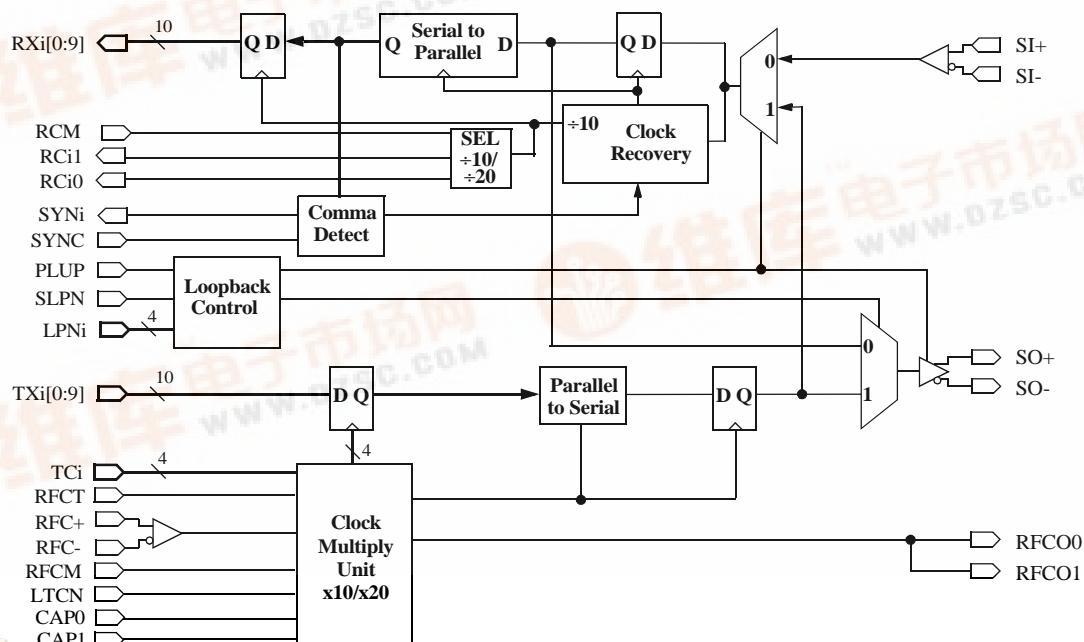


Advance Product Information

VSC7182

Quad Transceiver
for Gigabit Ethernet and Fibre Channel


Features

- Four Complete Transmitter/ Receiver Functions in a Single Integrated Circuit
- Full Fibre Channel (T11) and Gigabit Ethernet (IEEE 802.3z) Compliance
- 1.05Gb/s to 1.36Gb/s Operation per Channel
- Common or Per-Channel Transmit Byte Clocks
- TTL or PECL Reference Clock Input
- Receiver Squelch Circuit
- Common and Per-Channel, Serial and Parallel Loopback Controls
- Common Comma Detect Enable Inputs
- Per-Channel Comma Detect Outputs
- Cable Equalization in Receivers
- Replacement For Agilent's HDMP-1682
- 3.3V Power Supply, 2.67 W Max Dissipation
- 208-Pin, 23mm BGA Packaging

General Description

The VSC7182 is a full-speed quad Fibre Channel and Gigabit Ethernet transceiver IC. Each of the four transmitters has a 10-bit wide bus, running up to 136MHz, which accepts 8B/10B encoded transmit characters and serializes the data onto high-speed differential outputs at speeds up to 1.36Gb/s. The transmit data can be synchronous to the reference clock, a common transmit byte clock or a per-channel transmit byte clock. Each receiver samples serial receive data, recovers the clock and data, deserializes it into 10-bit receive characters, outputs a recovered clock and detects "Comma" characters. The VSC7182 contains on-chip Phase-Lock Loop (PLL) circuitry for synthesis of the baud-rate transmit clock and extraction of the clocks from the received serial streams. The VSC7182 also includes a receiver squelch circuit to control the parallel data bus in the absence of serial input.

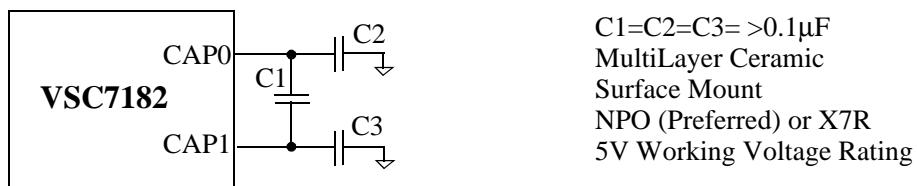
VSC7182 Block Diagram (1 of 4 Channels)

Functional Description

Notation

In this document, each of the four channels are identified as Channel A, B, C or D. When discussing a signal on any specific channel, the signal will have the Channel letter embedded in the name, for example, “TA[0:9]”. When referring to the common behavior of a signal which is used on each of the four channels, a lower case “x” is used in the signal name, i.e. TXi[0:9]. Differential signals, such as RA+ and RA-, may be referred to as a single signal, i.e. RA, by dropping reference to the “+” and “-”. “RFC” refers to either the TTL input RFCT, or the PECL differential inputs RFC+/RFC-, whichever is used.

Clock Synthesizer


The VSC7182 clock synthesizer multiplies the reference frequency provided on the RFC input by 10 or 20 to achieve a baud rate clock between 1.05GHz and 1.36GHz. The RFC input can be either TTL or PECL. If TTL, connect the TTL input clock to RFCT. If PECL, connect the PECL inputs to RFC+ and RFC-. The internal clock presented to the clock synthesizer is a logical XNOR of RFCT and RFC+/. The reference clock will be active HIGH if the unused input is HIGH. The reference clock is active LOW if the unused input is LOW. RFCT has an internal pull-up resistor. Internal biasing resistors set the proper DC level on RFC+/- so AC-coupling may be used.

The TTL outputs, RFC00 and RFC01, provide a clock that is frequency-locked to the RFC input. This clock is derived from the clock synthesizer and is always 1/10th the baud rate, regardless of the state of the RFCM input.

The on-chip PLL uses a single external 0.1μF capacitor, connected between CAP0 and CAP1, to control the loop filter. This capacitor should be a multilayer ceramic dielectric, or better, with at least a 5V working voltage rating and a good temperature coefficient (NPO is preferred but X7R may be acceptable). These capacitors are used to minimize the impact of common-mode noise on the Clock Multiplier Unit (CMU), especially power supply noise. Higher value capacitors provide better robustness in systems. NPO is preferred because if an X7R capacitor is used, the power supply noise sensitivity will vary with temperature.

For best noise immunity, the designer may use a three capacitor circuit with one differential capacitor between CAP0 and CAP1, C1, a capacitor from CAP0 to ground, C2, and a capacitor from CAP1 to ground, C3. Larger values are better but 0.1μF is adequate. However, if the designer cannot use a three capacitor circuit, a single differential capacitor, C1, is adequate. These components should be isolated from noisy traces.

Figure 1: Loop Filter Capacitors (Best Circuit)

Advance Product Information

VSC7182

Quad Transceiver
for Gigabit Ethernet and Fibre Channel

Serializer

The VSC7182 accepts TTL input data as a parallel 10-bit character on the TXi[0:9] bus which is latched into the input register on the rising edge of either RFC or TCi. Three clocking modes are available and automatically detected by the VSC7182. If TCC is static and RFCM is HIGH, then all four TXi[0:9] busses are latched on the rising edges of RFC. If TCC is static and RFCM is LOW, then RFC is multiplied by 20 and the input busses are latched on the rising edges of RFC and at the midpoint between rising edges. If TCC is toggling but TCB is static, then all four TXi[0:9] busses are latched on the rising edges of TCC. If TCB and TCC are both toggling then the rising edge of each TCi latches the corresponding TXi[0:9] bus.

The active TCC or TCi inputs must be frequency-locked to RFC. There is no specified phase relationship. Prior to normal data transmission, LTCN must be asserted LOW so the VSC7182 can lock to TCi, which may result in corrupted data being transmitted. Once LTCN has been raised HIGH, the transmitters remain locked to RFC and can tolerate +/-2 bit times of drift in TCi relative to RFC.

The 10-bit parallel transmission character will be serialized and transmitted on the TXi PECL differential outputs at the baud rate with bit TXi0 (bit A) transmitted first. User data should be encoded using 8B/10B or an equivalent code. The mapping to 10B encoded bit nomenclature and transmission order is illustrated below, along with the recognized comma pattern.

Table 1: Transmission Order and Mapping of a 10B Character

<i>Data Bit</i>	<i>TXi9</i>	<i>TXi8</i>	<i>TXi7</i>	<i>TXi6</i>	<i>TXi5</i>	<i>TXi4</i>	<i>TXi3</i>	<i>TXi2</i>	<i>TXi1</i>	<i>TXi0</i>
10B Bit Position	j	h	g	f	i	e	d	c	b	a
Comma Character	x	x	x	1	1	1	1	1	0	0

Clock Recovery

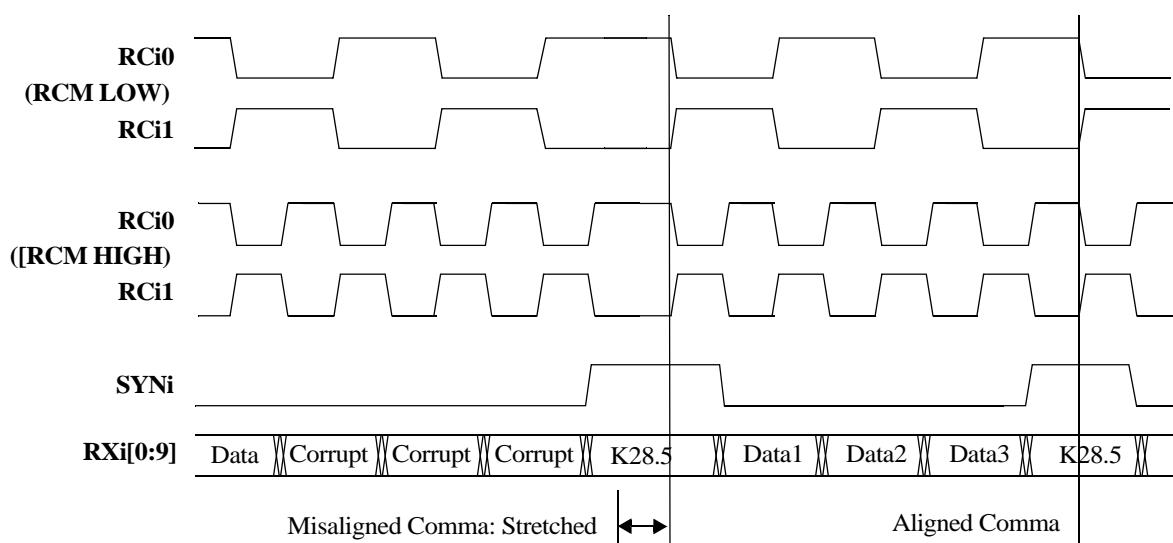
The VSC7182 accepts differential high-speed serial input from the selected source (either the PECL SI+/SI- pins or the internal TXi+/- data), extracts the clock and retimes the data. Equalizers are included in the receiver to open the data eye and compensate for InterSymbol Interference (ISI) which may be present in the incoming data. The serial bit stream should be encoded so as to provide DC balance and limited run length by an 8B/10B encoding scheme. The digital Clock Recovery Unit (CRU) is completely monolithic and requires no external components. For proper operation, the baud rate of the data stream to be recovered should be within ± 200 ppm of ten times the RFC frequency. For example, Gigabit Ethernet systems would use 125MHz oscillators with a ± 100 ppm accuracy resulting in ± 200 ppm between VSC7182 pairs.

Deserializer

The recovered serial bit stream is converted into a 10-bit parallel output character. The VSC7182 provides complementary TTL recovered clocks, RCi0 and RCi1, which are at 1/20th of the serial baud rate (if RCM=LOW) or 1/10th (if RCM=HIGH). The clocks are generated by dividing down the high-speed recovered clock which is phase-locked to the serial data. The serial data is retimed, deserialized and output on RXi[0:9].

If serial input data is not present, or does not meet the required baud rate, the VSC7182 will continue to produce a recovered clock so that downstream logic may continue to function. The RCi0/RCi1 output frequency under these circumstances will differ from its expected frequency by no more than $\pm 1\%$. A receiver squelch circuit forces the parallel data output bus to all ones if the serial receiver input level is less than 100mV differential peak-to-peak.

Word Alignment


The VSC7182 provides 7-bit comma character recognition and data word alignment. Word synchronization is enabled on all channels by asserting SYNC HIGH. When synchronization is enabled, the receiver examines the recovered serial data for the presence of the “Comma” pattern. This pattern is “0011111XXX”, where the leading zero corresponds to the first bit received. The comma sequence is not contained in any normal 8B/10B coded data character or pair of adjacent characters. It occurs only within special characters, known as K28.1, K28.5 and K28.7, which are defined for synchronization purposes. Improper comma alignment is defined as any of the following conditions:

- 1) The comma is not aligned within the 10-bit transmission character such that RXi(0..6) = “0011111.”
- 2) The comma straddles the boundary between two 10-bit transmission characters.
- 3) The comma is properly aligned but occurs in the received character presented during the rising edge of RCi0 rather than RCi1.

When SYNC is HIGH and an improperly aligned comma is encountered, the recovered clock is stretched, never slivered, so that the comma character and recovered clocks are aligned properly to RXi[0:9]. This results in proper character and word alignment. When the parallel data alignment changes in response to an improperly aligned comma pattern, data which would have been presented on the parallel output port prior to the comma character, and possibly the comma character itself, may be lost. Possible loss of the comma character is data dependent, according to the relative change in alignment. Data subsequent to the comma character will always be output correctly and properly aligned. When SYNC is LOW, the current alignment of the serial data is maintained indefinitely, regardless of data pattern.

On encountering a comma character, SYNi is driven HIGH. The SYNi pulse is presented simultaneously with the comma character and has a duration equal to the data. The SYNi signal is timed such that it can be captured by the adjoining protocol logic on the rising edge of RCi1. Functional waveforms for synchronization are given in Figure 2. The first K28.5 shows the case where the comma is detected, but it is misaligned so a change in the output data alignment is required. Note that up to three characters prior to the comma character may be corrupted by the realignment process. The second K28.5 shows the case when a comma is detected and no phase adjustment is necessary. It illustrates the position of the SYNi pulse in relation to the comma character on RXi[0:9].

Figure 2: Misaligned and Aligned K28.5 Characters

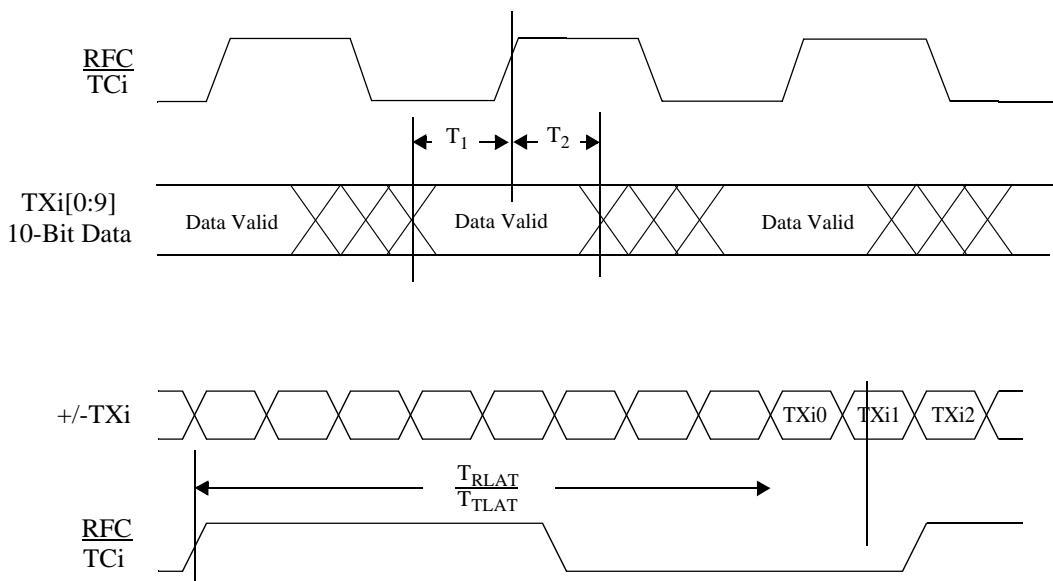
Advance Product Information **VSC7182**

Quad Transceiver
for Gigabit Ethernet and Fibre Channel

Loopback Operation

Loopback operation is controlled by the PLUP (Parallel Loopback), SLPN (Serial Loopback) and LPNi inputs as shown in Table 2. LPNi enables PLUP/SLPN on a per-channel basis when LOW. If LPNi is HIGH, PLUP/SLPN have no impact on Channel x. When SLPN and PLUP are both HIGH the transmitter output is held HIGH. When RXx is looped back to TXx, the data goes through a clock recovery unit so much of the input jitter is removed. However, the TXx outputs may not meet jitter specifications listed in the “Transmitter AC Specifications” due to low frequency jitter transfer from RXx to TXx.

Table 2: Loopback Selection


<i>LPNi</i>	<i>PLUP</i>	<i>SLPN</i>	<i>Transmitter Source</i>	<i>Receiver Source</i>
LOW	LOW	LOW	Receiver	Receiver
LOW	LOW	HIGH	Transmitter	Receiver
LOW	HIGH	LOW	Transmitter	Transmitter
LOW	HIGH	HIGH	HIGH	Transmitter
HIGH	X	X	Transmitter	Receiver

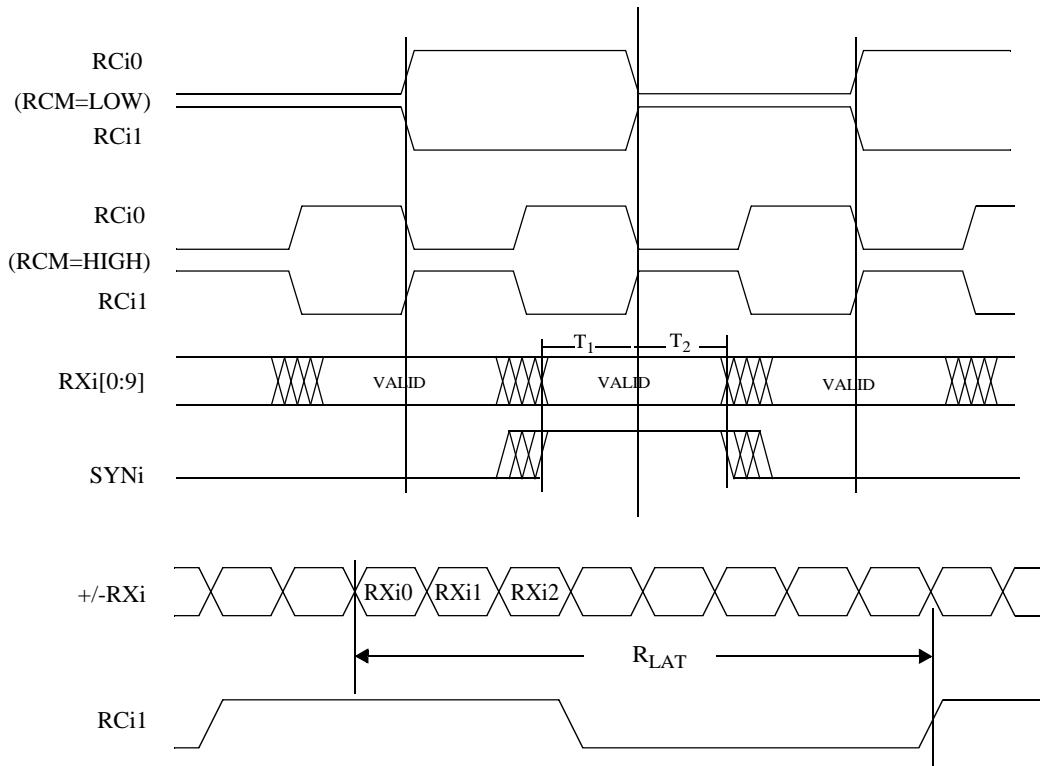
JTAG Access Port

A JTAG Access Port is provided to assist in board-level testing. Through this port most pins can be accessed or controlled and all TTL outputs can be tri-stated. A full description of the JTAG functions on this device is available in “VSC7182 JTAG Access Port Functionality.”

AC Characteristics

Figure 3: Transmit Timing Waveforms

Table 3: Transmitter AC Characteristics


Parameter	Description	Min	Typ	Max	Units	Conditions
T ₁	TXi[0:9] setup time to the rising edge of TCi or RFC	1.5	—	—	ns	Measured between the valid data level of TXi[0:9] to the 1.4V point of TCi or RFC
T ₂	TXi[0:9] hold time after the rising edge of TCi or RFC	1.0	—	—	ns	
T _{SDR-T_{SDF}}	TXi+/TXi- rise and fall time	—	—	300	ps	20% to 80%, 75Ω load to V _{DD} /2, tested on a sample basis
T _{RLAT}	Latency from rising edge of RFC to TXi0 appearing on TX+/TX-	7bc + 0.66ns	—	7bc + 1.46ns	—	bc = bit clocks ns = nanoseconds
T _{TLAT}	Latency from rising edge of TCi to TXi0 appearing on TX+/TX-	5bc + 0.66ns	—	11bc + 1.46ns	ns	bc = bit clocks ns = nanoseconds
Transmitter Output Jitter						
RJ	Random jitter (rms)	—	5	8	ps	Measured at SO+/-, 1 sigma deviation of 50% crossing point
DJ	Serial data output deterministic jitter (pk-pk)	—	35	80	ps	IEEE 802.3Z Clause 38.68, tested on a sample basis

Advance Product Information

VSC7182

Quad Transceiver
for Gigabit Ethernet and Fibre Channel

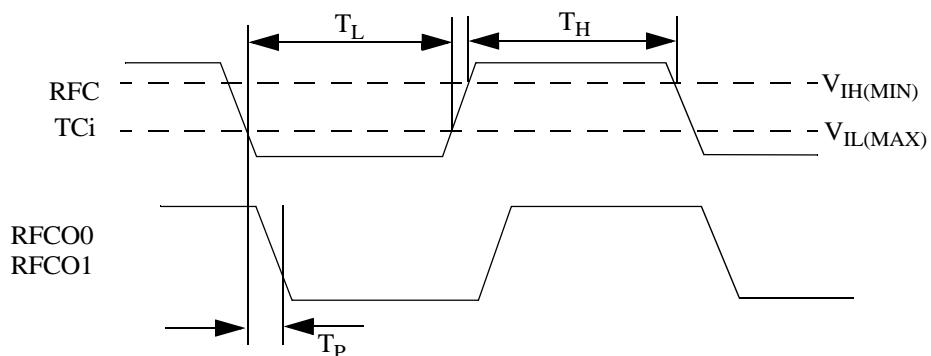

Figure 4: Receive Timing Waveforms

Table 4: Receive Timing Waveforms

Parameters	Description	Min	Typ	Max	Units	Conditions
T ₁	TTL outputs valid prior to RCi1/RCi0 rise	4.0 3.0 TBD		—	ns	At 1.0625Gb/s At 1.25Gb/s At 1.36Gb/s
T ₂	TTL outputs valid after RCi1 or RCi0 rise	3.0 2.0 TBD		—	ns	At 1.0625Gb/s At 1.25Gb/s At 1.36Gb/s
T ₃	Delay between rising edge of RCi1 to rising edge of RCi0	10 x T _{RX} -500		10 x T _{RX} +500	ps	T _{RX} is the bit period of the incoming data on RXi.
T ₄	Period of RCi1 and RCi0	1.98 x T _{RFC}		2.02 x T _{RFC}	ps	Whether or not locked to serial data.
T _R , T _F	TTL Output rise and fall time	—		2.4	ns	Between V _{IL(MAX)} and V _{IH(MIN)} , into 10 pF load.
R _{LAT}	Latency from serial bit RXi0 to rising edge RCi1	12bc + 2.77ns		13bc + 7.28ns		bc = bit clock ns = nanosecond
T _{LOCK}	Data acquisition lock time ⁽¹⁾	—		1400	bit times	8B/10B IDLE pattern. Tested on a sample basis.

NOTE: (1) Probability of recovery for data acquisition is 95% per Section 5.3 of FC-PH rev. 4.3.

Figure 5: RFC and TCi Waveforms

Table 5: Reference Clock Requirements

Parameters	Description	Min	Typ	Max	Units	Conditions
FR	Frequency range	105		136	MHz	Range over which both transmit and receive reference clocks on any link may be centered.
FO	Frequency offset	-200		200	ppm	Maximum frequency offset between transmit and receive reference clocks on one link.
T_P	Delay from RFC to RFCO0/1	1.97		3.58	ns	
DC	RFC0/1 duty cycle	40		60	%	
T_R, T_F	RCF0/1 rise and fall time	0.25		1.5	ns	Between $V_{IL(MAX)}$ and $V_{IH(MIN)}$
DC	RFC/TCi duty cycle	35		65	%	Measured at 1.4V
T_{RCR}, T_{RCF}	RFC/TCi rise and fall time	—		1.5	ns	Between $V_{IL(MAX)}$ and $V_{IH(MIN)}$

Advance Product Information

VSC7182

Quad Transceiver
for Gigabit Ethernet and Fibre Channel

DC Characteristics

Parameters	Description	Min.	Typ	Max.	Units	Conditions
TTL Outputs						
V _{OH}	TTL output HIGH voltage	2.4	—	—	V	I _{OH} = -1.0mA
V _{OL}	TTL output LOW voltage	—	—	0.5	V	I _{OL} = +1.0mA
I _{OZ}	TTL output Leakage current	—	—	50	μA	When set to high-impedance state through JTAG.
TTL Inputs						
V _{IH}	TTL input HIGH voltage	2.0	—	5.5	V	5V tolerant inputs
V _{IL}	TTL input LOW voltage	0	—	0.8	V	
I _{IH}	TTL input HIGH current	—	50	500	μA	V _{IN} = 2.4V
I _{IL}	TTL input LOW current	—	—	-500	μA	V _{IN} = 0.5V
PECL Input (RFC+/RFC-)						
V _{IH}	PECL input HIGH voltage	V _{DD} - 1.1	—	V _{DD} - 0.7	V	
V _{IL}	PECL input LOW voltage	V _{DD} - 2.0	—	V _{DD} - 1.5	V	
I _{IH}	PECL input HIGH current	—	—	200	μA	V _{IN} = V _{IH(MAX)}
I _{IL}	PECL input LOW current	- 50	—	—	μA	V _{IN} = V _{IL(MIN)}
ΔV _{IN}	PECL input differential peak-to-peak voltage swing	400	—	—	mV	V _{IH(MIN)} - V _{IL(MAX)}
High Speed Outputs						
ΔV _{OUT75} ⁽¹⁾	TX output differential peak-to-peak voltage swing	1200	—	2200	mVp-p	75Ω to V _{DD} - 2.0 V (TX+) - (TX-)
ΔV _{OUT50} ⁽¹⁾	TX output differential peak-to-peak voltage swing	1000	—	2200	mVp-p	50Ω to V _{DD} - 2.0 V (TX+) - (TX-)
High-Speed Inputs						
ΔV _{IN} ⁽¹⁾	PECL differential peak-to-peak input voltage swing	200	—	2600	mV	SI+ - SI-
Miscellaneous						
V _{DD}	Power supply voltage	3.14	—	3.47	V	3.3V ± 5%
P _D	Power dissipation	—	2.2	2.67	W	Maximum at 3.47V, outputs open, 25°C, 136MHz Clk, PRBS 2 ⁷ -1 parallel input pattern
I _{DD}	Supply current (all supplies)	—	—	770	mA	
I _{DDA}	Supply current on V _{DDA}	—	100	—	mA	

NOTE: (1) Refer to Application Note, AN-37, for differential measurement techniques.

Quad Transceiver
for Gigabit Ethernet and Fibre Channel

Advance Product Information
VSC7182

Absolute Maximum Ratings ⁽¹⁾

Power Supply Voltage, (V _{DD}).....	-0.5V to +4V
DC Input Voltage (PECL inputs).....	-0.5V to V _{DD} +0.5V
DC Input Voltage (TTL inputs).....	-0.5V to 5.5V
DC Output Voltage (TTL outputs).....	-0.5V to V _{DD} + 0.5V
Output Current (TTL outputs).....	±50mA
Output Current (PECL outputs).....	+50mA
Case Temperature Under Bias.....	-55°C to +125°C
Storage Temperature	-65°C to +150°C
Maximum Input ESD (human body model).....	2000V

NOTE: (1) CAUTION: Stresses listed under "Absolute Maximum Ratings" may be applied to devices one at a time without causing permanent damage. Functionality at or above the values listed is not implied. Exposure to these values for extended periods may affect device reliability.

Recommended Operating Conditions

Power Supply Voltage, (V _{DD}).....	+3.3V±5%
Operating Temperature Range	0°C Ambient to +100°C Case Temperature

Advance Product Information VSC7182

Quad Transceiver
for Gigabit Ethernet and Fibre Channel

Table 6: Pin Table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	VSS	VDD	VSS	SYNCB	RCB0	R30	RB4	RB6	VDD	VSS	RC1	VDDT	RC8	VSS	VDDT	VSS	
B	RA7	RA8	RA9	VSS	RCB1	RB1	VDDT	RB7	VSS	SYNCC	RC0	RC2	RC5	RC9	SYNCD	RC0	
C	RA4	RA5	RA6	VDDT	RB2	VSS	RB8	SLPN	RCC0	VDDT	RC3	RC6	VDD	VDDT	VSS	RD0	
D	RA0	RA1	VDDT	VSS	LPND	RB3	RB5	RB9	TMS	RCC1	VSS	RC4	RC7	RD1	RD2	RD3	
E	RCA0	RCA1	RA2	RA3											VDDT	VSS	
F	TCB	SYNCA	VDDT	VSS											RD7	RD8	
G	TB8	TB9	VSS	VDD											RD9	VSS	
H	TB4	TB5	TB6	TB7											TC2	TC1	
J	TB0	TB1	TB2	TB3											TC0	VDDT	
K	TC4	TDO	VSS	LPNC											TC6	TC5	
L	TA8	TA9	VSS	VDD											TC9	TC8	
M	TA4	TA5	TA6	TA7											TC7	TC4	
N	TA0	TA1	TA2	TA3											VSS	VDD	
P	LTCN	RFCM	RFC-	LPNB	TA-	VSS	TB-	VSS	CA0	VSS	TC+	VSS	TD+	RFC01	TD1	RFC00	
R	RFCT	RFC+	LPNA	VDD	TA+	VSS	TB+	VSSA	CA1	VSS	TC-	VSS	TD-	VDD	TRSTN	VDDTR	
T	RCM	VSS	VDD	VDDPA	VSS	VDDPB	VSS	VDDA	VSS	VDDC	VSS	VDDP	VDD	VSS	VSSTR	TCK	
U	VSS	VSS	RA-	RA+	VDD	RB-	RB+	VSS	VSS	RC-	RC+	RD-	RD+	VSS	VSS	VSS	
NOT POPULATED																	

**Quad Transceiver
for Gigabit Ethernet and Fibre Channel**

**Advance Product Information
VSC7182**

Table 7: Pin Descriptions

Pin	Name	Description
N1, N2, N3 N4, M1, M2, M3, M4, L1 L2	TA0, TA1, TA2 TA3, TA4, TA5 TA6, TA7, TA8 TA9	INPUT - TTL: 10-Bit Transmit Bus for Channel A. Parallel data on this bus is latched on the rising edge of RFC, TCC or TCA. TA0 is transmitted first.
J1, J2, J3 J4, H1, H2 H3, H4, G1 G2	TB0, TB1, TB2 TB3, TB4, TB5 TB6, TB7, TB8 TB9	INPUT - TTL: 10-Bit Transmit Bus for Channel B. Parallel data on this bus is latched on the rising edge of RFC, TCC or TCB. TB0 is transmitted first.
G16, G15, G14 H17, H16, H15 H14, J17, J16 J15	TC0, TC1, TC2 TC3, TC4, TC5 TC6, TC7, TC8 TC9	INPUT - TTL: 10-Bit Transmit Bus for Channel C. Parallel data on this bus is latched on the rising edge of RFC or TCC. TC0 is transmitted first.
L17, L16, L15 L14, M17, M16 M15, M14, N17 N16	TD0, TD1, TD2 TD3, TD4, TD5 TD6, TD7, TD8 TD9	INPUT - TTL: 10-Bit Transmit Bus for Channel D. Parallel data on this bus is latched on the rising edge of RFC, TCC or TCD. TD0 is transmitted first.
R2 P3	RFC+ RFC-	INPUT - Differential PECL or TTL: This rising edge of RFC+/- provides the reference clock, at 1/10 th or 1/20 th of the baud rate (depending on RFCM) to the Clock Multiplying PLL. If RFC+/- is used, either leave RFCT open or set RFCT HIGH. Internally biased to V _{DD} /2. If all TCi inputs are HIGH, the rising edge of RFC will latch TXi[0:9] on all four channels.
R1	RFCT	INPUT - TTL: TTL Reference Clock. This rising edge of RFCT provides the reference clock, at 1/10 th or 1/20 th of the baud rate (depending on RFCM) to the Clock Multiplying PLL. If RFCT is used, set RFC+ HIGH and leave RFC- open. If all TCi inputs are HIGH, the rising edge of RFCT will latch TXi[0:9] on all four channels
P2	RFCM	INPUT - TTL: Reference Clock Mode Select. When LOW, RFC is at 1/20 th of the transmit baud rate (i.e., 62.5MHz for 1.25Gb/s). When HIGH, RFC is at 1/10 th the baud rate (i.e., 125MHz for 1.25Gb/s).
P16 P14	RFCO0 RFCO1	OUTPUT - TTL: These are identical copies of the transmit baud rate clock divided by 10.
K1, F1 K17, P17	TCA, TCB TCC, TCD	INPUT - TTL: Per Channel Transmit Byte Clock for Channel x. All four channels' parallel TXi[0:9] inputs may be timed to RFC, TCC, or independently to TCi. Refer to the Serializer description.
P1	LTCN	INPUT - TTL: Latch Transmit Byte Clocks. When LOW, internal PLLs align clocks with each of the transmit byte clocks, if present. Data may be corrupted when LOW. When HIGH, alignment will remain static regardless of actual TCi location.

Advance Product Information

VSC7182

Quad Transceiver
for Gigabit Ethernet and Fibre Channel

Pin	Name	Description
R5, P5 R7, P7 P11, R11 P13, R13	TA+, TA- TB+, TB- TC+, TC- TD+, TD-	OUTPUT - Differential PECL (AC-coupling recommended): These pins output the serialized transmit data for Channel x when PLUP is LOW. When PLUP is HIGH, TXi+ is HIGH and TXi- is LOW.
D1, D2, E3 E4, C1, C2 C3, B1, B2 B3	RA0, RA1, RA2 RA3, RA4, RA5 RA6, RA7, RA8 RA9	OUTPUT - TTL: 10-Bit Receive Bus for Channel A. Parallel data on this bus is synchronous to RCA0 and RCA1. RA0 is the first bit received.
A6, B6, C6 D6, A7, D7 A8, B8, C8 D8	RB0, RB1, RB2 RB3, RB4, RB5 RB6, RB7, RB8 RB9	OUTPUT - TTL: 10-Bit Receive Bus for Channel B. Parallel data on this bus is synchronous to RCB0 and RCB1. RB0 is the first bit received.
B11, A12, B12 C12, D12, B13 C13, D13, A14 B14	RC0, RC1, RC2 RC3, RC4, RC5 RC6, RC7, RC8 RC9	OUTPUT - TTL: 10-Bit Receive Bus for Channel C. Parallel data on this bus is synchronous to RCC0 and RCC1. RC0 is the first bit received.
C17, D14, D15 D16, D17, E16 E17, F14, F15 F16	RD0, RD1, RD2 RD3, RD4, RD5 RD6, RD7, RD8 RD9	OUTPUT - TTL: 10-Bit Receive Bus for Channel D. Parallel data on this bus is synchronous to RCD0 and RCD1. RD0 is the first bit received.
T1	RCM	INPUT - TTL: Recovered Clock MODE Control. When LOW, RCi0/RCi1 is 1/20 th of the incoming baud rate. When HIGH, RCi0/RCi1 is 1/10 th the incoming baud rate.
E1 E2	RCA0 RCA1	OUTPUT - Complementary TTL: Recovered Complementary Clocks for Channel A at 1/10 th the Incoming Baud Rate (RCM=HIGH) or 1/20 th (RCM=LOW). Synchronous to the RA(0:9) and SYNCA bus.
A5 B5	RCB0 RCB1	OUTPUT - Complementary TTL: Recovered Complementary Clocks for Channel B at 1/10 th the Incoming Baud Rate (RCM=HIGH) or 1/20 th (RCM=LOW). Synchronous to the RB(0:9) and SYNCB bus.
C10 D10	RCC0 RCC1	OUTPUT - Complementary TTL: Recovered Complementary Clocks for Channel C at 1/10 th the Incoming Baud Rate (RCM=HIGH) or 1/20 th (RCM=LOW). Synchronous to the RC(0:9) and SYNCC bus.
B16 B17	RCD0 RCD1	OUTPUT - Complementary TTL: Recovered Complementary Clocks for Channel D at 1/10 th the Incoming Baud Rate (RCM=HIGH) or 1/20 th (RCM=LOW). Synchronous to the RD(0:9) and SYNCD bus.
U4, U3 U7, U6 U11, U10 U14, U13	RA+, RA- RB+, RB- RC+, RC- RD+, RD-	INPUT - Differential PECL (AC-coupling recommended): Serial Receive Data Inputs for Channel x. These are selected when PLUP is LOW (internally biased to V _{DD} /2).

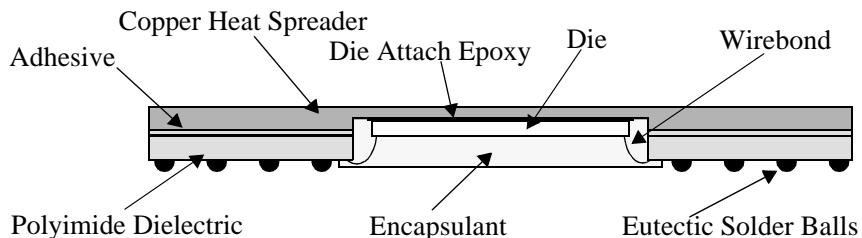
**Quad Transceiver
for Gigabit Ethernet and Fibre Channel**

**Advance Product Information
VSC7182**

Pin	Name	Description
N14	PLUP	INPUT - TTL: Parallel Loopback Enable Input. RXi is input to the CRU for Channel x (normal operation) when PLUP is LOW. When HIGH, internal loopback paths from TXi to RXi are enabled. Refer to Table 2.
C9	SLPN	INPUT - TTL: Serial Loopback Enable Input. Normal operation when HIGH. When LOW, SI+/- is looped back to TXi+/- internally for diagnostic purposes. Refer to Table 2 and related description.
R3 P4 K4 D5	LPNA LPNB LPNC LPND	INPUT - TTL: Loopback Enable Pins. When LPNi is LOW, PLUP/SLPN impact Channel x. When HIGH, PLUP/SLPN have no effect on Channel x.
R17	SYNC	INPUT - TTL: Enables SYNi and Word Alignment when HIGH. When LOW, keeps current word alignment and disables SYNi (always LOW).
F2 A4 B10 B15	SYNCA SYNCB SYNCC SYNCD	OUTPUT - TTL: Comma Detect for Channel x. This output goes HIGH for half of an RCi1 period to indicate that RXi[0:9] contains a “comma” character ('0011111XXX'). SYNi will go HIGH only during a cycle when RCi0 is rising. SYNi is enabled when SYNC is HIGH.
P9 R9	CAP0 CAP1	ANALOG: Loop Filter capacitor for the Clock Multiply Unit. Typically 0.1µF connected between CAP0 and CAP1. Amplitude is less than 3.3V.
T17	TCK	INPUT - TTL: JTAG Test Clock
D9	TMS	INPUT - TTL: JTAG Test Mode Select
R15	TRSTN	INPUT - TTL: JTAG Test Reset, Active LOW
P15	TDI	INPUT - TTL: JTAG Test Data Input
K2	TDO	OUTPUT - TTL: JTAG Test Data Output
T9	VDDA	Analog Power Supply
R8	VSSA	Analog Ground. Tie to common ground plane with VSS.
A2,A10,C14 G4,J14,K16 L4,N15,R4 R14,T3 T4,T14,U5	VDD	Digital Logic Power Supply
C4, D3,F3 A9, B7, C5 A13, A16, C11 C15, E14, G17	VDDT	TTL Output Power Supply
T5 T7 T11 T13	VDDPA VDDPB VDDPC VDDPD	PECL I/O Power Supply for Channel x.

Advance Product Information
VSC7182

*Quad Transceiver
for Gigabit Ethernet and Fibre Channel*


Pin	Name	Description
R16	VDDTR	TTL Output Power Supply for RFC00 and RFC01.
T16	VSSTR	TTL Ground for RFC00 and RFC01.
A1,A3,A11,A15 A17,B4,C7 C16,D4,D11 E15,F4	VSST	Ground for TTL Outputs
B9,F17,G3,K3, K14,K15,L3,P6, P8,P10,P12 R6,R10,R12,T2 T6,T8,T10,T12 T15,U1,U2,U8, U9,U12,U15 U16, U17	VSS	Ground

Package Thermal Characteristics

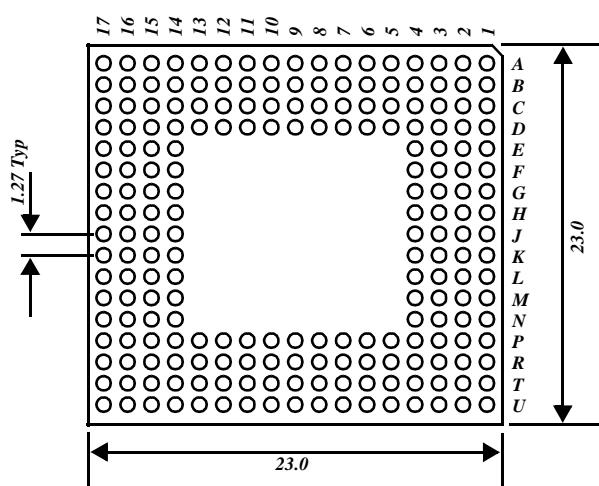
The VSC7182 is packaged in a 23mm BGA package with 1.27mm eutectic ball spacing. The construction of the package is shown in Figure 6.

Figure 6: Package Cross Section

The VSC7182 is designed to operate with a case temperature up to 100°C. In order to comply with this target, the user must guarantee that the case temperature specification of 100°C is not violated. With the thermal resistances shown in Table 8, the VSC7182 can operate in still air ambient temperatures of 40°C [40°C = 100°C - 2.5W * 24°C/W]. If the ambient air temperature exceeds these limits, some form of cooling through a heatsink or an increase in airflow must be provided.

Table 8: Thermal Resistance

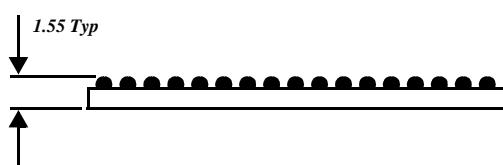
<i>Symbol</i>	<i>Description</i>	<i>Value</i>	<i>Units</i>
θ_{jc}	Thermal resistance from junction-to-case	4.3	°C/W
θ_{ca}	Thermal resistance from case-to-ambient in still air including conduction through the leads.	24	°C/W
θ_{ca-100}	Thermal resistance from case-to-ambient with 100 LFM airflow	21	°C/W
θ_{ca-200}	Thermal resistance from case-to-ambient with 200 LFM airflow	18.5	°C/W
θ_{ca-400}	Thermal resistance from case-to-ambient with 400 LFM airflow	17	°C/W
θ_{ca-600}	Thermal resistance from case-to-ambient with 600 LFM airflow	15	°C/W


Moisture Sensitivity Level

This device is rated at with a Moisture Sensitivity Level 3 rating. Refer to Application Note AN-20 for appropriate handling procedures.

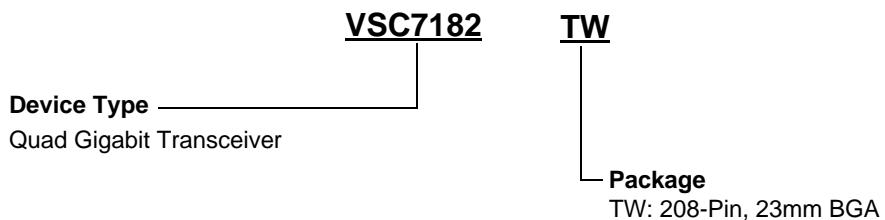
Advance Product Information
VSC7182

Quad Transceiver
for Gigabit Ethernet and Fibre Channel


Package Information

BOTTOM VIEW

TOP VIEW



*Quad Transceiver
for Gigabit Ethernet and Fibre Channel*

Advance Product Information
VSC7182

Ordering Information

The order number for this product is formed by a combination of the device type and package type.

Notice

This document contains information about a new product during its fabrication or early sampling phase of development. The information in this document is based on design targets, simulation results or early prototype test results. Characteristic data and other specifications are subject to change without notice. Therefore the reader is cautioned to confirm that this data sheet is current prior to design or order placement.

Warning

Vitesse Semiconductor Corporation's products are not intended for use in life support appliances, devices or systems. Use of a Vitesse product in such applications without written consent is prohibited.