

FAIRCHILD

September 1995 Revised February 2005

74VHC132 Quad 2-Input NAND Schmitt Trigger

General Description

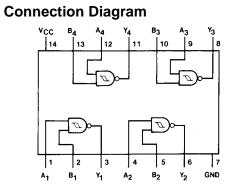
The VHC132 is an advanced high speed CMOS 2-input NAND Schmitt Trigger Gate fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to Bipolar Schottky TTL while maintaining the CMOS low power dissipation. Pin configuration and function are the same as the VHC00 but the inputs have hysteresis between the positive-going and negative-going input thresholds, which are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Thus greater noise margin then conventional gates is provided. An input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

- High Speed: t_{PD} = 3.9 ns (typ) at V_{CC} = 5 V
- Power down protection is provided on all inputs
- \blacksquare Low power dissipation: I_{CC} = 2 μA (max) at T_A = 25 ^C
- Low noise: V_{OLP} = 0.8 V (max)
- Pin and function compatible with 74HC132

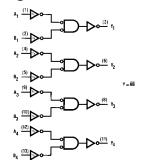
4VHC132 Quad 2-Input NAND Schmitt Trigger

Ordering Code:


Order Number	Package	Package Description						
Order Number	Number	Tackage Description						
74VHC132M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow						
74VHC132SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide						
74VHC132MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide						
74VHC132MTCX_NL (Note 1)	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide						
74VHC132N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide						
Surface mount packages or	a alco available ar	Tana and Pool. Specify by apponding the suffix latter "X" to the ordering code						

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.


74VHC132

Pin Descriptions

Pin Names	Description
A _n , B _n	Inputs
Y _n	Outputs

Logic Diagram

Truth Table

Α	В	Y
L	L	Н
L	н	н
н	L	н
н	Н	L

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	–0.5V to V _{CC} + 0.5V
Input Diode Current (I _{IK})	–20 mA
Output Diode Current (I _{OK})	±20 mA
DC Output Current (I _{OUT})	±25 mA
DC V _{CC} /GND Current (I _{CC})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 3)

Supply Voltage (V _{CC})	2.0V to +5.5V
Input Voltage (V _{IN})	0V to +5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _{OPR})	-40°C to +85°C

Note 2: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

C Note 3: Unused inputs must be held HIGH or LOW. They may not float.

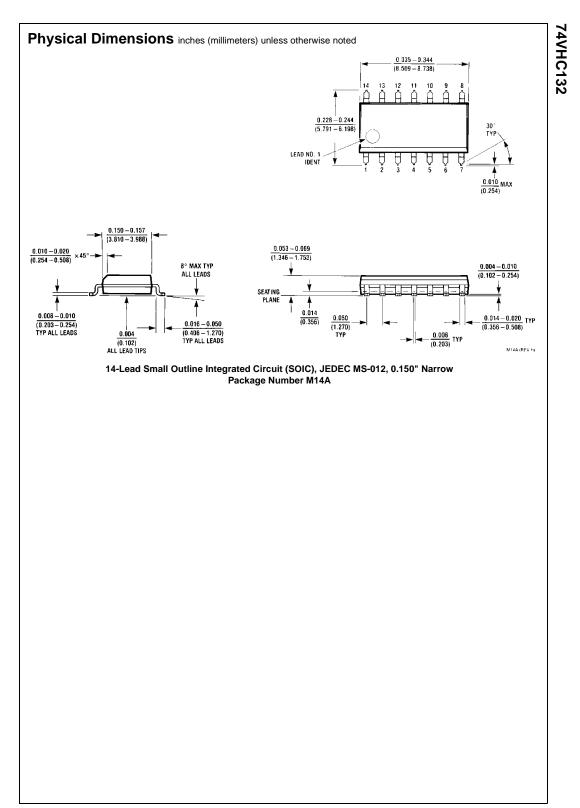
DC Electrical Characteristics

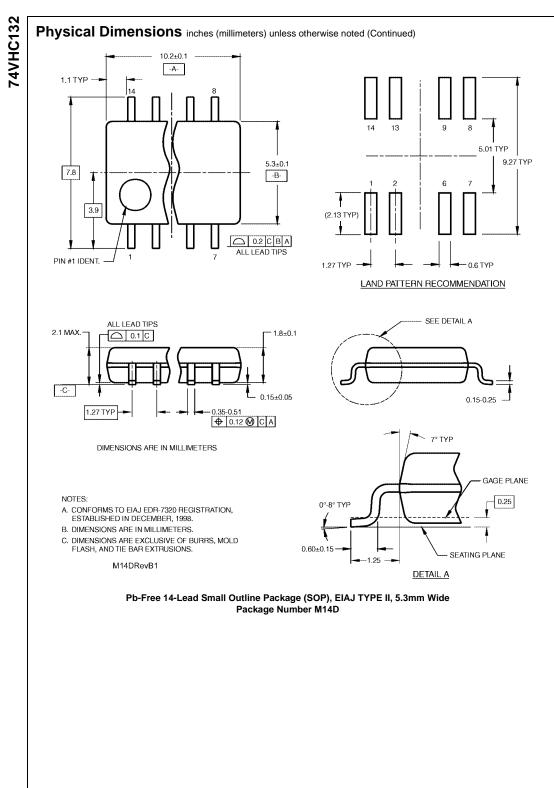
Symbol	Parameter	Vcc	C T _A = 25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	
VP	Positive	3.0			2.20		2.20			
	Threshold Voltage	4.5			3.15		3.15	V		
		5.5			3.85		3.85			
V _N	Negative	3.0	0.90			0.90				
	Threshold Voltage	4.5	1.35			1.35		V		
		5.5	1.65			1.65				
V _H	Hysteresis	3.0	0.30		1.20	0.30	1.20			
	Output Voltage	4.5	0.40		1.40	0.40	1.40	V		
		5.5	0.50		1.60	0.50	1.60			
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$	$I_{OH} = -50 \ \mu A$
	Output Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}	
		4.5	4.4	4.5		4.4				
		3.0	2.58			2.48		V		$I_{OH} = -4 \text{ mA}$
		4.5	3.94			3.80				I _{OH} = -8 mA
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH}$	$I_{OL} = 50 \ \mu A$
	Output Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}	
		4.5		0.0	0.1		0.1			
		3.0			0.36	1	0.44	V	1	$I_{OL} = 4 \text{ mA}$
		4.5			0.36		0.44	v		I _{OL} = 8 mA
I _{IN}	Input Leakage Current	0–5.5			±0.1		±1.0	μA	$V_{IN} = 5.5V$	or GND
I _{CC}	Quiescent Supply Current	5.5			2.0		20.0	μA	$V_{IN} = V_{CC} c$	or GND

74VHC132

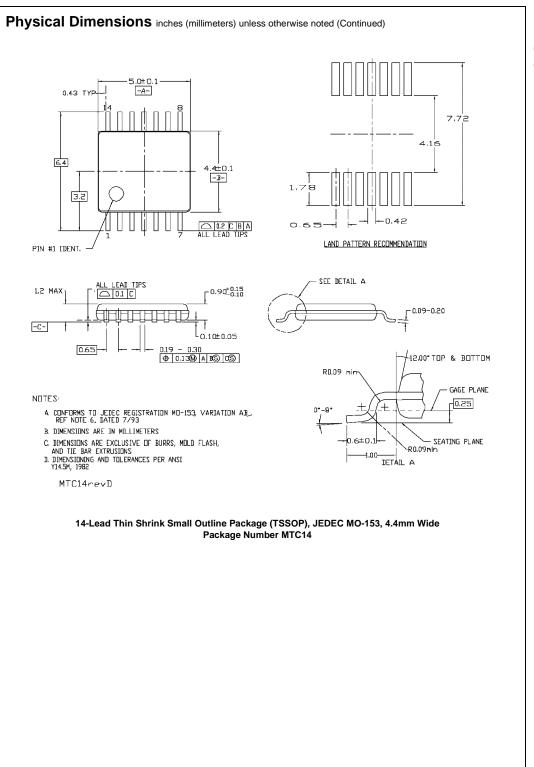
2
က
~
C
Ť
5
4
r

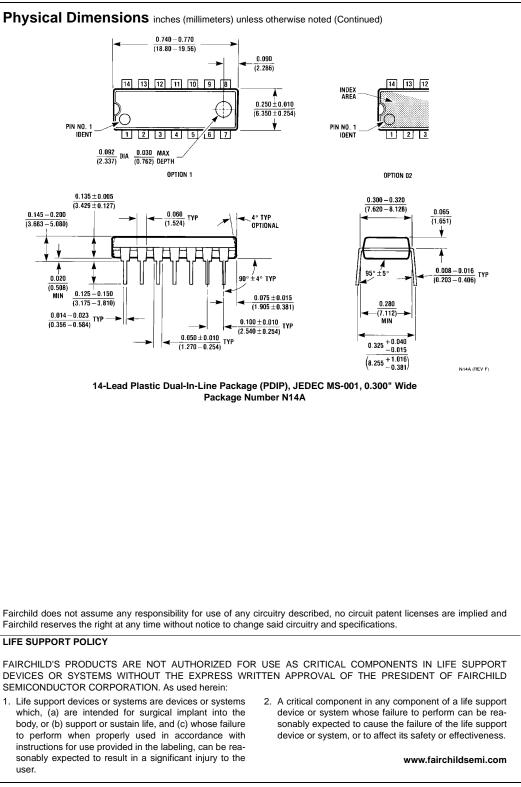
Noise Characteristics


Symbol	Parameter	V _{CC}	T _A =	25°C	Units	Conditions
	Farameter	(V)	Тур	Limit	Units	conditions
V _{OLP}	Quiet Output Maximum	5.0	0.3	0.8	V	$C_L = 50 \text{ pF}$
(Note 4)	Dynamic V _{OL}					
V _{OLV}	Quiet Output Maximum	5.0	-0.3	-0.8	V	$C_L = 50 \text{ pF}$
(Note 4)	Dynamic V _{OL}					
V _{IHD}	Maximum HIGH Level	5.0		3.5	V	$C_L = 50 \text{ pF}$
(Note 4)	Dynamic Input Voltage					
V _{ILD}	Maximum LOW Level	5.0		1.5	V	$C_L = 50 \text{ pF}$
(Note 4)	Dynamic Input Voltage					


Note 4: Parameter guaranteed by design

AC Electrical Characteristics


Symbol	Parameter	V _{cc}	$T_A = 25^{\circ}C$			$\textbf{T}_{\textbf{A}} = -40^{\circ}\textbf{C} \text{ to } +85^{\circ}\textbf{C}$		Units	Conditions
		(V)	Min	Тур	Max	Min	Max	Units	Conditions
t _{PHL}	Propagation Delay	$\textbf{3.3}\pm\textbf{0.3}$		6.1	11.9	1.0	14.0	ns	C _L = 15 pF
t _{PLH}				8.0	15.4	1.0	17.5	113	$C_L = 50 \text{ pF}$
		5.0 ± 0.5		3.9	7.7	1.0	9.0	ns	C _L = 15 pF
				5.9	9.7	1.0	11.0	115	$C_L = 50 \text{ pF}$
CIN	Input Capacitance			4	10		10	pF	V _{CC} = Open
C _{PD}	Power Dissipation			16				pF	(Note 5)
	Capacitance								


Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained from the equation: I_{CC} (opr.) = C_{PD} * V_{CC} * $I_{IN} + I_{CC}/4$ (per gate)

www.fairchildsemi.com

