
2:1 Multiplexer

The MC100LVEL58 is a 2:1 multiplexer. The device is pin and functionally equivalent to the EL58 and works from a -3.3V supply. With AC performance similar to the EL58 device, the LVEL58 is ideal for low voltage applications which require the ultimate in AC performance.

- 440ps Typical Propagation Delays
- High Bandwidth Output Transitions
- PECL mode: 3.0V to 5.5V V_{CC} with V_{EE} = 0V
- ECL mode: $0V V_{CC}$ with $V_{EE} = -3.0V$ to -5.5V
- 75kΩ Internal Input Pulldown Resistors
- >4000V ESD Protection
- Moisture Sensitivity Level 1, Indefinite Time Out of Drypack For Additional Information, See Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count: 729 devices

Logic Diagram and Pinout: 8-Lead SOIC (Top View)

ON Semiconductor

Formerly a Division of Motorola

http://onsemi.com

MARKING DIAGRAM*

A = Assembly Location

L = Wafer Lot

Y = Year

W = Work Week

PIN NAMES

Pins	Function
Da, Db Q	Data Inputs Data Outputs

TRUTH TABLE

SEL	Data
H	a GOW

ORDERING INFORMATION

Device	Package	Shipping				
MC100LVEL58D	SO-8	98 Units / Rail				
MC100LVEL58DR2	SO-8	2500 Units / Reel				

^{*}For additional information, see Application Note WWW.DZSC.COM AND8002/D

ABSOLUTE MAXIMUM RATINGS¹

Symbol	Characteristic	Rating	Unit	
VEE	Power Supply (V _{CC} = 0V)		-8.0 to 0	VDC
٧ _I	Input Voltage (V _{CC} = 0V)		0 to -6.0	VDC
l _{out}	Output Current Continuous Surge		50 100	mA
TA	Operating Temperature Range		-40 to +85	°C
VEE	Operating Range ^{1,2}		−5.7 to −3.0	V
θЈА	Thermal Resistance (Junction-to-Ambient)	Still Air 500lfpm	190 130	°C/W
θЈС	Thermal Resistance (Junction-to-Case)		41 to 44 ± 5%	°C/W
T _{sol}	Solder Temperature (<2 to 3 Seconds: 245°C desired)		265	°C

- Absolute maximum rating, beyond which, device life may be impaired, unless otherwise specified on an individual data sheet.
 Parametric values specified at: 100EL Series: -4.20V to -5.50V
- 2. Parametric values specified at: 10EL Series: -4.94V to -5.50V

MC100LVEL58

DC CHARACTERISTICS (VEE = VEE(min) to VEE(max); VCC = GND)

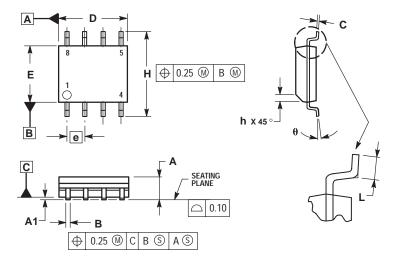
			–40°C			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		21	28		21	28		21	28		23	30	mA
VEE	Power Supply Voltage	3.0		3.8	3.0		3.8	3.0		3.8	3.0		3.8	V
liH	Input HIGH Current			150			150			150			150	μΑ

MC100LVEL58

AC CHARACTERISTICS (VEE = VEE(min) to VEE(max); V_{CC} = GND)

			-40°C			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Unit									
t _{PLH}	Propagation D Q Delay SEL Q	340 350	435 455	560 570	340 350	435 455	560 570	350 360	440 460	570 580	370 380	450 470	590 600	ps
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	100		320	100		320	100		320	100		320	ps

DC CHARACTERISTICS


(VEE = VEE(min) - VEE(max); VCC = GND1), All input and output voltage parameters vary 1:1 with VCC

		–40°C			C)°C to 85°C	;		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit	Condition
VOH	Output HIGH Voltage(2)	-1085	-1005	-880	-1025	-955	-880	mV	$V_{IN} = V_{IH}(max)$
V _{OL}	Output LOW Voltage(2)	-1830	-1695	-1555	-1810	-1705	-1620	mV	or V _{IL} (min)
VOHA	Output HIGH Voltage(2)	-1095	_	_	-1035	_	_	mV	V _{IN} = V _{IH} (max)
V _{OLA}	Output LOW Voltage(2)	_	_	-1555	_	_	-1610	mV	or V _{IL} (min)
VIH	Input HIGH Voltage	-1165	_	-880	-1165	_	-880	mV	
VIL	Input LOW Voltage	-1810		-1475	-1810	_	-1475	mV	
I _{IL}	Input LOW Current	0.5	_	_	0.5	_	_	μΑ	$V_{IN} = V_{IL}(max)$

- V_{CC} = 0V, V_{EE} = V_{EEmin} to V_{EEmax}, all other pins floating.
 All loading with 50 ohms to V_{CC}-2.0 volts.

PACKAGE DIMENSIONS

SO-8 **D SUFFIX** CASE 751-06 ISSUE T

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

2. DIMENSIONS ARE IN MILLIMETER.

3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.

4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETER							
DIM	MIN	MAX						
Α	1.35	1.7						
A1	0.10	0.2						
В	0.35	0.49						
С	0.19	0.2						
D	4.80	5.00						
Ε	3.80	4.00						
е	1.27	BSC						
Н	5.80	6.20						
h	0.25	0.50						
L	0.40	1.2						
θ	0 °	7						

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.