

DS1265W

www.maxim-ic.com

FEATURES

- 10 years minimum data retention in the absence of external power
- Data is automatically protected during power loss
- Unlimited write cycles
- Low-power CMOS operation
- Read and write access times as fast as 100ns
- Lithium energy source is electrically disconnected to retain freshness until power is applied for the first time
- Optional industrial (IND) temperature range of -40° C to $+85^{\circ}$ C

PIN ASSIGNMENT

NC	1	36	V_{CC}
NC	2	35	A19
A18	3	34	NC
A16	4	33	A15
A14	5	32	A17
A12	6	31	WE
A7	7	30	A13
A6	8	29	A8
A5	9	28	A9
A4	10	27	<u>A1</u> 1
A3	11	26	ŌĒ
A2	12	25	A10
A1	1 3	24	CE
Α0	14	23	DQ7
DQ0	1 5	22	DQ6
DQ1	1 6	21	DQ5
DQ2	1 7	20	DQ4
GND	18	19	DQ3

36-Pin Encapsulated Package 740mil Extended

PIN DESCRIPTION

- Address Inputs A0-A19 DQ0-DQ7 - Data In/Data Out $\overline{\text{CE}}$ - Chip Enable WE - Write Enable \overline{OE} - Output Enable - Power (+3.3V) V_{CC} - Ground **GND** - No Connect NC

DESCRIPTION

The DS1265W 8Mb nonvolatile (NV) SRAMs are 8,388,608-bit, fully static, NV SRAMs organized as 1,048,576 words by 8 bits. Each NV SRAM has a self-contained lithium energy source and control circuitry that constantly monitors V_{CC} for an out-of-tolerance condition. When such a condition occurs, the lithium energy source is automatically switched on and write protection is unconditionally enabled to prevent data corruption. There is no limit on the number of write cycles that can be executed and no additional support circuitry is required for microprocessor interfacing.

> 1 of 8 110602

READ MODE

The DS1265 devices execute a read cycle whenever $\overline{\text{WE}}$ (Write Enable) is inactive (high) and $\overline{\text{CE}}$ (Chip Enable) and $\overline{\text{OE}}$ (Output Enable) are active (low). The unique address specified by the 20 address inputs (A₀–A₁₉) defines which of the 1,048,576 bytes of data is accessed. Valid data will be available to the eight data output drivers within t_{ACC} (Access Time) after the last address input signal is stable, providing that $\overline{\text{CE}}$ and $\overline{\text{OE}}$ access times are also satisfied. If $\overline{\text{OE}}$ and $\overline{\text{CE}}$ access times are not satisfied, then data access must be measured from the later-occurring signal ($\overline{\text{CE}}$ or $\overline{\text{OE}}$) and the limiting parameter is either t_{CO} for $\overline{\text{CE}}$ or t_{OE} for $\overline{\text{OE}}$ rather than t_{ACC} .

WRITE MODE

The DS1265 devices execute a write cycle whenever \overline{WE} and \overline{CE} signals are active (low) after address inputs are stable. The later-occurring falling edge of \overline{CE} or \overline{WE} will determine the start of the write cycle. The write cycle is terminated by the earlier rising edge of \overline{CE} or \overline{WE} . All address inputs must be kept valid throughout the write cycle. \overline{WE} must return to the high state for a minimum recovery time (t_{WR}) before another cycle can be initiated. The \overline{OE} control signal should be kept inactive (high) during write cycles to avoid bus contention. However, if the output drivers are enabled (\overline{CE} and \overline{OE} active), then \overline{WE} will disable the outputs in t_{ODW} from its falling edge.

DATA-RETENTION MODE

The DS1265W provides full functional capability for V_{CC} greater than 3.0V and write protects by 2.8V. Data is maintained in the absence of V_{CC} without any additional support circuitry. The nonvolatile static RAMs constantly monitor V_{CC} . Should the supply voltage decay, the NV SRAMs automatically write protect themselves, all inputs become "don't care," and all outputs become high-impedance. As V_{CC} falls below approximately 2.5V, a power-switching circuit connects the lithium energy source to RAM to retain data. During power-up, when V_{CC} rises above approximately 2.5V, the power-switching circuit connects external V_{CC} to RAM and disconnects the lithium energy source. Normal RAM operation can resume after V_{CC} exceeds 3.0V.

FRESHNESS SEAL

Each DS1265 device is shipped from Dallas Semiconductor with its lithium energy source disconnected, guaranteeing full energy capacity. When V_{CC} is first applied at a level greater than V_{TP} , the lithium energy source is enabled for battery backup operation.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Ground Operating Temperature Range Storage Temperature Range Soldering Temperature -0.3V to +4.6V

0°C to +70°C (-40°C to +85°C for IND parts) -40°C to +70°C (-40°C to +85°C for IND parts)

+260°C for 10 seconds

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

(T_A: See Note 10)

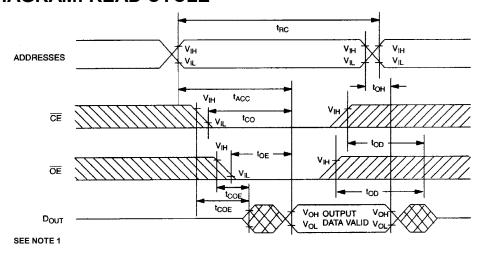
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power-Supply Voltage	V_{CC}	3.0	3.3	3.6	V	
Logic 1 Input Voltage	$V_{ m IH}$	2.2		V_{CC}	V	
Logic 0 Input Voltage	$V_{ m IL}$	0.0		+0.4	V	

DC ELECTRICAL CHARACTERISTICS

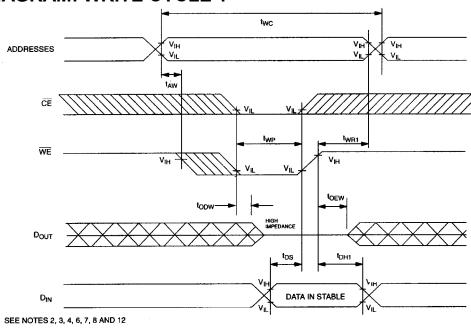
 $(T_A: See Note 10; V_{CC} = 3.3V \pm 0.3V)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage Current	${ m I}_{ m IL}$	-2.0		+2.0	μΑ	
I/O Leakage Current	I_{IO}	-2.0		+2.0	μА	
Output Current at 2.2V	I_{OH}	-1.0			mA	
Output Current at 0.4V	I_{OL}	2.0			mA	
Standby Current $\overline{CE} = 2.2V$	I_{CCS1}		150	250	μΑ	
Standby Current $\overline{CE} = V_{CC} - 0.2V$	I _{CCS2}		100	150	μΑ	
Operating Current	I _{CCO1}			50	mA	
Write Protection Voltage	V_{TP}	2.8	2.9	3.0	V	

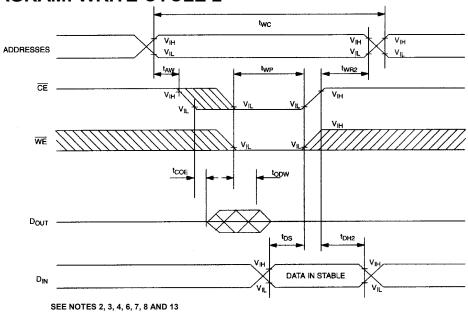
CAPACITANCE

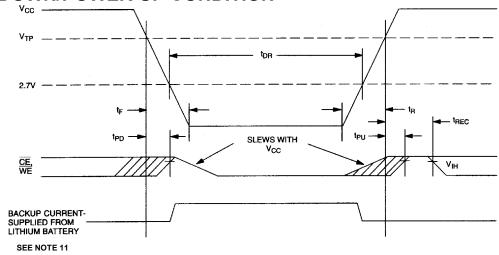

 $(T_A = +25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C_{IN}		10	20	pF	
Input/Output Capacitance	$C_{I/O}$		10	20	pF	


AC ELECTRICAL CHARACTERISTICS (T_A: See Note 10; $V_{CC} = 3.3V \pm 0.3V$)

		DS1265W-100		DS1265W-150			
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
Read Cycle Time	t_{RC}	100		150		ns	
Access Time	t_{ACC}		100		150	ns	
OE to Output Valid	t_{OE}		50		70	ns	
CE to Output Valid	t_{CO}		100		150	ns	
OE or CE to Output Active	t _{COE}	5		5		ns	5
Output High-Z from Deselection	t_{OD}		35		35	ns	5
Output Hold from Address Change	t_{OH}	5		5		ns	
Write Cycle Time	$t_{ m WC}$	100		150		ns	
Write Pulse Width	t_{WP}	75		100		ns	3
Address Setup Time	$t_{ m AW}$	0		0		ns	
Write Recovery Time	$t_{ m WR1}$ $t_{ m WR2}$	5 20		5 20		ns ns	12 13
Output High-Z from WE	$t_{ m ODW}$		35		35	ns	5
Output Active from WE	$t_{ m OEW}$	5		5		ns	5
Data Setup Time	t_{DS}	40		60		ns	4
Data Hold Time	t _{DH1} t _{DH2}	0 20		0 20		ns ns	12 13


TIMING DIAGRAM: READ CYCLE


TIMING DIAGRAM: WRITE CYCLE 1

TIMING DIAGRAM: WRITE CYCLE 2

POWER-DOWN/POWER-UP CONDITION

POWER-DOWN/POWER-UP TIMING

(T_A: See Note 10)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
V_{CC} Fail Detect to \overline{CE} and \overline{WE} Inactive	t_{PD}			1.5	μs	11
V_{CC} Slew from V_{TP} to $0V$	t_{F}	150			μs	
V_{CC} Slew from 0V to V_{TP}	t_R	150			μs	
V_{CC} Valid to \overline{CE} and \overline{WE} Inactive	$t_{ m PU}$			2	ms	
V _{CC} Valid to End of Write Protection	t_{REC}			125	ms	

 $(T_A = 25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Expected Data-Retention Time	t_{DR}	10			years	9

WARNING:

Under no circumstance are negative undershoots, of any amplitude, allowed when device is in battery backup mode.

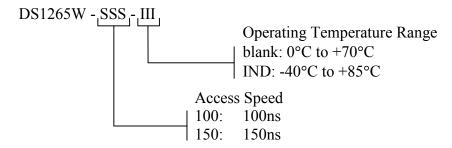
NOTES:

- 1. WE is high for a read cycle.
- 2. $\overline{OE} = V_{IH}$ or V_{IL} . If $\overline{OE} = V_{IH}$ during write cycle, the output buffers remain in a high-impedance state.
- 3. t_{WP} is specified as the logical AND of \overline{CE} or \overline{WE} . t_{WP} is measured from the latter of \overline{CE} or \overline{WE} going low to the earlier of \overline{CE} or \overline{WE} going high.
- 4. t_{DS} is measured from the earlier of \overline{CE} or \overline{WE} going high.
- 5. These parameters are sampled with a 5pF load and are not 100% tested.
- 6. If the $\overline{\text{CE}}$ low transition occurs simultaneously with or latter than the $\overline{\text{WE}}$ low transition, the output buffers remain in a high-impedance state during this period.
- 7. If the $\overline{\text{CE}}$ high transition occurs prior to or simultaneously with the $\overline{\text{WE}}$ high transition, the output buffers remain in a high-impedance state during this period.
- 8. If $\overline{\text{WE}}$ is low or the $\overline{\text{WE}}$ low transition occurs prior to, or simultaneously with, the $\overline{\text{CE}}$ low transition, the output buffers remain in a high-impedance state during this period.

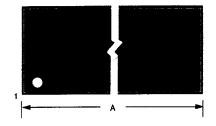
- 9. Each DS1265W has a built-in switch that disconnects the lithium source until V_{CC} is first applied by the user. The expected t_{DR} is defined as accumulative time in the absence of V_{CC} starting from the time power is first applied by the user.
- 10. All AC and DC electrical characteristics are valid over the full operating temperature range. For commercial products, this range is 0°C to+ 70°C. For industrial products (IND), this range is -40°C to +85°C.
- 11. In a power-down condition, the voltage on any pin may not exceed the voltage on V_{CC}.
- 12. t_{WR1} and t_{DH1} are measured from \overline{WE} going high.
- 13. t_{WR2} and t_{DH2} are measured from CE going high.
- 14. DS1265 modules are recognized by Underwriters Laboratory (U.L.®) under file E99151.

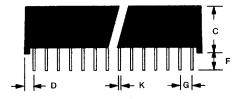
DC TEST CONDITIONS

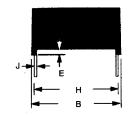
Outputs open Cycle = 200ns for operating current All voltages are referenced to ground


AC TEST CONDITIONS

Output Load: 100pF + 1TTL Gate
Input Pulse Levels: 0 to 2.7V
Timing Measurement Reference Levels


Input: 1.5V Output: 1.5V


Input Pulse Rise and Fall Times: 5ns


ORDERING INFORMATION

DS1265W NONVOLATILE SRAM 36-PIN 740MIL EXTENDED MODULE, LONG

PKG	36-	PIN
DIM	MIN	MAX
A IN.	2.080	2.100
MM	52.83	53.34
B IN.	0.720	0.740
MM	18.29	18.80
C IN.	0.355	0.405
MM	9.02	10.29
D IN.	0.180	0.210
MM	4.57	5.33
E IN.	0.015	0.025
MM	0.38	0.63
F IN.	0.120	0.150
MM	3.05	4.06
G IN.	0.090	0.110
MM	2.29	2.79
H IN.	0.590	0.630
MM	14.99	16.00
J IN.	0.008	0.012
MM	0.20	0.30
K IN.	0.015	0.025
MM	0.38	0.58

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AIIDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AIIDataSheet.com