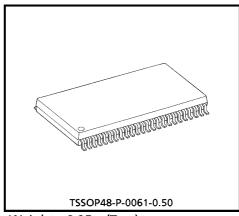
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

# TC74VCXR162245FT

# LOW-VOLTAGE 16-BIT BUS TRANSCEIVER WITH 3.6V TOLERANT INPUTS AND OUTPUTS


The TC74VCXR162245FT is a high performance CMOS 16-bit BUS TRANSCEIVER. Designed for use in 1.8, 2.5 or 3.3 Volt systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

It is also designed with over voltage tolerant inputs and outputs up to 3.6V.

This 16bit bus transceiver is controlled by direction control (DIR) inputs and output enable (OE) inputs which are common to each byte. It can be used as two 8-bit transceivers or one 16-bit transceiver. The direction of data transmission is determined by the level of the DIR inputs. The OE inputs can be used to disable the device so that the busses are effectively isolated.

The 26- $\Omega$  series resistor helps reducing output overshoot and undershoot without external resistor.

All inputs are equipped with protection circuits against static discharge.



Weight: 0.25g (Typ.)

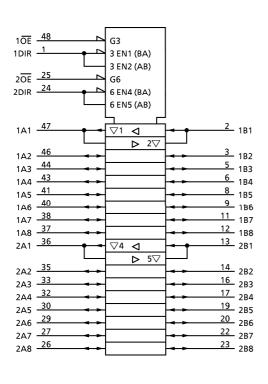
#### **FEATURES**

- 26- $\Omega$  Series Resistors on all Outputs.
- Low Voltage Operation :  $V_{CC} = 1.8 \sim 3.6 \text{V}$
- High Speed Operation :  $t_{pd} = 3.4$ ns (max.) at  $V_{CC} = 3.0 \sim 3.6$ V
  - :  $t_{pd} = 4.3$ ns (max.) at  $V_{CC} = 2.3 \sim 2.7$ V
  - :  $tpd = 5.7ns (max.) at V_{CC} = 1.8V$
- 3.6V Tolerant inputs and outputs.
- **Output Current** :  $I_{OH}/I_{OL} = \pm 12mA$  (min.) at  $V_{CC} = 3.0V$ 
  - :  $I_{OH}/I_{OL} = \pm 8mA$  (min.) at  $V_{CC} = 2.3V$
  - :  $I_{OH}/I_{OL} = \pm 4mA$  (min.) at  $V_{CC} = 1.8V$
- : ±300mA Latch-up Performance
- ESD Performance : Human Body Model > ±2000V
  - : Machine Model > ±200V
- : TSSOP (Thin Shrink Small Outline Package) Package
- Bidirectional interface between 2.5V and 3.3V signals.
- Power Down Protection is provided on all inputs and outputs
- Supports live insertion/withdrawal (Note 3)
- Note 1) Do not apply a signal to any bus terminal when it is in the output mode. Damage may
  - 2) All floating (high impedance) bus terminal must have their input level fixed by means of pull up or pull down resistors.
  - 3) To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to V<sub>CC</sub> through a pullup resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

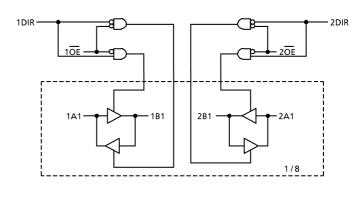
TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

#### **PIN CONNECTION**

| 1DIR | 10   | 48    | 1 <u>O</u> E |
|------|------|-------|--------------|
| 1B1  | 2    | 47    | 1A1          |
| 1B2  | 3    | 46    | 1A2          |
| GND  | 4    | 45    | GND          |
| 1B3  | 5    | 44    | 1A3          |
| 1B4  | 6    | 43    | 1A4          |
| Vcc  | 7    | 42    | $V_{CC}$     |
| 1B5  | 8    | 41    | 1A5          |
| IB6  | 9    | 40    | 1A6          |
| GND  | 10   | 39    | GND          |
| 1B7  | 11   | 38.   | 1A7          |
| 1B8  | 12   | 37    | 1A8          |
| 2B1  | 13   | 36    | 2A1          |
| 2B2  | 14   | 35    | 2A2          |
| GND  | 15   | 34    | GND          |
| 2B3  | 16   | 33    | 2A3          |
| 2B4  | 17   | 32    | 2A4          |
| Vcc  | 18   | 31    | VCC          |
| 2B5  | 19   | 30    | 2A5          |
| 2B6  | 20   | 29    | 2A6          |
| GND  | 21   | 28    | GND          |
| 2B7  | 22   | 27    | 2A7          |
| 2B8  | 23   | 26    | 2A8          |
| 2DIR | 24   | 25    | 20E          |
|      | (TOP | VIEW) |              |


#### TRUTH TABLE

| INF             | TU   | FUNC           | TION           |        |  |
|-----------------|------|----------------|----------------|--------|--|
| 1 <del>OE</del> | 1DIR | BUS<br>1A1-1A8 | BUS<br>1B1-1B8 | OUTPUT |  |
| L               | L    | OUTPUT         | INPUT          | A = B  |  |
| L               | Н    | INPUT          | OUTPUT         | B = A  |  |
| Н               | Х    | High Im        | pedance        | Z      |  |


| INP             | INPUT   FUNCTION   O |         | TION          |       |  |
|-----------------|----------------------|---------|---------------|-------|--|
| 2 <del>OE</del> |                      |         | 603   603   - |       |  |
| L               | L                    | OUTPUT  | INPUT         | A = B |  |
| L               | Н                    | INPUT   | OUTPUT        | B = A |  |
| Н               | Х                    | High Im | Z             |       |  |

X : Don't CareZ : High impedance

#### **IEC LOGIC SYMBOL**



#### SYSTEM DIAGRAM



980508EBA2'

The products described in this document are subject to foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

#### **MAXIMUM RATINGS**

| PARAMETER                                          | SYMBOL                            | RATING                             | UNIT |
|----------------------------------------------------|-----------------------------------|------------------------------------|------|
| Power Supply Voltage                               | Vcc                               | -0.5~4.6                           | V    |
| DC Input Voltage (DIR, OE)                         | VIN                               | -0.5~4.6                           | V    |
| DC Bus I / O Voltage                               | V/                                | -0.5~4.6 (Note 1)                  | v    |
| DC Bus I/O Voltage                                 | V <sub>I</sub> /O                 | -0.5~V <sub>CC</sub> +0.5 (Note 2) | _    |
| Input Diode Current                                | Ιικ                               | <b>–</b> 50                        | mΑ   |
| Output Diode Current                               | <sup>I</sup> ок                   | ± 50 (Note 3)                      | mΑ   |
| DC Output Current                                  | lout                              | ± 50                               | mΑ   |
| Power Dissipation                                  | PD                                | 400                                | mW   |
| DC V <sub>CC</sub> / Ground Current Per Supply Pin | I <sub>CC</sub> /I <sub>GND</sub> | ± 100                              | mΑ   |
| Storage Temperature                                | T <sub>stg</sub>                  | <b>−65~150</b>                     | °C   |

(Note 1) Off-State

(Note 2) High or Low State. IOUT absolute maximum rating must be observed.

(Note 3) V<sub>OUT</sub><GND, V<sub>OUT</sub>>V<sub>CC</sub>

#### RECOMMENDED OPERATING RANGE

| PARAMETER                | SYMBOL            | RATING                      | UNIT     |
|--------------------------|-------------------|-----------------------------|----------|
| Supply Voltage           | \/                | 1.8~3.6                     | V        |
| Supply Voltage           | VCC               | 1.2~3.6 (Note 4)            | <b>'</b> |
| Input Voltage (DIR, OE)  | VIN               | -0.3~3.6                    | V        |
| Bus I/O Voltage          | VI. ( a           | 0~3.6 (Note 5)              | V        |
| Bus 170 Voltage          | V <sub>I</sub> /O | 0∼ V <sub>CC</sub> (Note 6) | V        |
|                          |                   | ± 12 (Note 7)               |          |
| Output Current           | IOH/IOL           | ±8 (Note 8)                 | mA       |
|                          |                   | ±4 (Note 9)                 |          |
| Operating Temperature    | T <sub>opr</sub>  | <b>- 40∼85</b>              | °C       |
| Input Rise And Fall Time | dt/dv             | 0~10 (Note 10)              | ns / V   |

(Note 4) Data Retention Only

(Note 5) Off-State

(Note 6) High or Low State

(Note 7)  $V_{CC} = 3.0 \sim 3.6V$ (Note 8)  $V_{CC} = 2.3 \sim 2.7V$ (Note 9)  $V_{CC} = 1.8V$ 

(Note 10)  $V_{IN} = 0.8 \sim 2.0 \text{V}$ ,  $V_{CC} = 3.0 \text{V}$ 

# **ELECTRICAL CHARACTERISTICS**

DC characteristics (Ta =  $-40 \sim 85^{\circ}$ C, 2.7V < V<sub>CC</sub>  $\leq$  3.6V)

| PARAI                       | METER      | SYMBOL          | TEST                                                                 | CONDITION                   | V <sub>CC</sub> (V)      | MIN.                    | MAX.    | UNIT    |     |  |
|-----------------------------|------------|-----------------|----------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------|---------|---------|-----|--|
| Input                       | "H" Level  | VIH             |                                                                      |                             | 2.7~3.6                  | 2.0                     | _       | V       |     |  |
| Voltage                     | "L" Level  | V <sub>IL</sub> |                                                                      |                             | 2.7~3.6                  | _                       | 0.8     | ·       |     |  |
|                             |            | ,,              | I <sub>OH</sub> = -100μA                                             | 2.7~3.6                     | V <sub>CC</sub><br>- 0.2 | _                       |         |         |     |  |
|                             | "H" Level  | ۷он             | VIN =                                                                | $I_{OH} = -6mA$             | 2.7                      | 2.2                     | _       |         |     |  |
| 044                         |            |                 | V <sub>IH</sub> or V <sub>IL</sub>                                   | I <sub>OH</sub> = -8mA      | 3.0                      | 2.4                     | _       |         |     |  |
| Output                      |            |                 |                                                                      | I <sub>OH</sub> = - 12mA    | 3.0                      | 2.2                     | _       | V       |     |  |
| Voltage                     |            |                 | V <sub>OL</sub> V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub> |                             |                          | I <sub>OL</sub> = 100μA | 2.7~3.6 | _       | 0.2 |  |
|                             | "L" Level  | $v_{OL}$        |                                                                      | I <sub>OL</sub> = 6mA       | 2.7                      | _                       | 0.4     |         |     |  |
|                             | L Level    |                 |                                                                      | I <sub>OL</sub> = 8mA       | 3.0                      | _                       | 0.55    |         |     |  |
|                             |            |                 |                                                                      | I <sub>OL</sub> = 12mA      | 3.0                      | _                       | 0.8     |         |     |  |
| Input Leaka                 | ge Current | IN              | $V_{IN} = 0 \sim 3.6$                                                | SV .                        | 2.7~3.6                  | _                       | ± 5.0   | $\mu$ A |     |  |
| 3-State Out<br>Off-State Cu |            | loz             | V <sub>IN</sub> = V <sub>IH</sub> o<br>V <sub>OUT</sub> = 0~3        |                             | 2.7~3.6                  | 1                       | ± 10.0  | μΑ      |     |  |
| Power Off I<br>Current      | _eakage    | lOFF            | V <sub>IN</sub> , V <sub>OUT</sub>                                   | =0~3.6V                     | 0                        |                         | 10.0    | μΑ      |     |  |
| Quiescent S                 | upply      | laa             | $V_{IN} = V_{CC}$                                                    | or GND                      | 2.7~3.6                  |                         | 20.0    |         |     |  |
| Current                     |            | lcc             | V <sub>CC</sub> ≤ (V <sub>IN</sub>                                   | , V <sub>OUT</sub> ) ≦ 3.6V | 2.7~3.6                  | _                       | ± 20.0  | $\mu$ A |     |  |
| Increase In<br>Input        | ICC Per    | ∆ارح            | V <sub>IH</sub> = V <sub>CC</sub> -                                  | 0.6V                        | 2.7~3.6                  | _                       | 750     | μΑ      |     |  |

### **ELECTRICAL CHARACTERISTICS**

DC characteristics (Ta =  $-40\sim85^{\circ}$ C,  $2.3V \le V_{CC} \le 2.7V$ )

| PARA                       | METER       | SYMBOL          | TEST                                        | TEST CONDITION                          |                          | MIN.                | MAX.       | UNIT       |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |
|----------------------------|-------------|-----------------|---------------------------------------------|-----------------------------------------|--------------------------|---------------------|------------|------------|------------|------------------------|-----|------------------------|-----|-----|---|---|--|--|--|-----------------------|-----|---|-----|--|
| Input                      | "H" Level   | V <sub>IH</sub> |                                             |                                         | 2.3~2.7                  | 1.6                 | _          | V          |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |
| Voltage                    | "L" Level   | V <sub>IL</sub> |                                             |                                         | 2.3~2.7                  | _                   | 0.7        | V          |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |
|                            |             | .,              | I <sub>OH</sub> = -100μA                    | 2.3~2.7                                 | V <sub>CC</sub><br>- 0.2 |                     |            |            |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |
|                            | "H" Level   | VOH             | VIH or VIL                                  | $I_{OH} = -4mA$                         | 2.3                      | 2.0                 | _          |            |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |
| Output                     |             |                 |                                             | VIH or VIL                              | VIH or VIL               | VIH or VIL          | VIH or VIL | VIH or VIL | VIH or VIL | I <sub>OH</sub> = -6mA | 2.3 | 1.8                    | _   | v   |   |   |  |  |  |                       |     |   |     |  |
| Voltage                    |             |                 |                                             |                                         |                          |                     |            |            |            |                        |     | I <sub>OH</sub> = -8mA | 2.3 | 1.7 | _ | V |  |  |  |                       |     |   |     |  |
|                            |             | V               | $I_{OL} = 100 \mu A$                        | I <sub>OL</sub> = 100μA                 | 2.3~2.7                  | _                   | 0.2        |            |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |
|                            | "L" Level   | VOL             | V <sub>IN</sub> =                           |                                         |                          | VIN -<br>VIH or VIL |            |            |            |                        |     |                        |     |     |   |   |  |  |  | I <sub>OL</sub> = 6mA | 2.3 | _ | 0.4 |  |
|                            |             |                 | VIH OF VIL                                  | I <sub>OL</sub> = 8mA                   | 2.3                      | _                   | 0.6        |            |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |
| Input Leak                 | age Current | l <sub>IN</sub> | $V_{IN} = 0 \sim 3.6$                       | 5V                                      | 2.3~2.7                  | _                   | ± 5.0      | μΑ         |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |
| 3-State Out<br>Off-State C |             | loz             | VINI = VILL OF VII                          |                                         | 2.3~2.7                  | _                   | ± 10.0     | $\mu$ A    |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |
| Power Off<br>Current       | Leakage     | lOFF            | V <sub>IN</sub> , V <sub>OUT</sub> = 0~3.6V |                                         | 0                        | _                   | 10.0       | $\mu$ A    |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |
| Quiescent S                | Supply      | laa             | $V_{IN} = V_{CC}$                           | or GND                                  | 2.3~2.7                  | _                   | 20.0       |            |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |
| Current                    |             | lcc             | $V_{CC} \le (V_{IN})$                       | , V <sub>OUT</sub> )≦3.6V <sub>CC</sub> | 2.3~2.7                  | _                   | ± 20.0     | $\mu$ A    |            |                        |     |                        |     |     |   |   |  |  |  |                       |     |   |     |  |

#### **ELECTRICAL CHARACTERISTICS**

DC characteristics (Ta =  $-40\sim85^{\circ}$ C,  $1.8V \le V_{CC} < 2.3V$ )

| PARA                       | METER       | SYMBOL                                                       | TEST                                                          | TEST CONDITION                           |                         | MIN.                      | MAX.                     | UNIT        |   |
|----------------------------|-------------|--------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|-------------------------|---------------------------|--------------------------|-------------|---|
| Input                      | "H" Level   | V <sub>IH</sub>                                              |                                                               |                                          |                         | 0.7 ×<br>V <sub>CC</sub>  | _                        | <b>&gt;</b> |   |
| Voltage                    | "L" Level   | $V_{IL}$                                                     |                                                               |                                          | 1.8~2.3                 | _                         | 0.2 x<br>V <sub>CC</sub> | V           |   |
| Outrot                     | "H" Level   | Voн                                                          | V <sub>IN</sub> =                                             | I <sub>OH</sub> = -100μA                 | 1.8                     | V <sub>C</sub> C<br>- 0.2 | _                        |             |   |
| Output<br>Voltage          |             |                                                              | V <sub>IH</sub> or V <sub>IL</sub>                            | AIH OL AIL                               | I <sub>OH</sub> = -4mA  | 1.8                       | 1.4                      | _           | V |
| Voltage                    | "L" Level   | V                                                            | V <sub>IN</sub> =                                             | V <sub>IN</sub> =                        | I <sub>OL</sub> = 100μA | 1.8                       | _                        | 0.2         |   |
|                            | L Levei     | VOL                                                          | VIH or VIL                                                    | I <sub>OL</sub> = 4mA                    | 1.8                     | _                         | 0.3                      |             |   |
| Input Leak                 | age Current | ΙΝ                                                           | $V_{IN} = 0 \sim 3.6$                                         | SV .                                     | 1.8                     | _                         | ± 5.0                    | μΑ          |   |
| 3-State Out<br>Off-State C |             | loz                                                          | V <sub>IN</sub> = V <sub>IH</sub> o<br>V <sub>OUT</sub> = 0~3 |                                          | 1.8                     | _                         | ± 10.0                   | $\mu$ A     |   |
| Power Off<br>Current       | Leakage     | I <sub>OFF</sub> V <sub>IN</sub> , V <sub>OUT</sub> = 0~3.6V |                                                               | 0                                        |                         | 10.0                      | μΑ                       |             |   |
| Quiescent Supply           |             | lee                                                          | $V_{IN} = V_{CC}$                                             | V <sub>IN</sub> = V <sub>CC</sub> or GND |                         | _                         | 20.0                     | Λ           |   |
| Current                    |             | lcc                                                          | $V_{CC} \leq (V_{IN},$                                        | V <sub>OUT</sub> ) ≤ 3.6V                | 1.8                     | _                         | ± 20.0                   | $\mu$ A     |   |

# AC characteristics (Ta = $-40 \sim 85$ °C, Input t<sub>f</sub> = t<sub>f</sub> = 2.0ns, C<sub>L</sub> = 30pF, R<sub>L</sub> = 500 $\Omega$ )

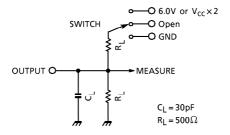
| PARAMETER                   | SYMBOL                               | TEST CONDITION | V <sub>CC</sub> (V) | MIN. | MAX. | UNIT |
|-----------------------------|--------------------------------------|----------------|---------------------|------|------|------|
|                             | <b>+</b>                             |                | 1.8                 | 1.5  | 5.7  |      |
| Propagation Delay Time      | t <sub>pLH</sub>                     | (Fig.1, 2)     | 2.5 ± 0.2           | 1.0  | 4.3  | ns   |
|                             | t <sub>pHL</sub>                     |                | 3.3 ± 0.3           | 0.8  | 3.4  |      |
| 3-State Output Enable       | t <sub>pZL</sub><br>t <sub>pZH</sub> |                | 1.8                 | 1.5  | 7.6  |      |
| Time                        |                                      | (Fig.1, 3)     | 2.5 ± 0.2           | 1.0  | 5.7  | ns   |
| Time                        |                                      |                | 3.3 ± 0.3           | 0.8  | 4.2  |      |
| 2 State Output Disable      | +                                    |                | 1.8                 | 1.5  | 5.7  |      |
| 3-State Output Disable Time | t <sub>pLZ</sub>                     | (Fig.1, 3)     | 2.5 ± 0.2           | 1.0  | 4.8  | ns   |
| Time                        | t <sub>pHZ</sub>                     |                | 3.3 ± 0.3           | 0.8  | 4.1  |      |
|                             | +                                    |                | 1.8                 | _    | 0.5  |      |
| Output To Output Skew       | <sup>t</sup> osLH<br>+               | (Note 11)      | 2.5 ± 0.2           | _    | 0.5  | ns   |
|                             | <sup>t</sup> osHL                    |                | 3.3 ± 0.3           | _    | 0.5  |      |

For  $C_L = 50 pF$ , add approximately 300ps to the AC maximum specification.

(Note 11) Parameter guaranteed by design.  $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$ 

| Dynamic switching ch | haracteristics (Ta = 25°C | , Input $t_r = t_f = 2.0 \text{ ns}$ | $C_{I} = 30pF$ |
|----------------------|---------------------------|--------------------------------------|----------------|
|----------------------|---------------------------|--------------------------------------|----------------|

| PARAMETER                                       | SYMBOL           | TEST CONDITI                                 | ON        | V <sub>CC</sub> (V) | TYP.   | UNIT |
|-------------------------------------------------|------------------|----------------------------------------------|-----------|---------------------|--------|------|
| Quiet Quitnut Maximum                           |                  | V <sub>IH</sub> = 1.8V, V <sub>IL</sub> = 0V | (Note 12) | 1.8                 | 0.15   |      |
| Quiet Output Maximum  Dynamic VOL               | V <sub>OLP</sub> | $V_{IH} = 2.5V, V_{IL} = 0V$                 | (Note 12) | 2.5                 | 0.25   | V    |
| Dynamic VOL                                     |                  | V <sub>IH</sub> = 3.3V, V <sub>IL</sub> = 0V | (Note 12) | 3.3                 | 0.35   |      |
| Quiet Output Minimum                            |                  | V <sub>IH</sub> = 1.8V, V <sub>IL</sub> = 0V | (Note 12) | 1.8                 | - 0.15 |      |
| Dynamic VOI                                     | VOLV             | $V_{IH} = 2.5V, V_{IL} = 0V$                 | (Note 12) | 2.5                 | -0.25  | V    |
| Dynamic VOL                                     |                  | $V_{IH} = 3.3V, V_{IL} = 0V$                 | (Note 12) | 3.3                 | - 0.35 |      |
| Quiet Quinut Minimum                            |                  | V <sub>IH</sub> = 1.8V, V <sub>IL</sub> = 0V | (Note 12) | 1.8                 | 1.55   |      |
| Quiet Output Minimum<br>Dynamic V <sub>OH</sub> | VOHV             | $V_{IH} = 2.5V, V_{IL} = 0V$                 | (Note 12) | 2.5                 | 2.05   | V    |
| Dynamic VOH                                     |                  | V <sub>IH</sub> = 3.3V, V <sub>IL</sub> = 0V | (Note 12) | 3.3                 | 2.65   |      |


(Note 12) Parameter guaranteed by design.

#### Capacitive characteristics (Ta = 25°C)

| PARAMETER                     | SYMBOL            | TEST CONDITION             | V <sub>CC</sub> (V) | TYP. | UNIT |
|-------------------------------|-------------------|----------------------------|---------------------|------|------|
| Input Capacitance             | CIN               | DIR, OE                    | 1.8, 2.5, 3.3       | 6    | pF   |
| Bus I/O Capacitance           | C <sub>1</sub> /O | An, Bn                     | 1.8, 2.5, 3.3       | 7    | pF   |
| Power Dissipation Capacitance | C <sub>PD</sub>   | $f_{IN} = 10MHz$ (Note 13) | 1.8, 2.5, 3.3       | 20   | pF   |

(Note 13) CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation :  $I_{CC \text{ (opr.)}} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 16 \text{ (per bit)}$ 

Fig.1 Test circuit



| PARAMETER                           | SWITCH                                                                    |  |  |
|-------------------------------------|---------------------------------------------------------------------------|--|--|
| t <sub>pLH</sub> , t <sub>pHL</sub> | Open                                                                      |  |  |
| t <sub>pLZ</sub> , t <sub>pZL</sub> | 6.0V $@V_{CC} = 3.3 \pm 0.3V$<br>$V_{CC} \times 2 @V_{CC} = 2.5 \pm 0.2V$ |  |  |
|                                     | $V_{CC}x2 @V_{CC} = 2.5 \pm 0.2V$                                         |  |  |
|                                     | @V <sub>CC</sub> = 1.8V                                                   |  |  |
| t <sub>pHZ</sub> , t <sub>pZH</sub> | GND                                                                       |  |  |

#### **AC WAVEFORM**

Fig.2 t<sub>pLH</sub>, t<sub>pHL</sub>

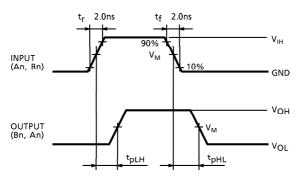
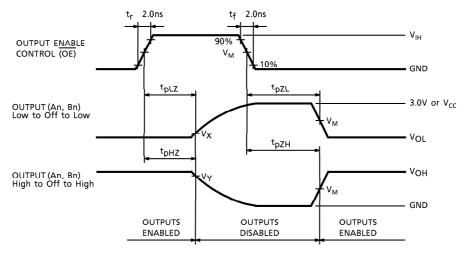
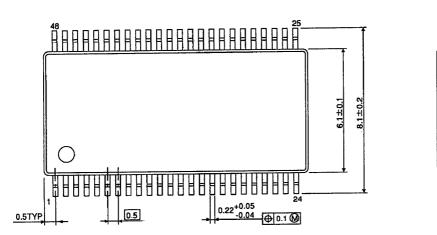
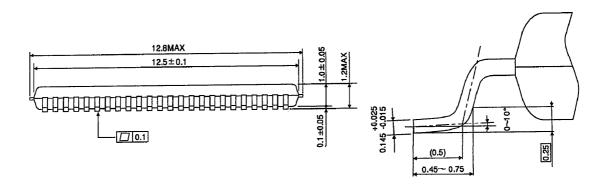




Fig.3  $t_{pLZ}$ ,  $t_{pHZ}$ ,  $t_{pZL}$ ,  $t_{pZH}$ 





| SYMBOL         | V <sub>CC</sub>        |                         |                         |
|----------------|------------------------|-------------------------|-------------------------|
| STIVIBOL       | 3.3 ± 0.3V             | 2.5 ± 0.2V              | 1.8V                    |
| $V_{IH}$       | 2.7V                   | V <sub>CC</sub>         | V <sub>CC</sub>         |
| $V_{M}$        | 1.5V                   | V <sub>CC</sub> / 2     | V <sub>CC</sub> / 2     |
| VX             | V <sub>OL</sub> + 0.3V | V <sub>OL</sub> + 0.15V | V <sub>OL</sub> + 0.15V |
| V <sub>Y</sub> | V <sub>OH</sub> – 0.3V | V <sub>OH</sub> – 0.15V | V <sub>OH</sub> – 0.15V |

Unit: mm

#### **OUTLINE DRAWING**

TSSOP48-P-0061-0.50





Weight: 0.25g (Typ.)

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com