SN65HVD251

CAN TRANSCEIVER

FEATURES

－Drop－In Improved Replacement for the PCA82C250 and PCA82C251
－Bus－Fault Protection of ± 36 V
－Meets or Exceeds ISO 11898
－Signaling Rates ${ }^{(1)}$ up to 1 Mbps
－High Input Impedance Allows up to 120 SN65HVD251 Nodes on a Bus
－Bus Pin ESD Protection Exceeds 14 kV HBM
－Unpowered Node Does Not Disturb the Bus
－Low Current Standby Mode ．．． 200 μ A Typical
－Thermal Shutdown Protection
－Glitch－Free Power－Up and Power－Down Bus Protection For Hot－Plugging
－DeviceNet Vendor ID \＃ 806

APPLICATIONS

－CAN Data Buses
－Industrial Automation
－DeviceNet ${ }^{\text {TM }}$ Data Buses
－Smart Distributed Systems（SDS ${ }^{\text {M }}$ ）
－SAE J1939 Standard Data Bus Interface
－NMEA 2000 Standard Data Bus Interface
－ISO 11783 Standard Data Bus Interface

DESCRIPTION

The SN65HVD251 is intended for use in applications employing the Controller Area Network（CAN）serial communication physical layer in accordance with the ISO 11898 Standard．The SN65HVD251 provides differential transmit capability to the bus and differential receive capability to a CAN controller at speeds up to 1 megabits per second（Mbps）．
Designed for operation in harsh environments，the device features cross－wire，over－voltage and loss of ground protection to $\pm 36 \mathrm{~V}$ ．Also featured are over－temperature protection as well as -7 V to 12 V common－mode range， and tolerance to transients of $\pm 200 \mathrm{~V}$ ．The transceiver interfaces the single－ended CAN controller with the differential CAN bus found in industrial，building automation，and automotive applications．
Rs，pin 8，provides for three different modes of operation：high－speed，slope control，or low－power mode．The high－speed mode of operation is selected by connecting pin 8 to ground，allowing the transmitter output transistors to switch as fast as possible with no limitation on the rise and fall slope．The rise and fall slope can be adjusted by connecting a resistor to ground at pin 8；the slope is proportional to the pin＇s output current．Slope control with an external resistor value of $10 \mathrm{k} \Omega$ gives $\sim 15 \mathrm{~V} / \mathrm{us}$ slew rate； $100 \mathrm{k} \Omega$ gives $\sim 2 \mathrm{~V} / \mathrm{us}$ slew rate．
If a high logic level is applied to the Rs pin 8，the device enters a low－current standby mode during which the driver is switched off and the receiver remains active．The local protocol controller reverses this low－current standby mode when it needs to transmit to the bus．
The SN65HVD251 may be used in CAN，DeviceNet ${ }^{T M}$ or SDS ${ }^{T M}$ applications with the Texas Instruments＇ TMS320F241 and TMS320F243 DSPs with CAN 2．0B controllers．

[^0]
${ }^{(1)}$ ORDERING INFORMATION

PART NUMBER	PACKAGE	MARKED AS
SN65HVD251D	8-pin SOIC (Tube)	VP251
SN65HVD251DR	8-pin SOIC (Tape \& Reel)	VP251
SN65HVD251P	8-pin DIP	65HVD251

(1) ${ }^{(1)}$ The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

ABSOLUTE MAXIMUM RATINGS ${ }^{(1),(2)}$

			SN65HVD251
Supply voltage range, V			-0.3 V to 7V
Voltage range at any bus	ANL)		-36 V to 36 V
Transient voltage per IS		CANH, CANL	$\pm 200 \mathrm{~V}$
Input voltage range, V_{1}			-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.5$
	Human Body Model (3)	CANH, CANL and GND	14 kV
Electrostatic discharge	Human Body Model	All pins	6 kV
	Charged-Device Model ${ }^{(4)}$	All pins	1 kV
Continuous total power			(see Dissipation Rating Table)
Storage temperature ra			-65 C to $150^{\circ} \mathrm{C}$
Lead temperature 1,6 mm	for 10 seconds		$260^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.

ABSOLUTE MAXIMUM POWER DISSIPATION RATINGS

PACKAGE	CIRCUIT BOARD MODEL	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ${ }^{(1)}$ ABOVE $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text { POWER } \\ \text { RATING } \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \text { POWER } \\ \text { RATING } \end{gathered}$
SOIC (D)	Low-K ${ }^{(2)}$	600 mW	$4.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	312 mW	120 mW
	High-K ${ }^{(3)}$	963 mW	$7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	501 mW	193 mW
PDIP (P)	Low-K ${ }^{(2)}$	984 mW	$7.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	512 mW	197 mW
	High-K ${ }^{(3)}$	1344 mW	$10.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	699 mW	269 mW

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.
(2) In accordance with the Low-K thermal metric definitions of EIA/JESD51-3.
(3) In accordance with the High-K thermal metric definitions of EIA/JESD51-7.

THERMAL CHARACTERISTICS

PARAMETER	TEST CONDITIONS	VALUE		UNITS
		MIN TYP	MAX	
$\Theta_{\text {JB }} \quad$ Junction-to-board thermal resistance	D	78.7		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	P	56.5		

THERMAL CHARACTERISTICS (continued)

PARAMETER		TEST CONDITIONS	VALUE			UNITS
			MIN	TYP	MAX	
$\Theta_{\text {Jc }}$	Junction-to-board thermal resistance	D		44.6		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		P		54.5		
$P_{\text {D }}$	Device power dissipation	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Tj}=27^{\circ} \mathrm{C}, \mathrm{RL}=60 \Omega$, R_{S} at 0 V , Input to D a $500-\mathrm{kHz}$ 50% duty cycle square wave			97.7	mW
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{Tj}=130^{\circ} \mathrm{C}, \mathrm{RL}=60 \Omega$, R_{S} at 0 V , Input to D a $500-\mathrm{kHz} 50 \%$ duty cycle square wave			142	mW
$\mathrm{T}_{\text {SD }}$	Thermal shutdown junction temperature			165		${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

over recommended operating conditions (unless otherwise noted).

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted).

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{(1)}$	MAX	UNIT
$\mathrm{V}_{\text {(D) }}$	Bus output voltage (Dominant)	CANH	Figure $1 \&$ Figure 2 , D at 0 V Rs at 0 V	2.75	3.5	4.5	V
		CANL		0.5		2	
$\mathrm{V}_{\mathrm{O}(\mathrm{R})}$	Bus output voltage (Recessive)	CANH	Figure 1 \& Figure 2, D at $0.7 \mathrm{~V}_{\mathrm{CC}}$, Rs at 0 V	2	2.5	3	
		CANL		2	2.5	3	
$\mathrm{V}_{\text {OD(} \mathrm{D})}$	Differential output voltage (Dominant)		Figure 1, D at 0 V , Rs at 0 V	1.5	2	3	V
$\mathrm{V}_{\mathrm{OD}(\mathrm{D})}$	Differential output voltage (Dominant)		Figure 2 \& Figure $3, \mathrm{D}$ at 0 V , Rs at 0 V	1.2	2	3.1	V
$\mathrm{V}_{\mathrm{OD}(\mathrm{R})}$	Differential output voltage (Recessive)		Figure $1 \&$ Figure 2, D at 0.7 V_{CC}	-120		12	mV
$\mathrm{V}_{\mathrm{OD}(\mathrm{R})}$	Differential output voltage (Recessive)		D at $0.7 \mathrm{~V}_{\mathrm{CC}}$, no load	-0.5		0.05	V
$\mathrm{V}_{\mathrm{OC}(\mathrm{pp})}$	Peak-to-peak common-mode output voltage		Figure 9, Rs at 0 V		600		mV
I_{IH}	High-level input current, D Input		D at $0.7 \mathrm{~V}_{\mathrm{CC}}$	-40		0	$\mu \mathrm{A}$
ILL	Low-level input current, D Input		D at $0.3 \mathrm{~V}_{\mathrm{CC}}$	-60		0	$\mu \mathrm{A}$

[^1]
SLLS545B-NOVEMBER 2002-REVISED SEPTEMBER 2003

DRIVER ELECTRICAL CHARACTERISTICS (continued)

over recommended operating conditions (unless otherwise noted).

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{pLH}}$	Propagation delay time, low-to-high-level output	Figure 4, Rs at 0 V		40	70	ns
		Figure 4, Rs with $10 \mathrm{k} \Omega$ to ground		90	125	
		Figure 4, Rs with $100 \mathrm{k} \Omega$ to ground		500	800	
$\mathrm{t}_{\mathrm{pHL}}$	Propagation delay time, high-to-low-level output	Figure 4, Rs at 0 V		85	125	
		Figure 4, Rs with $10 \mathrm{k} \Omega$ to ground		200	260	
		Figure 4, Rs with $100 \mathrm{k} \Omega$ to ground		1150	1450	
$\mathrm{t}_{\text {sk(p) }}$	Pulse skew ($\left.\mathrm{t}_{\text {pHL }}-\mathrm{t}_{\text {pLH }}\right)^{\prime}$	Figure 4, Rs at 0 V		45	85	
		Figure 4, Rs with $10 \mathrm{k} \Omega$ to ground		110	180	
		Figure 4, Rs with $100 \mathrm{k} \Omega$ to ground		650	900	
t_{r}	Differential output signal rise time	Figure 4, Rs at 0 V	35		100	
t_{f}	Differential output signal fall time		35		100	
t_{r}	Differential output signal rise time	Figure 4, Rs with $10 \mathrm{k} \Omega$ to ground	100		250	
t_{f}	Differential output signal fall time		100		250	
t_{r}	Differential output signal rise time	Figure 4, Rs with $100 \mathrm{k} \Omega$ to ground	600		1550	
t_{f}	Differential output signal fall time		600		1550	
$\mathrm{t}_{\text {en }}$	Enable time from standby to dominant	Figure 8			0.5	$\mu \mathrm{s}$

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted).

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IT+ }}$ Positive-going input threshold voltage	Rs at 0 V, (See Table 1)		750	900	mV
$\mathrm{V}_{\text {IT }} \quad$ Negative-going input threshold voltage		500	650		
$\mathrm{V}_{\text {hys }}$ Hysteresis voltage ($\mathrm{V}_{1 \mathrm{IT}_{+}}-\mathrm{V}_{\mathrm{IT}-}$)			100		
V_{OH} High-level output voltage	Figure 6, $\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}$	0.8 Vcc			V
V_{OL} Low-level output voltage	Figure $6, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}$			2 Vcc	V

RECEIVER ELECTRICAL CHARACTERISTICS (continued)

over recommended operating conditions (unless otherwise noted).

PARAMETER			TEST CONDITIONS		MIN	TYP MAX	UNIT
1	Bus input current		CANH or CANL at 12 V	Other bus pin at 0 V , Rs at $0 \mathrm{~V}, \mathrm{D}$ at $0.7 \mathrm{~V}_{\mathrm{CC}}$		600	$\mu \mathrm{A}$
			CANH or CANL at 12 $\mathrm{V}, \mathrm{V}_{\mathrm{CC}}$ at 0 V			715	
			CANH or CANL at -7 V		-460		
			CANH or CANL at -7 $\mathrm{V}, \mathrm{V}_{\mathrm{CC}}$ at 0 V		-340		
C_{1}	Input capacitance, (CANH or CANL)		Pin-to-ground, $\mathrm{V}_{\mathrm{I}}=0.4 \sin (4 \mathrm{E} 6 \pi \mathrm{t})+0.5 \mathrm{~V}$, D at $0.7 \mathrm{~V}_{\mathrm{CC}}$		20		pF
$\mathrm{C}_{\text {ID }}$	Differential input capacitance		$\text { Pin-to-pin, } \mathrm{V}_{\mathrm{I}}=0.4 \sin (4 \mathrm{E} 6 \pi \mathrm{t})+0.5 \mathrm{~V}, \mathrm{D}$$\text { at } 0.7 \mathrm{~V}_{\mathrm{CC}}$			10	pF
$\mathrm{R}_{\text {ID }}$	Differential input resistance		D at $0.7 \mathrm{~V}_{\mathrm{CC}}$, Rs at 0 V		40	100	k Ω
$\mathrm{R}_{\text {IN }}$	Input resistance, (CANH or CANL)		D at $0.7 \mathrm{~V}_{\mathrm{CC}}$, Rs at 0 V		20	50	$\mathrm{k} \Omega$
I_{Cc}	Supply current	Standby	Rs at $\mathrm{V}_{\mathrm{CC}}, \mathrm{D}$ at V_{CC}			275	$\mu \mathrm{A}$
		Dominant	D at $0 \mathrm{~V}, 60 \Omega$ Load, Rs at 0 V			65	mA
		Recessive	D at V_{CC}, No Load, Rs at 0 V			14	

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{pLH}}$	Propagation delay time, low-to-high-level output	Figure 6	35	50	ns
$\mathrm{t}_{\mathrm{pHL}}$	Propagation delay time, high-to-low-level output		35	50	
$\mathrm{t}_{\text {sk(p) }}$	Pulse skew ($\left\|\mathrm{t}_{\mathrm{pHL}}-\mathrm{t}_{\mathrm{pLH}}\right\|$)			20	
tr_{r}	Output signal rise time		2	4	
t_{f}	Output signal fall time		2	4	
$\mathrm{t}_{\mathrm{p} \text { (sb) }}$	Propagation delay time in standby	Figure 12, Rs at V_{CC}		500	

VREF-PIN CHARACTERISTICS

over recommended operating conditions (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V_{0}	Reference output voltage	$-5 \mu \mathrm{~A}<\mathrm{I}_{0}<5 \mu \mathrm{~A}$	$0.45 \mathrm{~V}_{\mathrm{CC}}$	$0.55 \mathrm{~V}_{\mathrm{CC}}$	V
		$-50 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{O}}<50 \mu \mathrm{~A}$	$0.4 \mathrm{~V}_{\mathrm{CC}}$	$0.6 \mathrm{~V}_{\mathrm{CC}}$	

DEVICE SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$t_{\text {loop } 1}$	Total loop delay, driver input to receiver output, recessive to dominant	Figure 10, Rs at 0 V		60	100	ns
		Figure 10 , Rs with $10 \mathrm{k} \Omega$ to ground		100	150	
		Figure 10, Rs with $100 \mathrm{k} \Omega$ to ground		440	800	
$t_{\text {loop2 }}$	Total loop delay, driver input to receiver output, dominant to recessive	Figure 10, Rs at 0 V		115	150	ns
		Figure 10, Rs with $10 \mathrm{k} \Omega$ to ground		235	290	
		Figure 10, Rs with $100 \mathrm{k} \Omega$ to ground		1070	1450	
$\mathrm{t}_{\text {loop2 }}$	Total loop delay, driver input to receiver output, dominant to recessive	Figure 10, Rs at $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ from 4.5 V to 5.1 V,		105	145	ns

PARAMETER MEASUREMENT INFORMATION

Figure 1. Driver Voltage, Current, and Test Definition

Figure 2. Bus Logic State Voltage Definitions

Figure 3. Driver $V_{O D}$

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 4. Driver Test Circuit and Voltage Waveforms

Figure 5. Receiver Voltage and Current Definitions

A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 125 \mathrm{kHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq$ $6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes instrumentation and fixture capacitance within $\pm 20 \%$.

Figure 6. Receiver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

A. This test is conducted to test survivability only. Data stability at the R output is not specified.

Figure 7. Test Circuit, Transient Over-Voltage Test

Table 1. Receiver Characteristics Over Common Mode Voltage

INPUT		MEASURED	OUTPUT	
$\mathrm{V}_{\text {canh }}$	$\mathrm{V}_{\text {cant }}$	\|VID ${ }^{\text {I }}$		
12 V	11.1 V	900 mV	L	V_{OL}
-6.1 V	-7 V	900 mV	L	
-1 V	-7 V	6 V	L	
12 V	6 V	6 V	L	
-6.5V	-7V	500 mV	H	V_{OH}
12 V	11.5 V	500 mV	H	
-7 V	-1 V	6 V	H	
6 V	12 V	6 V	H	
open	open	X	H	

Figure 8. t_{en} Test Circuit and Voltage Waveforms

A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 125 \mathrm{kHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq$ $6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.

Figure 9. Peak-to-Peak Common Mode Output Voltage

Figure 10. $\mathrm{t}_{\text {Loop }}$ Test Circuit and Voltage Waveforms

Figure 11. Driver Short-Circuit Test

A. The input pulse is supplied by a generator having the following characteristics: PRR $\leq 125 \mathrm{kHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq$ $6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. CL includes instrumentation and fixture capacitance within $\pm 20 \%$.

Figure 12. Receiver Propagation Delay in Standby Test Circuit and Waveform

DEVICE INFORMATION

$\mathrm{V}_{\text {ID }}$	R1	R2
500 mV	50Ω	450Ω
900 mV	50Ω	227Ω

A. All input pulses are supplied by a generator having the following characteristics: $\mathrm{f}<1.5 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Figure 13. Common-Mode Input Voltage Rejection Test

FUNCTION TABLES
Table 2. DRIVER

INPUTS	Voltage at $\mathbf{R}_{\mathbf{s}}, \mathbf{V}_{\mathbf{R s}}$	OUTPUTS		BUS STATE
		CANH	CANL	
\mathbf{D}	$\mathrm{V}_{\text {Rs }}<1.2 \mathrm{~V}$	H	L	Dominant
L	$\mathrm{V}_{\text {Rs }}<1.2 \mathrm{~V}$	Z	Z	Recessive
H	X	Z	Z	Recessive
Open	$\mathrm{V}_{\mathrm{Rs}}>0.75 \mathrm{~V}_{\mathrm{CC}}$	Z	Z	Recessive
X				

Table 3. RECEIVER

DIFFERENTIAL INPUTS $\left[\mathrm{V}_{\text {ID }}=\mathrm{V}(\mathrm{CANH})-\mathrm{V}(\mathrm{CANL})\right]$	OUTPUT $\mathbf{R}^{(1)}$
$\mathrm{V}_{\text {ID }} \geq 0.9 \mathrm{~V}$	L
$0.5 \mathrm{~V}<\mathrm{V}_{\text {ID }}<0.9 \mathrm{~V}$	$?$
$\mathrm{~V}_{\mathrm{ID}} \leq 0.5 \mathrm{~V}$	H
Open	H

(1) $H=$ high level; $L=$ low level; $X=$ irrelevant; ? = indeterminate; $Z=$ high impedance

Figure 14. Equivalent Input and Output Schematic Diagrams

TYPICAL CHARACTERISTICS

Figure 15.
DRIVER LOW-LEVEL OUTPUT CUR-
RENT
vs
LOW-LEVEL OUTPUT VOLTAGE

Figure 18.

Figure 16.
DRIVER HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE

Figure 19.

SUPPLY CURRENT (RMS)
SIGNALING RATE

Figure 17.
DOMINANT DIFFERENTIAL
OUTPUT VOLTAGE
FREE-AIR TEMPERATURE

Figure 20.

Figure 21.

Figure 22.

INPUT RESISTANCE MATCHING
FREE-AIR TEMPERATURE

Figure 23.

APPLICATION INFORMATION

The basics of arbitration require that the receiver at the sending node designate the first bit as dominant or recessive after the initial wave of the first bit of a message travels to the most remote node on a network and back again. Typically, this sample is made at 75% of the bit width, and within this limitation, the maximum allowable signal distortion in a CAN network is determined by network electrical parameters.
Factors to be considered in network design include the $\approx 5 \mathrm{~ns} / \mathrm{m}$ propagation delay of typical twisted-pair bus cable; signal amplitude loss due to the loss mechanisms of the cable; and the number, length, and spacing of drop-lines (stubs) on a network. Under strict analysis, variations among the different oscil-
lators in a system also need to be accounted for with adjustments in signaling rate and stub \& bus length. Table 2 lists the maximum signaling rates achieved with the SN65HVD251 in high-speed mode with several bus lengths of category 5, shielded twisted pair (CAT 5 STP) cable.

Table 4. Maximum Signaling Rates for Various Cable Lengths

BUS LENGTH (m)	SIGNALING RATE (kbps)
30	1000
100	500
250	250
500	125
1000	62.5

The ISO 11898 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m with a maximum of 30 nodes. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes on a bus. (Note: Non-standard application may come with a trade-off in signaling rate.) A large number of nodes requires a transceiver with high input impedance such as the HVD251.

The Standard specifies the interconnect to be a single twisted-pair cable (shielded or unshielded) with 120Ω characteristic impedance (Zo). Resistors equal to the characteristic impedance of the line terminate both ends of the cable to prevent signal reflections. Unterminated drop-lines connect nodes to the bus and should be kept as short as possible to minimize signal reflections.

Connectors, while not specified by the Standard should have as little effect as possible on standard operating parameters such as capacitive loading. Although unshielded cable is used in many applications, data transmission circuits employing CAN transceivers are usually used in applications requiring a rugged interconnection with a wide common-mode voltage range. Therefore, shielded cable is recommended in these electronically harsh environments, and when coupled with the Standard's $-2-\mathrm{V}$ to $7-\mathrm{V}$ common-mode range of tolerable ground noise, helps to ensure data integrity. The HVD251 enhances the Standard's insurance of data integrity with an extended $-7-\mathrm{V}$ to $12-\mathrm{V}$ range of common-mode operation.

Figure 24. Typical CAN Differential Signal Eye-Pattern

An eye pattern is a useful tool for measuring overall signal quality. As displayed in Figure 24, the differential signal changes logic states in two places on the display, producing an eye. Instead of viewing only one logic crossing on the scope, an entire bit of data is brought into view. The resulting eye pattern includes all of the effects of systemic and random distortion, and displays the time during which a signal may be considered valid.

The height of the eye above or below the receiver threshold voltage level at the sampling point is the noise margin of the system. Jitter is typically measured at the differential voltage zero-crossing during the logic state transition of a signal. Note that jitter present at the receiver threshold voltage level is considered by some to be a more effective representation of the jitter at the input of a receiver.
As the sum of skew and noise increases, the eye closes and data is corrupted. Closing the width decreases the time available for accurate sampling, and lowering the height enters the 900 mV or 500 mV threshold of a receiver.

Different sources induce noise onto a signal. The more obvious noise sources are the components of a transmission circuit themselves; the signal transmitter, traces \& cables, connectors, and the receiver. Beyond that, there is a termination dependency, cross-talk from clock traces and other proximity effects, VCC \& ground bounce, and electromagnetic interference from near-by electrical equipment.

The balanced receiver inputs of the HVD251 mitigate most all sources of signal corruption, and when used with a quality shielded twisted-pair cable, help insure data integrity.

Typical Application

Figure 25. Typical HVD251 Application

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

Copyright © Each Manufacturing Company.
All Datasheets cannot be modified without permission.

This datasheet has been download from : www.AllDataSheet.com

100\% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

[^0]:

 Please be aware that an important notice concerning availability，standard warranty，and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet．

[^1]: (1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $5-\mathrm{V}$ supply

