－State－of－the－Art Advanced BiCMOS Technology（ABT）Widebus ${ }^{\text {TM }}$ Design for 2．5－V and 3．3－V Operation and Low Static－Power Dissipation
－Support Mixed－Mode Signal Operation（5－V Input and Output Voltages With 2．3－V to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$ ）
－Typical $\mathrm{V}_{\text {OLP }}$（Output Ground Bounce） $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
－High Drive
－A Port $=-12 / 12 \mathrm{~mA}$ at $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$
$-\quad$ B port $=-32 / 64 \mathrm{~mA}$ at $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$
－$I_{\text {off }}$ and Power－Up 3－State Support Hot Insertion
－Use Bus Hold on Data Inputs in Place of External Pullup／Pulldown Resistors to Prevent the Bus From Floating
－A－Port Outputs Have Equivalent $30-\Omega$ Series Resistors，So No External Resistors Are Required
－Flow－Through Architecture Facilitates Printed Circuit Board Layout
－Distributed $V_{C C}$ and GND Pins Minimize High－Speed Switching Noise
－Latch－Up Performance Exceeds 100 mA Per JESD 78，Class II

description

SN54ALVTH162245 ．．．WD PACKAGE SN74ALVTH162245．．．DGG，DGV，OR DL PACKAGE （TOP VIEW）

1DIR［1	U_{48}	$1 \overline{O E}$
1B1 2	47	1A1
1B2 3	46	1A2
GND［4	45	GND
183［5	44	1A3
1B4［6	43	1 A 4
$\mathrm{V}_{\mathrm{CC}}[7$	42	v_{CC}
1B5 8	41	1A5
186［9	40	1A6
GND 10	039	GND
$1 \mathrm{B7}$［11	138	1A7
188 12	237	1 A 8
2 B 1 13	36	2A1
$2 \mathrm{B2} 14$	435	2A2
GND 15	534	GND
$2 \mathrm{B3}$［16	633	2A3
2B4 17	$7 \quad 32$	2A4
$\mathrm{V}_{\text {CC }}{ }^{18}$	831	V_{CC}
2B5 19	930	2A5
2B6 20	029	2A6
GND 21	128	1 GND
2B7 22	27	2A7
2B8［23	36	2A8
2DIR［24	425	$2 \overline{\mathrm{O}}$

The＇ALVTH162245 devices are 16－bit（dual－octal）noninverting 3－state transceivers designed for 2．5－V or 3．3－V $V_{\text {CC }}$ operation，but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment．
These devices can be used as two 8 －bit transceivers or one 16－bit transceiver．They allow data transmission from the A bus to the B bus or from the B bus to the A bus，depending on the logic level at the direction－control （DIR）input．The output－enable（ $\overline{\mathrm{OE}}$ ）input can be used to disable the device so that the buses are effectively isolated．

The A－port outputs，which are designed to source or sink up to 12 mA ，include equivalent $30-\Omega$ series resistors to reduce overshoot and undershoot．

These devices are fully specified for hot－insertion applications using $\mathrm{I}_{\text {off }}$ and power－up 3－state．The $\mathrm{I}_{\text {off }}$ circuitry disables the outputs，preventing damaging current backflow through the device when it is powered down．The power－up 3－state circuitry places the outputs in the high－impedance state during power up and power down， which prevents driver conflict．

Active bus－hold circuitry is provided to hold unused or floating data inputs at a valid logic level．Use of pullup or pulldown resistors with the bus－hold circuitry is not recommended．

description (continued)

When V_{CC} is between 0 and 1.2 V , the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V , $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN74ALVTH162245... GQL PACKAGE
(TOP VIEW)

terminal assignments

	1	2	3	4	5	6
A	1DIR	NC	NC	NC	NC	$1 \overline{\mathrm{OE}}$
B	1B2	1B1	GND	GND	1A1	1A2
C	1B4	1B3	V_{CC}	V_{CC}	1A3	1A4
D	1B6	1B5	GND	GND	1A5	1A6
E	188	1B7			1A7	1A8
F	2B1	2 B 2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
H	2B5	2B6	V_{CC}	$V_{\text {CC }}$	2A6	2A5
J	2B7	$2 \mathrm{B8}$	GND	GND	2 A 8	2A7
K	2DIR	NC	NC	NC	NC	$2 \overline{\mathrm{OE}}$
NC - No internal connection						

ORDERING INFORMATION

T_{A}	PACKAGEt		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP - DL	Tape and reel	SN74ALVTH162245LR	ALVTH162245
	TSSOP - DGG	Tape and reel	SN74ALVTH162245GR	ALVTH162245
	TVSOP - DGV	Tape and reel	SN74ALVTH162245VR	VT2245
	VFBGA - GQL	Tape and reel	SN74ALVTH162245QR	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CFP - WD	Tube	SNJ54ALVTH162245WD	SNJ54ALVTH162245WD

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE
(each 8-bit section)

INPUTS		OPERATION
$\overline{\mathrm{OE}}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

Pin numbers shown are for the DGG, DGV, DL, and WD packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Voltage range applied to any output in the high-impedance

Voltage range applied to any output in the high state, V_{O} (see Note 1) $\ldots \ldots . \ldots \ldots . \ldots . .$.
Output current in the low state, I_{O} : SN54ALVTH162245 .. 96 mA
SN74ALVTH162245 ... 128 mA
Output current in the high state, I_{O} : SN54ALVTH162245 ... -48 mA
SN74ALVTH162245 .. -64 mA
Continuous current through V_{CC} or GND 100 mA

Package thermal impedance, θ_{JA} (see Note 2): DGG package $70^{\circ} \mathrm{C} / \mathrm{W}$
DGV package $58^{\circ} \mathrm{C} / \mathrm{W}$
DL package .. $63^{\circ} \mathrm{C} / \mathrm{W}$
GQL package $42^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (see Note 3)

			SN54ALVTH162245			SN74ALVTH162245			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
V_{CC}	Supply voltage		2.3		2.7	2.3		2.7	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		1.7			1.7			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.7			0.7	V
V_{1}	Input voltage		0	V_{CC}	5.5	0	V_{CC}	5.5	V
IOH	High-level output current (A port)				-6			-8	mA
	High-level output current (B port)				-6			-8	
${ }^{\text {IOL }}$	Low-level output current (A port)				6			12	mA
	Low-level output current (B port)				6			8	
	Low-level output current; current duty cycle $\leq 50 \%$; $f \geq 1 \mathrm{k}$				18			24	
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled			10			10	ns/V
$\Delta \mathrm{t} / \Delta \mathrm{V}_{\mathrm{CC}}$	Power-up ramp rate		200			200			$\mu \mathrm{s} / \mathrm{V}$
TA	Operating free-air temperature		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (see Note 3)

			SN54ALVTH162245			SN74ALVTH162245			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
V_{CC}	Supply voltage		3		3.6	3		3.6	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8			0.8	V
V_{1}	Input voltage		0	V_{CC}	5.5	0	V_{CC}	5.5	V
${ }^{\mathrm{IOH}}$	High-level output current (A port)				-8			-12	mA
	High-level output current (B port)				-24			-32	
${ }^{\text {IOL }}$	Low-level output current (A port)			人	8			12	mA
	Low-level output current (B port)				24	32			
	Low-level output current; current duty cycle $\leq 50 \%$; $f \geq 1 \mathrm{kHz}$ (B port)		Q 48			64			
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled			10			10	ns/V
$\Delta t / \Delta \mathrm{V}_{\mathrm{CC}}$	Power-up ramp rate		200			200			$\mu \mathrm{s} / \mathrm{V}$
T_{A}	Operating free-air temperature		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the Tl application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. $\mathrm{I}_{\mathrm{BHL}}$ should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.
\S The bus-hold circuit can source at least the minimum high sustaining current at $\mathrm{V}_{I H}$ min. I_{BH} should be measured after raising $\mathrm{V}_{I N}$ to V_{CC} and then lowering it to $\mathrm{V}_{\mathrm{IH}} \mathrm{min}$.
I An external driver must source at least $\mathrm{I}_{\mathrm{BHLO}}$ to switch this node from low to high.
\# An external driver must sink at least IBHHO to switch this node from high to low.
II Current into an output in the high state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$

* High-impedance state during power up or power down

electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. IBHL should be measured after lowering $\mathrm{V}_{\text {IN }}$ to GND and then raising it to $\mathrm{V}_{\text {IL }}$ max.
§ The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. $\mathrm{I}_{\mathrm{BHH}}$ should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.
II An external driver must source at least IBHLO to switch this node from low to high.
\# An external driver must sink at least IBHHO to switch this node from high to low.
$\|$ Current into an output in the high state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$

* High-impedance state during power up or power down
${ }^{\square}$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	SN54ALVTH162245		SN74ALVTH162245		UNIT
			MIN	MAX	MIN	MAX	
tPLH	A	B	0.3	3.6	0.3	3.6	ns
tPHL			0.5	3.5	0.5	3.5	
tPLH	B	A	1.1	4.3	1.1	4.3	ns
tPHL			1.1	3.8	1.1	3.8	
tPZH	$\overline{\mathrm{OE}}$	A	2	5.6	2	5.6	ns
tpZL			1.8	4.4	1.8	4.4	
tPZH	OE	B	1.5	5.1	1.5	5.1	ns
tpZL			1.5	4.1	1.5	4.1	
tPHZ	$\overline{\mathrm{OE}}$	A	1.9	4.9	1.9	4.9	ns
tPLZ			1.5	4.3	1.5	4.3	
tPHZ	$\overline{\mathrm{OE}}$	B	1.9	4.8	1.9	4.8	ns
tpLZ			1.5	4.1	1.5	4.1	

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54ALVTH162245		SN74ALVTH162245		UNIT
			MIN	MAX	MIN	MAX	
tPLH	A	B	0.5	3.1	0.5	3.1	ns
tpHL			0.5	3	0.5	3	
tPLH	B	A	1	3.7	1	3.7	ns
tPHL			1	3.4	1	3.4	
tpZH	OE	A	1.4		1.4	4.7	ns
tPZL			1.4	3.9	1.4	3.9	
tPZH	OE	B	1	3.8	1	3.8	ns
tPZL			0.7	3.4	0.7	3.4	
tPHZ	$\overline{\mathrm{OE}}$	A	2.4	5	2.4	5	ns
tPLZ			2.6	4.9	2.6	4.9	
tPHZ	$\overline{\mathrm{OE}}$	B	2.4	4.7	2.4	4.7	ns
tpLZ			2.3	4.8	2.3	4.8	

PARAMETER MEASUREMENT INFORMATION

$\mathrm{V}_{\mathbf{C C}}$	C_{L}	R_{L}	V_{Δ}
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	30 pF	500Ω	0.15 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	50 pF	500Ω	0.3 V

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES
 INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

DGV (R-PDSO-G**)

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: 24/48 Pins - MO-153

14/16/20/56 Pins - MO-194

DL (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS Shown

PIMS ${ }^{* *}$	$\mathbf{2 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	0.380 $(9,65)$	0.630 $(16,00)$	0.730 $(18,54)$
A MIN	0.370 $(9,40)$	0.620 $(15,75)$	0.720 $(18,29)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)
48 PINS SHOWN

PINS **	48	56	64
A MAX	12,60	14,10	17,10
A MIN	12,40	13,90	16,90

4040078/F 12/97

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

