

-AIRCHIL

SEMICONDUCTOR IM

74LVQ14 Low Voltage Hex Inverter with Schmitt Trigger Input

General Description

The LVQ14 contains six inverter gates each with a Schmitt trigger input. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

The LVQ14 has hysteresis between the positive-going and negative-going input thresholds (typically 1.0V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.

Features

- Ideal for low power/low noise 3.3V applications Guaranteed simultaneous switching noise level and -
- dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance Guaranteed incident wave switching into 75Ω

Ordering Code:

 I_n

 \overline{O}_{r}

Order Number	Package Number	Package Description
74LVQ14SC	M14A	14-Lead (0.150" Wide) Molded Small Outline Integrated Circuit, SOIC JEDEC
74LVQ14SJ	M14D	14-Lead Small Outline Package, SOIC EIAJ

Connection Diagram

Truth Table

May 1998

Absolute Maximum Ratings (Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
$V_1 = -0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	-0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±200 mA
Storage Temperature (T _{STG})	–65°C to +150°C
DC Latch-Up Source or	
Sink Current	±100 mA

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	
LVQ	2.0V to 3.6V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	-40°C to +85°C
Minimum Input Edge Rate (ΔV/Δt)	
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 3.0V	125 mV/ns
Note 1: The "Absolute Maximum Ratings" are th	ose values bevond which
the safety of the device cannot be guaranteed. The	e device should not be op-
erated at these limits. The parametric values define	ed in the Electrical Charac-
teristics tables are not guaranteed at the absolu	te maximum ratings. The
"Recommended Operating Conditions" table will de	efine the conditions for ac-
tual device operation.	
Nata 0. Universitä avust ha hald UIOU av LO	A/ The

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{cc} (V)	T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
		Typ Guaranteed Limits		aranteed Limits				
V _{OH}	Minimum High Level Output Voltage	3.0	2.99	2.9	2.9	V	I _{OUT} = -50 μA	
		3.0		2.58	2.48	V	$V_{IN} = V_{IL}$ or V_{IH} (Note 3)	
							$I_{OH} = -12 \text{ mA}$	
V _{OL}	Maximum Low Level Output Voltage	3.0	0.002	0.1	0.1	V	I _{OUT} = 50 μA	
		3.0		0.36	0.44	V	V _{IN} = V _{IL} or V _{IH} (Note 3)	
							I _{OL} = 12 mA	
I _{IN}	Maximum Input Leakage Current	3.6		±0.1	±1.0	μA	$V_{I} = V_{CC}, GND$	
V _{t+}	Maximum Positive Threshold	3.0		2.2	2.2	V	T _A = Worst Case	
V _{t-}	Minimum Negative Threshold	3.0		0.5	0.5	V	T _A = Worst Case	
V _{h(max)}	Maximum Hysteresis	3.0		1.2	1.2	V	T _A = Worst Case	
V _{h(min)}	Minimum Hysteresis	3.0		0.3	0.3	V	T _A = Worst Case	
I _{OLD}	Minimum Dynamic (Note 4)	3.6			36	mA	V _{OLD} = 0.8V Max (Note 5)	
IOHD	Output Current	3.6			-25	mA	V _{OHD} = 2.0V Min (Note 5)	
I _{CC}	Maximum Quiescent Supply Current	3.6		2.0	20.0	μA	V _{IN} = V _{CC} or GND	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.9	1.1		V	(Notes 6, 7)	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.8	-1.1		V	(Notes 6, 7)	
V _{IHD}	Maximum High Level Dynamic Input Voltage	3.3	1.9	2.0		V	(Notes 6, 8)	
V _{ILD}	Maximum Low Level Dynamic Input Voltage	3.3	1.3	2.0		V	(Notes 6, 8)	

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74LVQ.

Note 6: Worst case package.

Note 7: Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V; one output at GND.

Note 8: Max number of Data Inputs (n) switching. (n - 1) inputs switching 0V to 3.3V. Input-under-test switching: 3.3V to threshold (V_{ILD}), 0V to threshold (V_{ILD}), f = 1 MHz.

AC	Electrical	Characteristics
	Liootiioui	0110100100100

Symbol Parameter		V _{cc} (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Units
			Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	2.7	1.5	11.4	19.0	1.5	21.0	ns
		3.3 ±0.3	1.5	9.5	13.5	1.5	15.0	
t _{PHL}	Propagation Delay	2.7	1.5	9.0	16.2	1.5	19.0	ns
		3.3 ±0.3	1.5	7.5	11.5	1.5	13.0	
t _{OSHL,}	Output to Output	2.7		1.0	1.5		1.5	ns
t _{OSLH}	Skew (Note 9)	3.3 ±0.3		1.0	1.5		1.5	
	Data to Output							

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}). Parameter guaranteed by design.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = Open
C _{PD} (Note 10)	Power Dissipation	20	pF	V _{CC} = 3.3V
	Capacitance			

Note 10: C_{PD} is measured at 10 MHz.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.