0	μA
3-State Out Off-State C	urrent	loz	V _{IN} = V _{IH} (V _{OUT} = 0~		1.8		± 10.0	μΑ
Power Off Current	Leakage	loff	VIN, VOUT	= 0~3.6 V	0		10.0	μΑ
Quiescent S	Quiescent Supply		$V_{IN} = V_{CC}$		ND 1.8 —		20.0	<i></i> Δ
Current		lcc	$ V_{CC} \leq (V_{IN})$, V _{OUT}) ≦ 3.6 V	1.8	_	±20.0	μΑ

AC characteristics (Ta = $-40{\sim}85^{\circ}\text{C}$, Input tr = tf = 2.0 ns, CL = 30 pF, RL = 500 Ω)

PARAMETER	SYMBOL	TEST CONDITION	V _{CC} (V)	MIN.	MAX.	UNIT
	+		1.8	1.5	8.4	
Propagation Delay Time	t _{pLH}	(Fig.1, 2)	2.5 ± 0.2	0.8	4.2	ns
	t _{pHL}		3.3 ± 0.3	0.6	3.5	
2 State Output Enable	+		1.8	1.5	9.8	
3-State Output Enable Time	t _{pZL}	(Fig.1, 3)	2.5 ± 0.2	0.8	5.5	ns
	t _{рZH}		3.3 ± 0.3	0.6	4.5	
2 State Quitnut Disable	+	t _{pLZ} (Fig.1, 3) t _{pHZ}	1.8	1.5	5.8	
3-State Output Disable Time			2.5 ± 0.2	0.8	3.2	ns
Time	чрНZ		3.3 ± 0.3	0.6	3.0	
Output To Output Skew	+		1.8		0.5	
	tosLH	(Note 11)	2.5 ± 0.2		0.5	ns
	^t osHL		3.3 ± 0.3	—	0.5	

For $C_L = 50 \text{ pF}$, add approximately 300 ps to the AC maximum specification.

(Note 11): Parameter guaranteed by design.

 $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

PARAMETER	SYMBOL	TEST CONDITIC	N	V _{CC} (V)	TYP.	UNIT
Quiet Output Maximum		$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note 12)	1.8	0.25	
Dynamic V _{OI}	VOLP	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note 12)	2.5	0.6	V
		V _{IH} = 3.3 V, V _{IL} = 0 V	(Note 12)	3.3	0.8	
Quiet Output Minimum	VOLV	$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note 12)	1.8	- 0.25	
Dynamic VOI		V _{IH} = 2.5 V, V _{IL} = 0 V	(Note 12)	2.5	- 0.6	V
		$V_{IH} = 3.3 V, V_{IL} = 0 V$	(Note 12)	3.3	- 0.8	
Quiet Output Minimum Dynamic V _{OH}		V _{IH} = 1.8 V, V _{IL} = 0 V	(Note 12)	1.8	1.5	
	V _{OHV}	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note 12)	2.5	1.9	V
Dynamic VOH		V _{IH} = 3.3 V, V _{IL} = 0 V	(Note 12)	3.3	2.2	

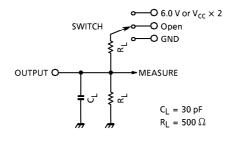
Dynamic switching characteristics (Ta = 25° C, Input t_r = t_f = 2.0 ns, C_L = 30 pF)

(Note 12): Parameter guaranteed by design.

Capacitive characteristics (Ta = 25°C)

PARAMETER	SYMBOL	TEST CONDITION		V _{CC} (V)	TYP.	UNIT
Input Capacitance	с _{IN}			1.8, 2.5, 3.3	6	pF
Output Capacitance	COUT			1.8, 2.5, 3.3	7	pF
Power Dissipation Capacitance	C _{PD}	f _{IN} = 10 MHz (Not	e 13)	1.8, 2.5, 3.3	20	рF

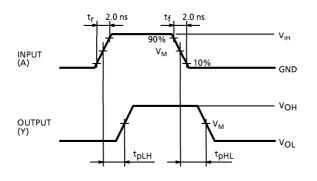
(Note 13): C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

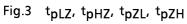

Average operating current can be obtained by the equation :

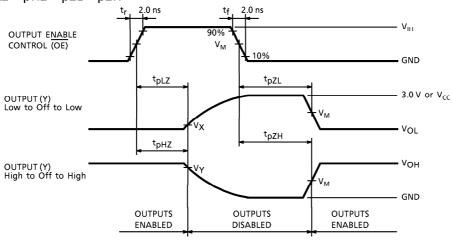
 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 8$ (per bit)

TOSHIBA

TEST CIRCUIT

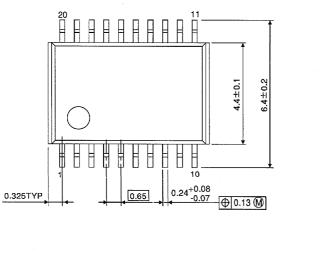

Fig.1

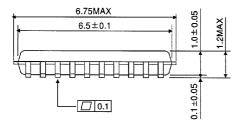


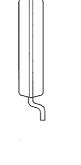

PARAMETER	SWITCH				
t _{pLH} , t _{pHL}	Open				
t _{pLZ} , t _{pZL}	6.0 V @V _{CC} = 3.3 ± 0.3 V V _{CC} × 2 @V _{CC} = 2.5 ± 0.2 V				
	$V_{CC} \times 2 @V_{CC} = 2.5 \pm 0.2 V$				
	@V _{CC} = 1.8 V				
t _{pHZ} , t _{pZH}	GND				

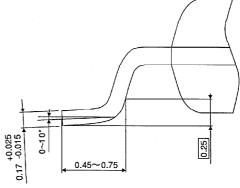
AC WAVEFORM

Fig.2 t_{pLH}, t_{pHL}








SYMBOL	V _{CC}					
STIVIDOL	3.3 ± 0.3 V	2.5 ± 0.2 V	1.8 V			
V _{IH}	2.7 V	V _{CC}	V _{CC}			
VM	1.5 V	V _{CC} / 2	V _{CC} / 2			
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V			
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V			

OUTLINE DRAWING TSSOP20-P-0044-0.65

Weight : 0.08 g (Typ.)

Unit : mm

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com