
VNH100N04

## “OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET

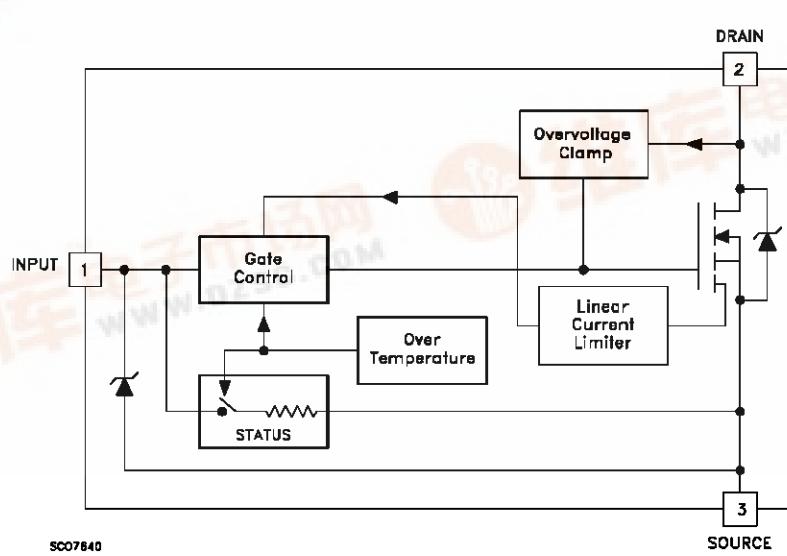
### TARGET DATA

| TYPE      | V <sub>clamp</sub> | R <sub>DS(on)</sub> | I <sub>lim</sub> |
|-----------|--------------------|---------------------|------------------|
| VNH100N04 | 42 V               | 0.012 Ω             | 100 A            |

- LINEAR CURRENT LIMITATION
- THERMAL SHUT DOWN
- SHORT CIRCUIT PROTECTION
- INTEGRATED CLAMP
- LOW CURRENT DRAWN FROM INPUT PIN
- DIAGNOSTIC FEEDBACK THROUGH INPUT PIN
- ESD PROTECTION
- DIRECT ACCESS TO THE GATE OF THE POWER MOSFET (ANALOG DRIVING)
- COMPATIBLE WITH STANDARD POWER MOSFET
- STANDARD TO-218 PACKAGE



TO-218


### DESCRIPTION

The VNH100N04 is a monolithic device made using SGS-THOMSON Vertical Intelligent Power M0 Technology, intended for replacement of standard power MOSFETs in DC to 50 KHz applications. Buit-in thermal shut-down, linear

current limitation and overvoltage clamp protect the chip in harsh enviroments.

Fault feedback can be detected by monitoring the voltage at the input pin.

### BLOCK DIAGRAM



## VNH100N04

---

### ABSOLUTE MAXIMUM RATING

| Symbol    | Parameter                                                                    | Value              | Unit             |
|-----------|------------------------------------------------------------------------------|--------------------|------------------|
| $V_{DS}$  | Drain-source Voltage ( $V_{in} = 0$ )                                        | Internally Clamped | V                |
| $V_{in}$  | Input Voltage                                                                | 18                 | V                |
| $I_D$     | Drain Current                                                                | Internally Limited | A                |
| $I_R$     | Reverse DC Output Current                                                    | -50                | A                |
| $V_{esd}$ | Electrostatic Discharge ( $C = 100 \text{ pF}$ , $R = 1.5 \text{ k}\Omega$ ) | 2000               | V                |
| $P_{tot}$ | Total Dissipation at $T_c = 25 \text{ }^\circ\text{C}$                       | 208                | W                |
| $T_j$     | Operating Junction Temperature                                               | Internally Limited | $^\circ\text{C}$ |
| $T_c$     | Case Operating Temperature                                                   | Internally Limited | $^\circ\text{C}$ |
| $T_{stg}$ | Storage Temperature                                                          | -55 to 150         | $^\circ\text{C}$ |

### THERMAL DATA

|                |                                     |     |     |                           |
|----------------|-------------------------------------|-----|-----|---------------------------|
| $R_{thj-case}$ | Thermal Resistance Junction-case    | Max | 0.6 | $^\circ\text{C}/\text{W}$ |
| $R_{thj-amb}$  | Thermal Resistance Junction-ambient | Max | 30  | $^\circ\text{C}/\text{W}$ |

### ELECTRICAL CHARACTERISTICS ( $T_{case} = 25 \text{ }^\circ\text{C}$ unless otherwise specified)

OFF

| Symbol      | Parameter                                         | Test Conditions                                    | Min. | Typ. | Max.      | Unit                           |
|-------------|---------------------------------------------------|----------------------------------------------------|------|------|-----------|--------------------------------|
| $V_{CLAMP}$ | Drain-source Clamp Voltage                        | $I_D = 30 \text{ A}$ $V_{in} = 0$                  | 36   | 42   | 48        | V                              |
| $V_{CLTH}$  | Drain-source Clamp Threshold Voltage              | $I_D = 2 \text{ mA}$ $V_{in} = 0$                  | 35   |      |           | V                              |
| $V_{INCL}$  | Input-Source Reverse Clamp Voltage                | $I_{in} = -1 \text{ mA}$                           | -1   |      | -0.3      | V                              |
| $I_{DSS}$   | Zero Input Voltage Drain Current ( $V_{in} = 0$ ) | $V_{DS} = 13 \text{ V}$<br>$V_{DS} = 25 \text{ V}$ |      |      | 50<br>200 | $\mu\text{A}$<br>$\mu\text{A}$ |
| $I_{ISS}$   | Supply Current from Input Pin                     | $V_{DS} = 0 \text{ V}$ $V_{in} = 10 \text{ V}$     |      | 250  | 500       | $\mu\text{A}$                  |

ON (\*)

| Symbol       | Parameter                         | Test Conditions                                                                             | Min. | Typ. | Max.           | Unit                 |
|--------------|-----------------------------------|---------------------------------------------------------------------------------------------|------|------|----------------|----------------------|
| $V_{IS(th)}$ | Input Threshold Voltage           | $V_{DS} = V_{in}$ $I_D = 1 \text{ mA}$                                                      | 0.8  |      | 3              | V                    |
| $R_{DS(on)}$ | Static Drain-source On Resistance | $V_{in} = 10 \text{ V}$ $I_D = 30 \text{ A}$<br>$V_{in} = 5 \text{ V}$ $I_D = 30 \text{ A}$ |      |      | 0.012<br>0.015 | $\Omega$<br>$\Omega$ |

### DYNAMIC

| Symbol               | Parameter                | Test Conditions                                          | Min. | Typ. | Max. | Unit |
|----------------------|--------------------------|----------------------------------------------------------|------|------|------|------|
| $g_{fs} \text{ (*)}$ | Forward Transconductance | $V_{DS} = 13 \text{ V}$ $I_D = 30 \text{ A}$             |      | 40   |      | S    |
| $C_{oss}$            | Output Capacitance       | $V_{DS} = 13 \text{ V}$ $f = 1 \text{ MHz}$ $V_{in} = 0$ |      | 1800 | 3000 | pF   |

**ELECTRICAL CHARACTERISTICS** (continued)

## SWITCHING

| Symbol                | Parameter                        | Test Conditions                                                                                  | Min. | Typ.       | Max.       | Unit                           |
|-----------------------|----------------------------------|--------------------------------------------------------------------------------------------------|------|------------|------------|--------------------------------|
| $t_{d(on)}$<br>$t_r$  | Turn-on Delay Time<br>Rise Time  | $V_{DD} = 15 \text{ V}$ $I_d = 30 \text{ A}$<br>$V_{gen} = 10 \text{ V}$ $R_{gen} = 10 \Omega$   |      | 100<br>400 | TBD<br>TBD | ns<br>ns                       |
| $t_{d(off)}$<br>$t_f$ | Turn-off Delay Time<br>Fall Time | (see figure 3)                                                                                   |      | 900<br>400 | TBD<br>TBD | ns<br>ns                       |
| $t_{d(on)}$<br>$t_r$  | Turn-on Delay Time<br>Rise Time  | $V_{DD} = 15 \text{ V}$ $I_d = 30 \text{ A}$<br>$V_{gen} = 10 \text{ V}$ $R_{gen} = 10 \Omega$   |      |            | TBD        | ns                             |
| $t_{d(off)}$<br>$t_f$ | Turn-off Delay Time<br>Fall Time | $T_j = 125 \text{ }^\circ\text{C}$<br>(see figure 3)                                             |      |            | TBD<br>TBD | ns<br>ns                       |
| $t_{d(on)}$<br>$t_r$  | Turn-on Delay Time<br>Rise Time  | $V_{DD} = 15 \text{ V}$ $I_d = 30 \text{ A}$<br>$V_{gen} = 10 \text{ V}$ $R_{gen} = 1000 \Omega$ |      |            | TBD<br>TBD | $\mu\text{s}$<br>$\mu\text{s}$ |
| $t_{d(off)}$<br>$t_f$ | Turn-off Delay Time<br>Fall Time | (see figure 3)                                                                                   |      |            | TBD<br>TBD | $\mu\text{s}$<br>$\mu\text{s}$ |
| $(di/dt)_{on}$        | Turn-on Current Slope            | $V_{DD} = 15 \text{ V}$ $I_d = 30 \text{ A}$<br>$V_{in} = 10 \text{ V}$                          |      | TBD        |            | $\text{A}/\mu\text{s}$         |
| $Q_g$                 | Total Gate Charge                | $V_{DD} = 12 \text{ V}$ $I_D = 30 \text{ A}$ $V_{in} = 10 \text{ V}$                             |      | TBD        |            | nC                             |

## SOURCE DRAIN DIODE

| Symbol       | Parameter                | Test Conditions                                             | Min. | Typ. | Max. | Unit          |
|--------------|--------------------------|-------------------------------------------------------------|------|------|------|---------------|
| $V_{SD} (*)$ | Forward On Voltage       | $I_{SD} = 30 \text{ A}$ $V_{in} = 0$                        |      |      | TBD  | V             |
| $t_{rr}$     | Reverse Recovery Time    | $I_{SD} = 30 \text{ A}$ $di/dt = 100 \text{ A}/\mu\text{s}$ |      | TBD  |      | ns            |
| $Q_{rr}$     | Reverse Recovery Charge  | $V_{DD} = \text{V}$ $T_j = 150 \text{ }^\circ\text{C}$      |      | TBD  |      | $\mu\text{C}$ |
| $I_{RRM}$    | Reverse Recovery Current | (see test circuit, figure 5)                                |      | TBD  |      | A             |

## PROTECTION

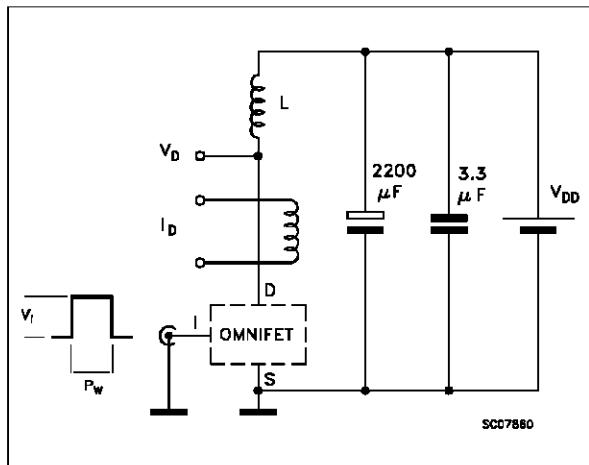
| Symbol     | Parameter                     | Test Conditions                                                                                                                             | Min. | Typ. | Max. | Unit             |
|------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------------------|
| $I_{lim}$  | Drain Current Limit           | $V_{in} = 10 \text{ V}$ $V_{DS} = 13 \text{ V}$                                                                                             | 70   | 100  | 140  | A                |
| $t_{dlim}$ | Step Response Current Limit   | $V_{in} = 10 \text{ V}$ $V_{DS} = 13 \text{ V}$                                                                                             |      |      | TBD  | $\mu\text{s}$    |
| $T_{jsh}$  | Overtemperature Shutdown      |                                                                                                                                             | 150  | 170  | 190  | $^\circ\text{C}$ |
| $T_{jrs}$  | Overtemperature Reset         |                                                                                                                                             | 135  |      |      | $^\circ\text{C}$ |
| $I_{gf}$   | Fault Sink Current            | $V_{in} = 10 \text{ V}$ $V_{DS} = 13 \text{ V}$                                                                                             |      | 50   |      | mA               |
| $E_{as}$   | Single Pulse Avalanche Energy | starting $T_j = 25 \text{ }^\circ\text{C}$ $V_{DD} = 20 \text{ V}$<br>$V_{in} = 10 \text{ V}$ $R_{gen} = 1 \text{ K}\Omega$ $L = \text{mH}$ | TBD  |      |      | J                |

(\*) Pulsed: Pulse duration = 300  $\mu\text{s}$ , duty cycle 1.5 %

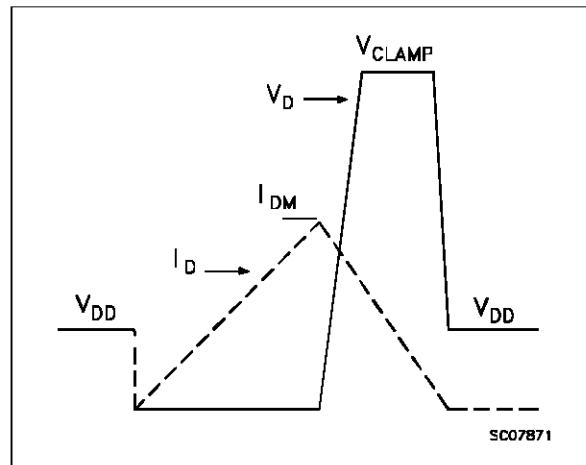
## PROTECTION FEATURES

During normal operation, the Input pin is electrically connected to the gate of the internal power MOSFET. The device then behaves like a standard power MOSFET and can be used as a switch from DC to 50 KHz. The only difference from the user's standpoint is that a small DC current ( $I_{iss}$ ) flows into the Input pin in order to supply the internal circuitry.

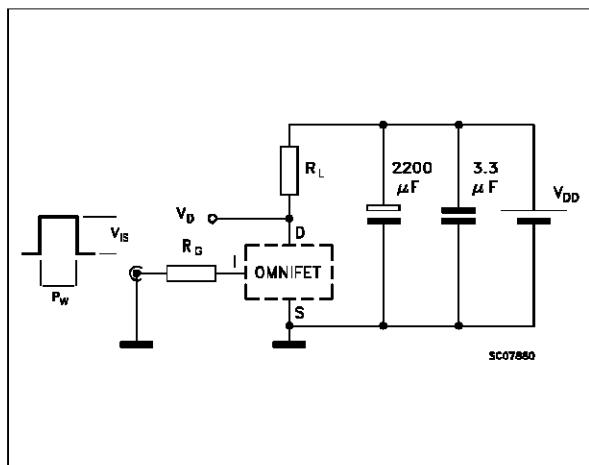
The device integrates:


- OVERVOLTAGE CLAMP PROTECTION: internally set at 42V, along with the rugged avalanche characteristics of the Power MOSFET stage give this device unrivalled ruggedness and energy handling capability. This feature is mainly important when driving inductive loads.
- LINEAR CURRENT LIMITER CIRCUIT: limits the drain current  $I_d$  to  $I_{lim}$  whatever the Input pin voltage. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the capability of the heatsink. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the overtemperature threshold  $T_{jsh}$ .

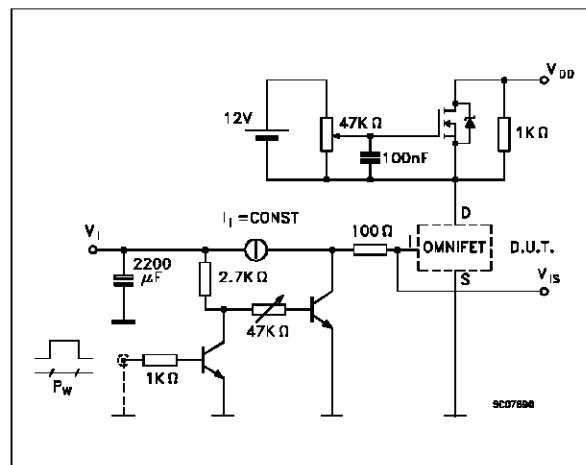
– OVERTEMPERATURE AND SHORT CIRCUIT PROTECTION: these are based on sensing the chip temperature and are not dependent on the input voltage. The location of the sensing element on the chip in the power stage area ensures fast, accurate detection of the junction temperature. Overtemperature cutout occurs in the range 150 to 190°C, a typical value being 170°C. The device is automatically restarted when the chip temperature falls below 135°C.


- STATUS FEEDBACK: In the case of an overtemperature fault condition, a Status Feedback is provided through the Input pin. The internal protection circuit disconnects the input from the gate and connects it instead to ground via an equivalent resistance of 200 Ω. The failure can be detected by monitoring the voltage at the Input pin, which will be close to ground potential.

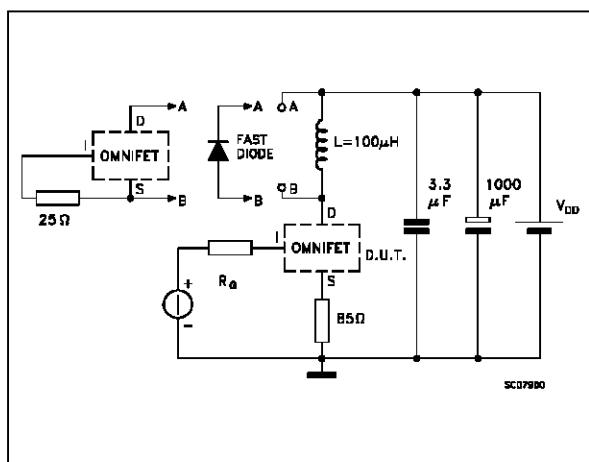
Additional features of this device are ESD protection according to the Human Body model and the ability to be driven from a TTL Logic circuit (with a small increase in  $R_{DS(on)}$ ).


**Fig. 1:** Unclamped Inductive Load Test Circuits

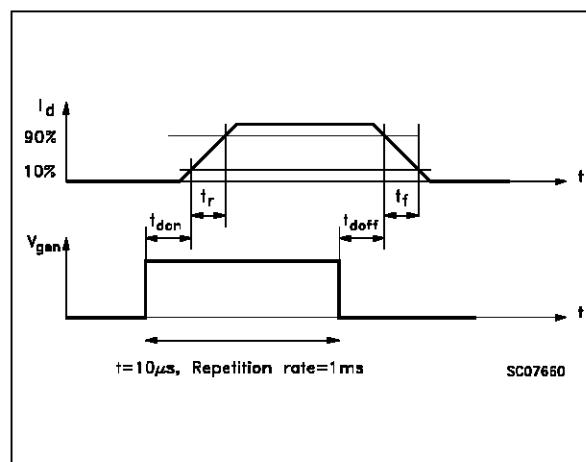



**Fig. 2:** Unclamped Inductive Waveforms




**Fig. 3:** Switching Times Test Circuits For Resistive Load

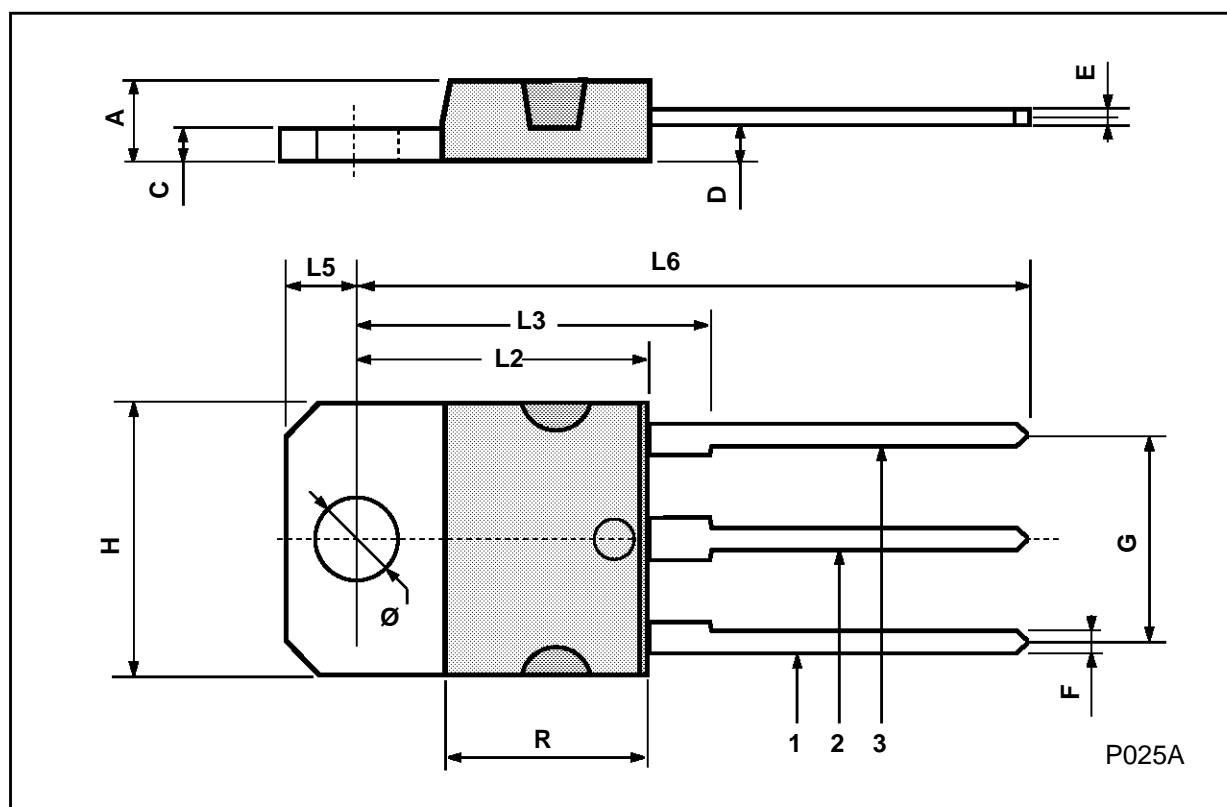



**Fig. 4:** Input Charge Test Circuit



**Fig. 5:** Test Circuit For Inductive Load Switching And Diode Recovery Times




**Fig. 6:** Waveforms



**VNH100N04**

**TO-218 (SOT-93) MECHANICAL DATA**

| DIM. | mm   |      |      | inch  |       |       |
|------|------|------|------|-------|-------|-------|
|      | MIN. | TYP. | MAX. | MIN.  | TYP.  | MAX.  |
| A    | 4.7  |      | 4.9  | 0.185 |       | 0.193 |
| C    | 1.17 |      | 1.37 | 0.046 |       | 0.054 |
| D    |      | 2.5  |      |       | 0.098 |       |
| E    | 0.5  |      | 0.78 | 0.019 |       | 0.030 |
| F    | 1.1  |      | 1.3  | 0.043 |       | 0.051 |
| G    | 10.8 |      | 11.1 | 0.425 |       | 0.437 |
| H    | 14.7 |      | 15.2 | 0.578 |       | 0.598 |
| L2   | —    |      | 16.2 | —     |       | 0.637 |
| L3   |      | 18   |      |       | 0.708 |       |
| L5   | 3.95 |      | 4.15 | 0.155 |       | 0.163 |
| L6   |      | 31   |      |       | 1.220 |       |
| R    | —    |      | 12.2 | —     |       | 0.480 |
| Ø    | 4    |      | 4.1  | 0.157 |       | 0.161 |



Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A