TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

# TC74LVX32F, TC74LVX32FN, TC74LVX32FT

# **QUAD 2-INPUT OR GATE**

The TC74LVX32 is a high speed CMOS 2-INPUT OR GATE fabricated with silicon gate C<sup>2</sup>MOS technology.

Designed for use in 3.3 Volt systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

This device is suitable for low voltage and battery operated systems.

The internal circuit is composed of 4 stages including buffer output, which provide high noise immunity and stable output.

An input protection circuit ensures that 0 to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

## **FEATURES**

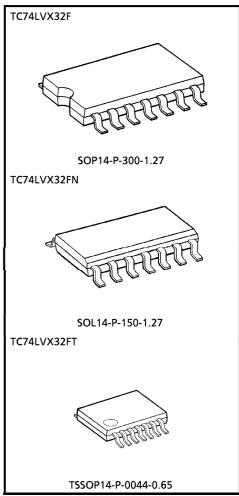
• High speed :  $t_{pd} = 4.4$ ns (Typ.)

 $(V_{CC} = 3.3V)$ 

• Low power dissipation :  $I_{CC} = 2\mu A$  (Max.) (Ta = 25°C)

• Input voltage level :  $V_{IL} = 0.8V$  (Max.) ( $V_{CC} = 3V$ )

 $V_{IH} = 2.0V \text{ (Min.) } (V_{CC} = 3V)$ 


• Power down protection is provided on all inputs.

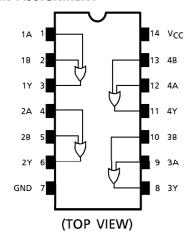
Balanced propagation delays : tplH≃tpHL

• Low noise :  $V_{OLP} = 0.5V$  (Max.)

Pin and function compatible with 74HC32

(Note) The JEDEC SOP (FN) is not available in Japan.

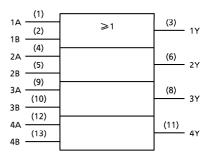



Weight

SOP14-P-300-1.27 : 0.18g (Typ.) SOL14-P-150-1.27 : 0.12g (Typ.) TSSOP14-P-0044-0.65 : 0.06g (Typ.)

961001EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.


### **PIN ASSIGNMENT**



### TRUTH TABLE

| INPUTS |   | OUTPUTS |
|--------|---|---------|
| Α      | В | Y       |
| L      | L | L       |
| L      | Н | Н       |
| Н      | L | Н       |
| Н      | Н | Н       |

### **IEC LOGIC SYMBOL**



### **MAXIMUM RATINGS**

| PARAMETER                           | SYMBOL           | RATING                    | UNIT |
|-------------------------------------|------------------|---------------------------|------|
| Supply Voltage Range                | Vcc              | -0.5~7.0                  | V    |
| DC Input Voltage                    | VIN              | -0.5~7.0                  | ٧    |
| DC Output Voltage                   | VOUT             | -0.5~V <sub>CC</sub> +0.5 | V    |
| Input Diode Current                 | Ικ               | - 20                      | mA   |
| Output Diode Current                | Ioк              | ± 20                      | mA   |
| DC Output Current                   | IOUT             | ± 25                      | mA   |
| DC V <sub>CC</sub> / Ground Current | ICC              | ± 50                      | mA   |
| Power Dissipation                   | PD               | 180                       | mW   |
| Storage Temperature                 | T <sub>stg</sub> | <b>-65∼150</b>            | °C   |

### **RECOMMENDED OPERATING CONDITIONS**

| PARAMETER                | SYMBOL           | RATING            | UNIT   |
|--------------------------|------------------|-------------------|--------|
| Supply Voltage           | Vcc              | 2.0~3.6           | ٧      |
| Input Voltage            | VIN              | 0~5.5             | ٧      |
| Output Voltage           | Vout             | 0~V <sub>CC</sub> | V      |
| Operating Temperature    | T <sub>opr</sub> | - 40~85           | °C     |
| Input Rise And Fall Time | dt/dv            | 0~100             | ns / V |

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

## **ELECTRICAL CHARACTERISTICS**

DC characteristics

| PARAMETER                                             |           | SYM- TEST CONDITION |                                     | Vcc                   | 7    | Γa = 25°0 | <u> </u> | Ta = -4 | ∙0~85°C | UNIT |                  |
|-------------------------------------------------------|-----------|---------------------|-------------------------------------|-----------------------|------|-----------|----------|---------|---------|------|------------------|
| FARA                                                  | IVIETER   | BOL                 | 1231 CONDITION                      |                       | (V)  | MIN.      | TYP.     | MAX.    | MIN.    | MAX. | UIVII            |
|                                                       |           |                     | 2.0                                 | 1.5                   | _    | _         | 1.5      | _       |         |      |                  |
| "H" Leve                                              | "H" Level | $V_{IH}$            |                                     |                       | 3.0  | 2.0       | _        | _       | 2.0     | _    |                  |
| Input                                                 |           |                     |                                     |                       | 3.6  | 2.4       | _        | _       | 2.4     | _    | l <sub>v</sub> l |
| Voltage                                               |           |                     |                                     |                       | 2.0  | _         | _        | 0.5     | _       | 0.5  |                  |
|                                                       | "L" Level | $V_{IL}$            |                                     |                       | 3.0  | _         | _        | 0.8     | _       | 0.8  |                  |
|                                                       |           |                     |                                     |                       | 3.6  | _         | _        | 0.8     | _       | 0.8  |                  |
|                                                       |           | V <sub>OH</sub>     | V <sub>IN</sub> = V <sub>IH</sub>   | $I_{OH} = -50\mu A$   | 2.0  | 1.9       | 2.0      | _       | 1.9     | _    |                  |
|                                                       | "H" Level |                     |                                     | $I_{OH} = -50\mu A$   | 3.0  | 2.9       | 3.0      | _       | 2.9     | _    |                  |
| Output                                                |           |                     | or $V_{IL}$                         | $I_{OH} = -4mA$       | 3.0  | 2.58      | _        | _       | 2.48    | _    | v                |
| Voltage                                               |           |                     |                                     | $I_{OL} = 50 \mu A$   | 2.0  | _         | 0.0      | 0.1     | _       | 0.1  |                  |
|                                                       | "L" Level | VOL                 | $V_{IN} = V_{IL}$                   | $I_{OL} = 50 \mu A$   | 3.0  | _         | 0.0      | 0.1     | _       | 0.1  |                  |
|                                                       |           |                     |                                     | I <sub>OL</sub> = 4mA | 3.0  | _         | _        | 0.36    | _       | 0.44 |                  |
| Input Leakage Current $I_{IN}$ $V_{IN} = 5.5V$ or GND |           | 3.6                 | _                                   | _                     | ±0.1 | _         | ± 1.0    | $\mu$ A |         |      |                  |
| Quiescent S<br>Current                                | Supply    | lcc                 | V <sub>IN</sub> = V <sub>CC</sub> o | or GND                | 3.6  | _         | _        | 2.0     | _       | 20.0 | μΑ               |

# AC characteristics (Input $t_r = t_f = 3ns$ )

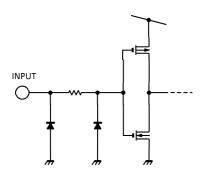
| PARAMETER                     | SYM-             |           |                     |                     |          | Ta = 25°C |               |           | $Ta = -40 \sim 85^{\circ}C$ |      |   |     |   |     |    |
|-------------------------------|------------------|-----------|---------------------|---------------------|----------|-----------|---------------|-----------|-----------------------------|------|---|-----|---|-----|----|
| PARAIVIETER                   | BOL              | CONDITION | V <sub>CC</sub> (V) | C <sub>L</sub> (pF) | MIN.     | TYP.      | MAX.          | MIN.      | MAX.                        | UNIT |   |     |   |     |    |
|                               | 4                |           | 2.7                 | 15                  | _        | 5.8       | 10.7          | 1.0       | 13.5                        |      |   |     |   |     |    |
| Propagation Delay             | t <sub>pLH</sub> |           | 2.7                 | 50                  | _        | 8.3       | 14.2          | 1.0       | 17.0                        | ns   |   |     |   |     |    |
| Time                          | <sub>+</sub>     |           | 22+02               | 15                  | _        | 4.4       | 6.6           | 1.0       | 8.0                         | 1113 |   |     |   |     |    |
|                               | t <sub>pHL</sub> |           | 3.3 ± 0.3           | 50                  | _        | 6.9       | 10.1          | 1.0       | 11.5                        |      |   |     |   |     |    |
| Output To Output              | tosLH            | (Note 1)  | 2.7                 | 50                  | _        | _         | 1.5           | _         | 1.5                         | ne   |   |     |   |     |    |
| Skew                          | tosHL            | (Note 1)  | (Note 1)            | (Note 1)            | (NOCE I) | (Note 1)  | HL   (Note 1) | 3.3 ± 0.3 | 50                          | _    | _ | 1.5 | _ | 1.5 | ns |
| Input Capacitance             | CIN              | (Note 2)  |                     |                     | _        | 4         | 10            | _         | 10                          | pF   |   |     |   |     |    |
| Power Dissipation Capacitance | C <sub>PD</sub>  | (Note 3)  |                     |                     | _        | 14        | _             | _         | _                           | pF   |   |     |   |     |    |

(Note 1) Parameter guaranteed by design.

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$ 

(Note 2) Parameter guaranteed by design.

(Note 3) C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption.


Average operating current can be obtained by the equation:

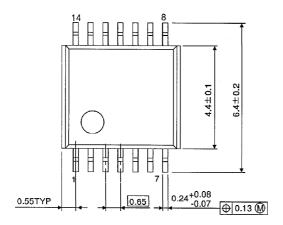
 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4 \text{ (per Gate)}$ 

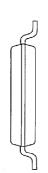
Noise characteristics (Ta = 25°C, Input  $t_r = t_f = 3$ ns,  $C_L = 50$ pF)

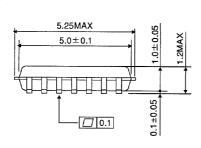
| -                                               |                  |                |                     |      |       |      |
|-------------------------------------------------|------------------|----------------|---------------------|------|-------|------|
| PARAMETER                                       | SYMBOL           | TEST CONDITION | V <sub>CC</sub> (V) | TYP. | LIMIT | UNIT |
| Quiet Output Maximum Dynamic<br>V <sub>OL</sub> | V <sub>OLP</sub> |                | 3.3                 | 0.3  | 0.5   | ٧    |
| Quiet Output Minimum Dynamic<br>V <sub>OL</sub> | V <sub>OLV</sub> |                | 3.3                 | -0.3 | -0.5  | V    |
| Minimum High Level Dynamic<br>Input Voltage     | V <sub>IHD</sub> |                | 3.3                 | _    | 2.0   | V    |
| Maximum Low Level Dynamic Input<br>Voltage      | V <sub>ILD</sub> |                | 3.3                 | _    | 0.8   | V    |

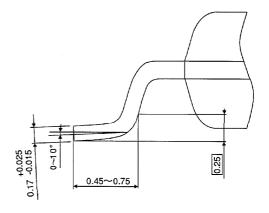
# INPUT EQUIVALENT CIRCUIT




# OUTLINE DRAWING SOP14-P-300-1.27 Unit:mm 1.34TYP 1.0.8MAX 10.3±0.2 10.8MAX 10.3±0.2 10.8+0.2


# **OUTLINE DRAWING** SOL14-P-150-1.27 Unit: mm (Note) This package is not available in Japan. 14 8 $3.9\pm0.1$ 6.0±0.2 H 7 0.515TYP 0.42±0.07 **⊕** 0.25 **⋈** 1.27 8.65±0.1 45° 0.175±0.075 **2**0.1 7် ဝ 0.7±0.3


Weight: 0.12g (Typ.)


Unit: mm

## OUTLINE DRAWING TSSOP14-P-0044-0.65









Weight: 0.06g (Typ.)

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com