# Low Voltage 1:15 Differential ÷1/÷2 ECL/PECL Clock Driver

The MC100LVE222 is a low skew 1:15 differential ÷1/÷2 ECL fanout buffer designed with clock distribution in mind. The LVECL/LVPECL input signal pairs can be differential or used single–ended (with VBB output reference bypassed and connected to the unused input of a pair). Either of two fully differential clock inputs may be selected. Each of the four output banks of 2, 3, 4, and 6 differential pairs may be independently configured to fanout 1X or 1/2X of the input frequency. The LVE222 specifically guarantees low output to output skew. Optimal design, layout, and processing minimize skew within a device and from lot to lot.

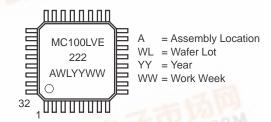
The fsel pins and CLK\_Sel pin are asynchronous control inputs. Any changes may cause indeterminate output states requiring a MR pulse to resynchronize any 1/2X outputs.

To ensure that the tight skew specification is realized, both sides of any differential output pair need to be terminated identically even if only one side is being used. When fewer than all fifteen pairs are used, identically terminate all the output pairs on the same package side whether used or unused. If no outputs on a side are used, then leave all these outputs open (unterminated). This will maintain minimum output skew. Failure to do this will result in a 10–20ps loss of skew margin (propagation delay) in the output(s) in use.

The MC100LVE222, as with most ECL devices, can be operated from a positive V<sub>CC</sub> supply in PECL mode. This allows the LVE222 to be used for high performance clock distribution in +3.3V systems. Designers can take advantage of the LVE222's performance to distribute low skew clocks across the backplane or the board. In a PECL environment series or Thevenin line, terminations are typically used as they require no additional power supplies. All power supply pins must be connected. For more information on using PECL, designers should refer to Application Note AN1406/D. For a SPICE model, see Application Note AN1560/D.

- 200ps Part-to-Part Skew
- 50ps Output-to-Output Skew
- Selectable 1x or 1/2x Frequency Outputs
- Extended Power Supply Range of –3.0V to –5.25V (+3.0V to +5.25V)
- 52-Lead TQFP Packaging
- ESD > 2000V
- Moisture Sensitivity Level 2,
   For Additional Information, See Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 684 devices



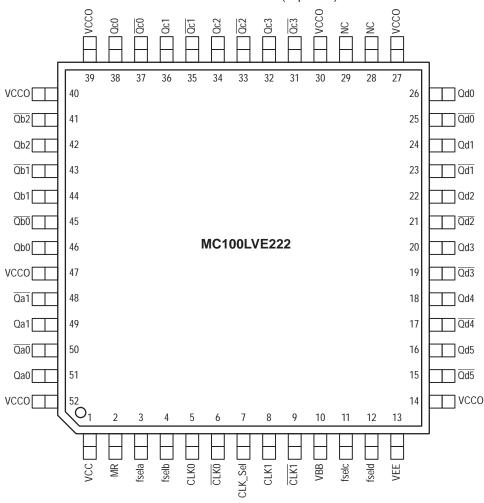

#### **ON Semiconductor**

Formerly a Division of Motorola http://onsemi.com

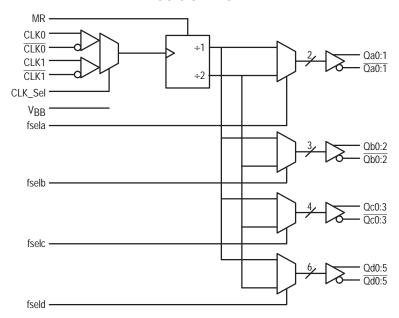


TQFP FA SUFFIX CASE 848D

#### MARKING DIAGRAM\*




\*For additional information, see Application Note AND8002/D


#### **ORDERING INFORMATION**

| Device          | Package | Shipping         |  |  |  |  |
|-----------------|---------|------------------|--|--|--|--|
| MC100LVE222FA   | TQFP    | 800 Units/Tray   |  |  |  |  |
| MC100LVE222FAR2 | TQFP    | 1500 Tape & Reel |  |  |  |  |





#### LOGIC SYMBOL



#### **FUNCTION TABLE**

|                        | Fund                 | ction               |
|------------------------|----------------------|---------------------|
| Input                  | 0                    | 1                   |
| MR<br>CLK_Sel<br>fseln | Active<br>CLK0<br>÷1 | Reset<br>CLK1<br>÷2 |

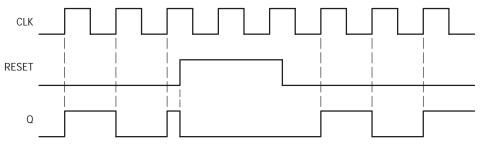



Figure 1. Timing Diagram

#### **MAXIMUM RATINGS\***

| Symbol           | Parameter                            | Value               | Unit       |     |
|------------------|--------------------------------------|---------------------|------------|-----|
| V <sub>EE</sub>  | Power Supply (V <sub>CC</sub> = 0V)  |                     | -8.0 to 0  | VDC |
| VI               | Input Voltage (V <sub>CC</sub> = 0V) |                     | 0 to −6.0  | VDC |
| l <sub>out</sub> | Output Current                       | Continuous<br>Surge | 50<br>100  | mA  |
| TA               | Operating Temperature Range          |                     | -40 to +85 | °C  |

<sup>\*</sup> Maximum Ratings are those values beyond which damage to the device may occur.

#### **ECL DC CHARACTERISTICS**

|                 |                                        |             | –40°C  |        |             | 0°C    |        | 25°C        |        |        |             | 70°C   |        |      |
|-----------------|----------------------------------------|-------------|--------|--------|-------------|--------|--------|-------------|--------|--------|-------------|--------|--------|------|
| Symbol          | Characteristic                         | Min         | Тур    | Max    | Unit |
| VOH             | Output HIGH Voltage                    | -1.085      | -1.005 | -0.880 | -1.025      | -0.955 | -0.880 | -1.025      | -0.955 | -0.880 | -1.025      | -0.955 | -0.880 | V    |
| V <sub>OL</sub> | Output LOW Voltage                     | -1.830      | -1.695 | -1.555 | -1.810      | -1.705 | -1.620 | -1.810      | -1.705 | -1.620 | -1.810      | -1.705 | -1.620 | V    |
| V <sub>IH</sub> | Input HIGH Voltage                     | -1.165      |        | -0.880 | -1.165      |        | -0.880 | -1.165      |        | -0.880 | -1.165      |        | -0.880 | V    |
| $V_{IL}$        | Input LOW Voltage                      | -1.810      |        | -1.475 | -1.810      |        | -1.475 | -1.810      |        | -1.475 | -1.810      |        | -1.475 | V    |
| V <sub>BB</sub> | Output Reference<br>Voltage            | -1.38       |        | -1.26  | -1.38       |        | -1.26  | -1.38       |        | -1.26  | -1.38       |        | -1.26  | V    |
| VEE             | Power Supply Voltage                   | -3.0        |        | -5.25  | -3.0        |        | -5.25  | -3.0        |        | -5.25  | -3.0        |        | -5.25  | V    |
| ΊΗ              | Input HIGH Current                     |             |        | 150    |             |        | 150    |             |        | 150    |             |        | 150    | μΑ   |
| IIL             | Input CLK0, CLK1<br>LOW Current Others | -300<br>0.5 |        |        | -300<br>0.5 |        |        | -300<br>0.5 |        |        | -300<br>0.5 |        |        | μА   |
| IEE             | Power Supply Cur-<br>rent              |             | 122    | 136    |             | 122    | 136    |             | 122    | 136    |             | 125    | 139    | mA   |

#### PECL DC CHARACTERISTICS

|                 |                                           |             | –40°C |       |             | 0°C   |       | 25°C        |       |       |             |       |       |      |
|-----------------|-------------------------------------------|-------------|-------|-------|-------------|-------|-------|-------------|-------|-------|-------------|-------|-------|------|
| Symbol          | Characteristic                            | Min         | Тур   | Max   | Unit |
| V <sub>OH</sub> | Output HIGH Voltage1.                     | 2.215       | 2.295 | 2.420 | 2.275       | 2.345 | 2.420 | 2.275       | 2.345 | 2.420 | 2.275       | 2.345 | 2.420 | V    |
| V <sub>OL</sub> | Output LOW Voltage1.                      | 1.470       | 1.605 | 1.745 | 1.490       | 1.595 | 1.680 | 1.490       | 1.595 | 1.680 | 1.490       | 1.595 | 1.680 | V    |
| V <sub>IH</sub> | Input HIGH Voltage1.                      | 2.135       |       | 2.420 | 2.135       |       | 2.420 | 2.135       |       | 2.420 | 2.135       |       | 2.420 | V    |
| V <sub>IL</sub> | Input LOW Voltage1.                       | 1.490       |       | 1.825 | 1.490       |       | 1.825 | 1.490       |       | 1.825 | 1.490       |       | 1.825 | V    |
| V <sub>BB</sub> | Output Reference<br>Voltage <sup>1.</sup> | 1.92        |       | 2.04  | 1.92        |       | 2.04  | 1.92        |       | 2.04  | 1.92        |       | 2.04  | V    |
| VCC             | Power Supply Voltage                      | 3.0         |       | 5.25  | 3.0         |       | 5.25  | 3.0         |       | 5.25  | 3.0         |       | 5.25  | V    |
| I <sub>IH</sub> | Input HIGH Current                        |             |       | 150   |             |       | 150   |             |       | 150   |             |       | 150   | μΑ   |
| I <sub>IL</sub> | Input CLK0, CLK1<br>LOW Current Others    | -300<br>0.5 |       |       | -300<br>0.5 |       |       | -300<br>0.5 |       |       | -300<br>0.5 |       |       | μА   |
| IEE             | Power Supply Current                      |             | 122   | 136   |             | 122   | 136   |             | 122   | 136   |             | 125   | 139   | mA   |

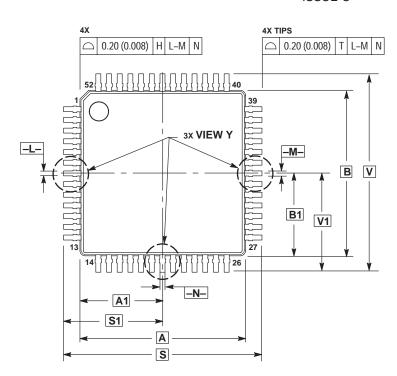
<sup>1.</sup> These values are for  $V_{CC}$  = 3.3V. Level Specifications will vary 1:1 with  $V_{CC}$ .

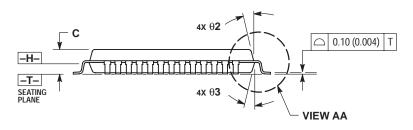
### ECL AC CHARACTERISTICS ( $V_{EE} = V_{EE}$ (min) to $V_{EE}$ (max); $V_{CC} = V_{CCO} = GND$ )

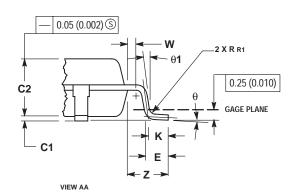
|                                      |                                                                                  |                         | –40°C                |                      |                         | 0°C                  |                      |                         | 25°C                 |                      | 70°C                    |                      |                      |      |                    |
|--------------------------------------|----------------------------------------------------------------------------------|-------------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|------|--------------------|
| Symbol                               | Characteristic                                                                   | Min                     | Тур                  | Max                  | Unit | Condition          |
| <sup>t</sup> PLH<br><sup>t</sup> PHL | Propagation Delay to Out-<br>put<br>IN (differential)<br>IN (single-ended)<br>MR | 1040<br>990<br>1100     | 1140<br>1140<br>1250 | 1240<br>1290<br>1400 | 1060<br>1010<br>1130    | 1160<br>1160<br>1280 | 1260<br>1310<br>1430 | 1080<br>1030<br>1170    | 1180<br>1180<br>1320 | 1280<br>1330<br>1470 | 1120<br>1070<br>1220    | 1220<br>1220<br>1370 | 1320<br>1370<br>1520 | ps   | Note 1.<br>Note 2. |
| t <sub>skew</sub>                    | Within-Device Skew<br>Part-to-Part Skew (Diff)                                   |                         |                      | 50<br>200            |                         |                      | 50<br>200            |                         |                      | 50<br>200            |                         |                      | 50<br>200            | ps   | Note 3.            |
| V <sub>PP</sub>                      | Minimum Input Swing                                                              | 400                     |                      |                      | 400                     |                      |                      | 400                     |                      |                      | 400                     |                      |                      | mV   | Note 4.            |
| VCMR                                 | Common Mode Range<br>Vpp < 500mV                                                 | V <sub>EE</sub><br>+1.3 |                      | -0.4                 | V <sub>EE</sub><br>+1.2 |                      | -0.4                 | V <sub>EE</sub><br>+1.2 |                      | -0.4                 | V <sub>EE</sub><br>+1.2 |                      | -0.4                 | V    | Note 5.            |
|                                      | V <sub>PP</sub> ≥ 500mV                                                          | V <sub>EE</sub><br>+1.6 |                      | -0.4                 | V <sub>EE</sub><br>+1.5 |                      | -0.4                 | V <sub>EE</sub><br>+1.5 |                      | -0.4                 | V <sub>EE</sub><br>+1.5 |                      | -0.4                 |      |                    |
| t <sub>r</sub> /t <sub>f</sub>       | Output Rise/Fall Time                                                            | 200                     |                      | 600                  | 200                     |                      | 600                  | 200                     |                      | 600                  | 200                     |                      | 600                  | ps   | 20%-80%            |

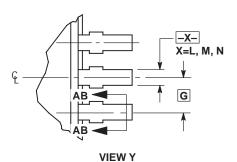
- 1. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.
- 2. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.
- 3. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.
- 4. Vpp(min) is defined as the minimum input differential voltage which will cause no increase in the propagation delay. The Vpp(min) is AC limited for the LVE222. A differential input as low as 50 mV will still produce full ECL levels at the output.
- 5. V<sub>CMR</sub> is defined as the range within which the V<sub>IH</sub> level may vary, with the device still meeting the propagation delay specification. The V<sub>IL</sub> level must be such that the peak to peak voltage is less than 1.0 V and greater than or equal to V<sub>PP</sub>(min).

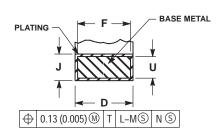
#### PECL AC CHARACTERISTICS (VEE = GND; VCC = VCCO = VCC (min) to VCC (max))


|                                      |                                                                                  |                     | –40°C                |                         |                      | 0°C                  |                         |                      | 25°C 70°C            |                         |                      |                      |                         |      |                    |
|--------------------------------------|----------------------------------------------------------------------------------|---------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|------|--------------------|
| Symbol                               | Characteristic                                                                   | Min                 | Тур                  | Max                     | Min                  | Тур                  | Max                     | Min                  | Тур                  | Max                     | Min                  | Тур                  | Max                     | Unit | Condition          |
| <sup>†</sup> PLH<br><sup>†</sup> PHL | Propagation Delay to Out-<br>put<br>IN (differential)<br>IN (single-ended)<br>MR | 1040<br>990<br>1100 | 1140<br>1140<br>1250 | 1240<br>1290<br>1400    | 1060<br>1010<br>1130 | 1160<br>1160<br>1280 | 1260<br>1310<br>1430    | 1080<br>1030<br>1170 | 1180<br>1180<br>1320 | 1280<br>1330<br>1470    | 1120<br>1070<br>1220 | 1220<br>1220<br>1370 | 1320<br>1370<br>1520    | ps   | Note 1.<br>Note 2. |
| t <sub>skew</sub>                    | Within-Device Skew<br>Part-to-Part Skew (Diff)                                   |                     |                      | 50<br>200               |                      |                      | 50<br>200               |                      |                      | 50<br>200               |                      |                      | 50<br>200               | ps   | Note 3.            |
| $V_{PP}$                             | Minimum Input Swing                                                              | 400                 |                      |                         | 400                  |                      |                         | 400                  |                      |                         | 400                  |                      |                         | mV   | Note 4.            |
| VCMR                                 | Common Mode Range<br>V <sub>PP</sub> < 500mV                                     | 1.3                 |                      | V <sub>CC</sub><br>-0.4 | 1.2                  |                      | V <sub>CC</sub><br>-0.4 | 1.2                  |                      | V <sub>CC</sub><br>-0.4 | 1.2                  |                      | V <sub>CC</sub><br>-0.4 | V    | Note 5.            |
|                                      | V <sub>PP</sub> ≥ 500mV                                                          | 1.6                 |                      | V <sub>CC</sub><br>-0.4 | 1.5                  |                      | V <sub>CC</sub><br>-0.4 | 1.5                  |                      | V <sub>CC</sub><br>-0.4 | 1.5                  |                      | V <sub>CC</sub><br>-0.4 |      |                    |
| t <sub>r</sub> /t <sub>f</sub>       | Output Rise/Fall Time                                                            | 200                 |                      | 600                     | 200                  |                      | 600                     | 200                  |                      | 600                     | 200                  |                      | 600                     | ps   | 20%-80%            |


- 1. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.
- 2. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.
- 3. The within–device skew is defined as the worst case difference between any two similar delay paths within a single device.
- 4. Vpp(min) is defined as the minimum input differential voltage which will cause no increase in the propagation delay. The Vpp(min) is AC limited for the LVE222. A differential input as low as 50 mV will still produce full ECL levels at the output.
- 5. V<sub>CMR</sub> is defined as the range within which the V<sub>IH</sub> level may vary, with the device still meeting the propagation delay specification. The V<sub>IL</sub> level must be such that the peak to peak voltage is less than 1.0 V and greater than or equal to V<sub>PP</sub>(min).


#### PACKAGE DIMENSIONS


#### **FA SUFFIX**


TQFP PACKAGE CASE 848D-03 ISSUE C











#### **SECTION AB-AB** ROTATED 90° CLOCKWISE

#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
  Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
  3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- DATUMS -L-, -M- AND -N- TO BE DETERMINED AT DATUM PLANE -H-.
- DETERMINED AT DATUM PLANE -H-.
  5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -T-.
  6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
  7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMAGED BROTRUSION STAIL
- PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.46 (0.018). MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07 (0.003).

|     | MILLIN | METERS | INC       | HES   |  |  |  |  |
|-----|--------|--------|-----------|-------|--|--|--|--|
| DIM | MIN    | MAX    | MIN       | MAX   |  |  |  |  |
| Α   | 10.00  | BSC    | 0.394 BSC |       |  |  |  |  |
| A1  | 5.00   | BSC    | 0.197 BSC |       |  |  |  |  |
| В   | 10.00  | BSC    | 0.394     | BSC   |  |  |  |  |
| B1  | 5.00   | BSC    | 0.197     | BSC   |  |  |  |  |
| С   |        | 1.70   |           | 0.067 |  |  |  |  |
| C1  | 0.05   | 0.20   | 0.002     | 0.008 |  |  |  |  |
| C2  | 1.30   | 1.50   | 0.051     | 0.059 |  |  |  |  |
| D   | 0.20   | 0.40   | 0.008     | 0.016 |  |  |  |  |
| Ε   | 0.45   | 0.75   | 0.018     | 0.030 |  |  |  |  |
| F   | 0.22   | 0.35   | 0.009     | 0.014 |  |  |  |  |
| G   | 0.65   | BSC    | 0.026 BSC |       |  |  |  |  |
| J   | 0.07   | 0.20   | 0.003     | 0.008 |  |  |  |  |
| K   | 0.50   | REF    | 0.020 REF |       |  |  |  |  |
| R1  | 0.08   | 0.20   | 0.003     | 0.008 |  |  |  |  |
| S   | 12.00  | BSC    | 0.472 BSC |       |  |  |  |  |
| S1  | 6.00   | BSC    | 0.236     | BSC   |  |  |  |  |
| U   | 0.09   | 0.16   | 0.004     | 0.006 |  |  |  |  |
| V   | 12.00  | BSC    | 0.472     | BSC   |  |  |  |  |
| V1  | 6.00   | BSC    | 0.236     | BSC   |  |  |  |  |
| W   | 0.20   | REF    | 0.008     | REF   |  |  |  |  |
| Z   |        | REF    |           | REF   |  |  |  |  |
| θ   | 0°     | 7°     | 0°        | 7°    |  |  |  |  |
| θ1  | 0°     |        | 0°        |       |  |  |  |  |
| θ2  | 12°    |        | 12 °      |       |  |  |  |  |
| θ3  | 5°     | 13°    | 5°        | 13°   |  |  |  |  |

# **Notes**

# **Notes**

ON Semiconductor and W are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### **PUBLICATION ORDERING INFORMATION**

#### NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

Phone: (+1) 303-308-7141 (M-F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (M-F 12:00pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS\*: 00-800-4422-3781

\*Available from Germany, France, Italy, England, Ireland

#### **CENTRAL/SOUTH AMERICA:**

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5740-2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.