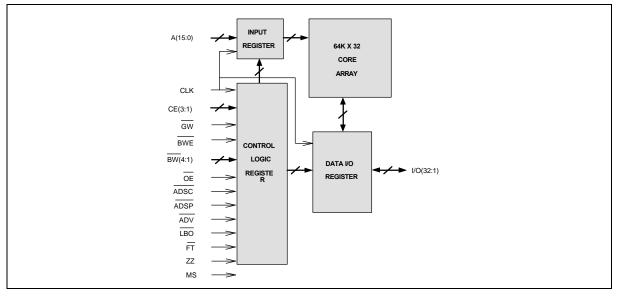


$64K \times 32 \text{ BURST PIPELINED HIGH-SPEED} \\ \text{CMOS STATIC RAM}$

GENERAL DESCRIPTION

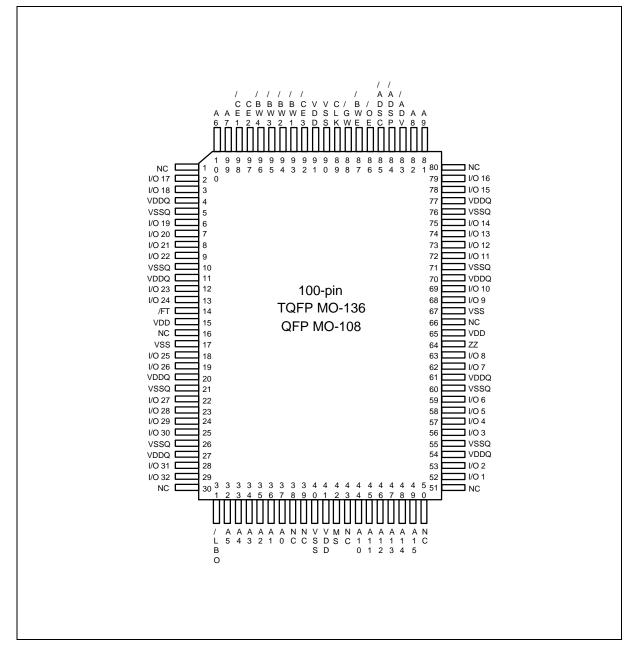
The W25P022A is a high-speed, low-power, synchronous-burst pipelined CMOS static RAM organized as $65,536 \times 32$ bits that operates on a single 3.3-volt power supply. A built-in two-bit burst address counter supports both PentiumTM burst mode and linear burst mode. The mode to be executed is controlled by the LBO pin. Pipelining or non-pipelining of the data outputs is controlled by the FT pin. A snooze mode reduces power dissipation.


The W25P022A supports both 2T/2T mode and 2T/1T mode, which can be selected by pin 42. The default mode is 2T/1T, with pin 42 low. To switch to 2T/2T mode, bias pin 42 to VDDQ. The state of pin 42 should not be changed after power up. The 2T/2T mode will sustain one cycle of valid data output in a burst read cycle when the device is deselected by CE2/CE3. This mode supports 3-1-1-1-1-1 in a two-bank, back-to-back burst read cycle. On the other hand, the 2T/1T mode disables data output within one cycle in a burst read cycle when the device is deselected by CE2/CE3. In this mode, the device supports only 3-1-1-2-1-1 in a two-bank, back-to-back burst read cycle.

FEATURES

- Synchronous operation
- High-speed access time: 6/7 nS (max.)
- Single +3.3V power supply
- · Individual byte write capability
- 3.3V LVTTL compatible I/O
- · Clock-controlled and registered input
- Asynchronous output enable

- Pipelined/non-pipelined data output capability
- Supports snooze mode (low-power state)
- Internal burst counter supports Intel burst mode
 & linear burst mode
- Supports both 2T/2T & 2T/1T mode
- Packaged in 100-pin QFP or TQFP


BLOCK DIAGRAM

Publication Release Date: September 1996 Revision A1

PIN CONFIGURATION

PIN DESCRIPTION

SYMBOL	ТҮРЕ	DESCRIPTION
A0–A15	Input, Synchronous	Host Address
I/O1–I/O32	I/O, Synchronous	Data Inputs/Outputs
CLK	Input, Clock	Processor Host Bus Clock
$\overline{CE1}$, CE2, $\overline{CE3}$	Input, Synchronous	Chip Enables
GW	Input, Synchronous	Global Write
BWE	Input, Synchronous	Byte Write Enable from Cache Controller
BW1-BW4	Input, Synchronous	Host Bus Byte Enables used with BWE
ŌĒ	Input, Asynchronous	Output Enable Input
ADV	Input, Synchronous	Internal Burst Address Counter Advance
ADSC	Input, Synchronous	Address Status from chip set
ADSP	Input, Synchronous	Address Status from CPU
ZZ	Input, Asynchronous	Snooze Pin for Low-power State, internally pulled low
FT	Input, Static	Connected to Vssq: Device operates in flow-through (non-pipelined) mode.
		Connected to VDDQ or unconnected: Device operates in piplined mode.
LBO	Input, Static	Lower Address Burst Order
		Connected to Vssq: Device operates in linear mode. Connected to VDDQ or unconnected: Device is in non- linear mode.
MS	Input, Static	Mode Select for 2T/2T or 2T/1T
		When unconnected or pulled low, device is in 2T/1T mode; if pulled high (VDDQ), device enters 2T/2T mode.
Vddq		I/O Power Supply
Vssq		I/O Ground
Vdd		Power Supply
Vss		Ground
NC		No Connection

TRUTH TABLE

CYCLE	ADDRESS USED	CE1	CE2	CE3	ADSP	ADSC	ADV	OE	DATA	WRITE*
Unselected	No	1	Х	х	х	0	Х	Х	Hi-Z	Х
Unselected	No	0	Х	1	0	Х	Х	Х	Hi-Z	Х
Unselected	No	0	0	х	0	Х	Х	Х	Hi-Z	Х
Unselected	No	0	Х	1	1	0	Х	Х	Hi-Z	Х
Unselected	No	0	0	х	1	0	Х	Х	Hi-Z	Х
Begin Read	External	0	1	0	0	Х	Х	Х	Hi-Z	Х
Begin Read	External	0	1	0	1	0	Х	Х	Hi-Z	Read
Continue Read	Next	Х	Х	х	1	1	0	1	Hi-Z	Read
Continue Read	Next	Х	Х	х	1	1	0	0	D-Out	Read
Continue Read	Next	1	Х	х	х	1	0	1	Hi-Z	Read
Continue Read	Next	1	Х	х	Х	1	0	0	D-Out	Read
Suspend Read	Current	Х	Х	х	1	1	1	1	Hi-Z	Read
Suspend Read	Current	Х	Х	х	1	1	1	0	D-Out	Read
Suspend Read	Current	1	Х	х	Х	1	1	1	Hi-Z	Read
Suspend Read	Current	1	Х	х	х	1	1	0	D-Out	Read
Begin Write	Current	Х	Х	х	1	1	1	Х	Hi-Z	Write
Begin Write	Current	1	Х	х	х	1	1	Х	Hi-Z	Write
Begin Write	External	0	1	0	1	0	Х	Х	Hi-Z	Write
Continue Write	Next	Х	Х	х	1	1	0	Х	Hi-Z	Write
Continue Write	Next	1	Х	х	х	1	0	Х	Hi-Z	Write
Suspend Write	Current	Х	Х	х	1	1	1	Х	Hi-Z	Write
Suspend Write	Current	1	Х	Х	Х	1	1	Х	Hi-Z	Write

Notes:

1. For a detailed definition of read/write, see the Write Table below.

2. An "X" means don't care, "1" means logic high, and "0" means logic low.

3. The \overline{OE} pin enables the data output but is not synchronous with the clock. All signals of the SRAM are sampled synchronous to the bus clock except for the \overline{OE} pin.

4. On a write cycle that follows a read cycle, \overline{OE} must be inactive prior to the start of the write cycle to allow write data to set up the SRAM. \overline{OE} must also disable the output buffer prior to the end of a write cycle to ensure the SRAM data hold timings are met.

FUNCTIONAL DESCRIPTION

The W25P022A is a synchronous-burst pipelined SRAM designed for use in high-end personal computers. It supports two burst address sequences for IntelTM systems and linear mode, which can be controlled by the \overline{LBO} pin. The burst cycles are initiated by \overline{ADSP} or \overline{ADSC} and the burst counter is incremented whenever \overline{ADV} is sampled low. The device can also be switched to non-pipelined mode if necessary.

Burst A	Address	Sequence
---------	---------	----------

	INTEL SYSTEM (LBO = VDDQ)				LINEAR MODE (LBO = Vssq)			
	A[1:0]	A[1:0]	A[1:0]	A[1:0]	A[1:0]	A[1:0]	A[1:0]	A[1:0]
External Start Address	00	01	10	11	00	01	10	11
Second Address	01	00	11	10	01	10	11	00
Third Address	10	11	00	01	10	11	00	01
Fourth Address	11	10	01	00	11	00	01	10

The device supports several types of write mode operations. \overrightarrow{BWE} and \overrightarrow{BW} [4:1] support individual byte writes. The \overrightarrow{BE} [7:0] signals can be directly connected to the SRAM \overrightarrow{BW} [4:1]. The \overrightarrow{GW} signal is used to override the byte enable signals and allows the cache controller to write all bytes to the SRAM, no matter what the byte write enable signals are. The various write modes are indicated in the Write Table below. Note that in pipelined mode, the byte write enable signals are not latched by the SRAM with addresses but with data. In pipelined mode, the cache controller must ensure the SRAM latches both data and valid byte enable signals from the processor.

WRITE TABLE

READ/WRITE FUNCTION	GW	BWE	BW4	BW3	BW2	BW1
Read	1	1	Х	Х	Х	Х
Read	1	0	1	1	1	1
Write byte 1 I/O1–I/O8	1	0	1	1	1	0
Write byte 2 I/O9–I/O16	1	0	1	1	0	1
Write byte 2, byte 1	1	0	1	1	0	0
Write byte 3 I/O17–I/O24	1	0	1	0	1	1
Write byte 3, byte 1	1	0	1	0	1	0
Write byte 3, byte 2	1	0	1	0	0	1
Write byte 3, byte 2, byte 1	1	0	1	0	0	0
Write byte 4 I/O25–I/O32	1	0	0	1	1	1
Write byte 4, byte 1	1	0	0	1	1	0

Write Table, continued

READ/WRITE FUNCTION	GW	BWE	BW4	BW3	BW2	BW1
Write byte 4, byte 2	1	0	0	1	0	1
Write byte 4, byte 2, byte 1	1	0	0	1	0	0
Write byte 4, byte 3	1	0	0	0	1	1
Write byte 4, byte 3, byte 1	1	0	0	0	1	0
Write byte 4, byte 3, byte 2	1	0	0	0	0	1
Write all bytes I/O1–I/O32	1	0	0	0	0	0
Write all bytes I/O1–I/O32	0	Х	Х	Х	Х	Х

The ZZ state is a low-power state in which the device consumes less power than in the unselected mode. Enabling the ZZ pin for a fixed period of time will force the SRAM into the ZZ state. Pulling the ZZ pin low for a set period of time will wake up the SRAM again. While the SRAM is in ZZ mode, data retention is guaranteed, but the chip will not monitor any input signal except for the ZZ pin. In the unselected mode, on the other hand, all the input signals are monitored.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Core Supply Voltage to Vss	-0.5 to 4.6	V
I/O Supply Voltage to Vss	-0.5 to 4.6	V
Input/Output to Vsso Potential	Vssq -0.5 to VDDq +0.5	V
Allowable Power Dissipation	1.0	W
Storage Temperaure	-65 to 150	°C
Operating Temperature	0 to +70	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

OPERATING CHARACTERISTICS

(VDD/VDDQ = 3.15V to 3.6V, Vss/Vssq = 0V, TA = 0 to 70° C)

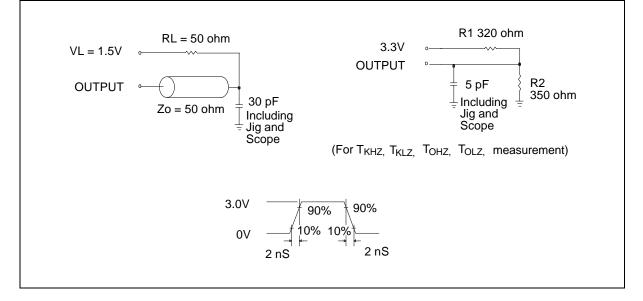
PARAMETER	SYM.	TEST CONDITIONS	MIN.	TYP	MAX.	UNIT
				-		
Input Low Voltage	VIL	-	-0.5	-	+0.8	V
Input High Voltage	Vін	-	+2.0	-	Vdd +0.3	V
Input Leakage Current	ΙLI	VIN = VSSQ to VDDQ	-10	-	+10	μΑ
Output Leakage Current	Ilo	VI/O = VSSQ to VDDQ, and data I/O pins in high-Z state defined in truth table	-10	-	+ 10	μA
Output Low Voltage	Vol	IOL = +8.0 mA	-	-	0.4	V
Output High Voltage	Vон	Юн = -4.0 mA	2.4	-	-	V
Operating Current	Idd	Tcyc≥min., I/O = 0 mA	-	-	250	mA
Standby Current	ISB	Unselected mode defined in truth table, VIN, VIO = VIH (min.) /VIL (max.) TCYC \geq min.	-	-	80	mA
ZZ Mode Current	lzz	ZZ mode, Tcγc≥min.	-	-	5	mA

Note: Typical characteristics are measured at VDD = 3.3V, TA = 25° C.

CAPACITANCE

(VDD = 3.3V,	$T_{A} = 25^{\circ}$	^o C, f = 1	MHz)
(100 0.01)		•,	····· ·

PARAMETER	SYM.	CONDITIONS	MAX.	UNIT
Input Capacitance	CIN	VIN = 0V	6	pF
Input/Output Capacitance	CI/O	Vout = 0V	8	pF


Note: These parameters are sampled but not 100% tested.

AC TEST CONDITIONS

PARAMETER	CONDITIONS
Input Pulse Levels	0V to 3V
Input Rise and Fall Times	2 nS
Input and Output Timing Reference Level	1.5V
Output Load	CL = 30 pF, IOH/IOL = -4 mA/8 mA

AC TEST LOADS AND WAVEFORM

AC TIMING CHARACTERISTICS

(VDD/VDDQ = 3.15V to 3.6V, Vss/Vssq = 0V, TA = 0 to 70° C, all timings measured in pipelined mode)

PARAMETER	SYM.	W25P022A-6		W25P022A-7		UNIT	NOTES
		MIN.	MAX.	MIN.	MAX.		
Add. Setup Time	TAS	2.5	-	2.5	-	nS	
Add. Hold Time	Тан	0.5	-	0.5	-	nS	
Write Data Setup Time	TDS	2.5	-	2.5	-	nS	
Write Data Hold Time	Трн	0.5	-	0.5	-	nS	
ADV Setup Time	TADVS	2.5	-	2.5	-	nS	
ADV Hold Time	TADVH	0.5	-	0.5	-	nS	
ADSP Setup Time	TADSS	2.5	-	2.5	-	nS	
ADSP Hold Time	TADSH	0.5	-	0.5	-	nS	
ADSC Setup Time	TADCS	2.5	-	2.5	-	nS	
ADSC Hold Time	TADCH	0.5	-	0.5	-	nS	
CE1, CE2, CE3 Setup Time	TCES	2.5	-	2.5	-	nS	
CE1, CE2, CE3 Hold Time	Тсен	0.5	-	0.5	-	nS	
GW , BWE X Setup Time	Tws	2.5	-	2.5	-	nS	
GW , BWE X Hold Time	Тwн	0.5	-	0.5	-	nS	

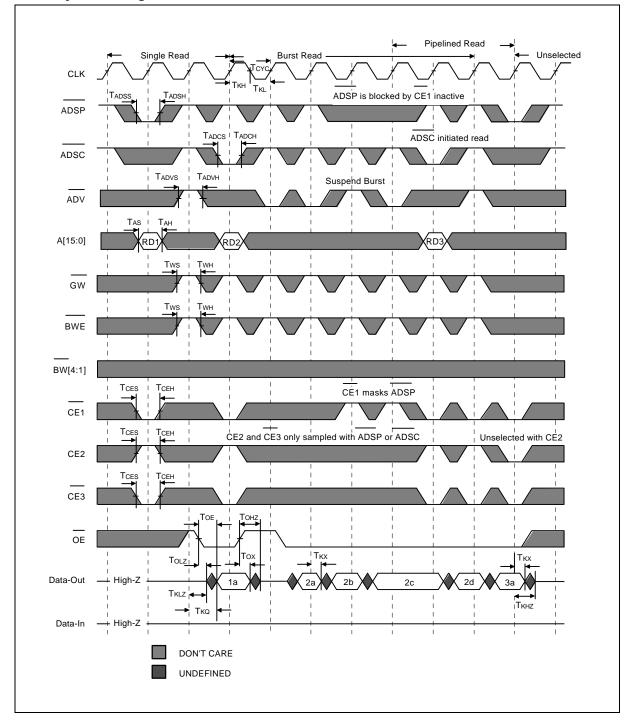
AC Timing Characteristics, continued

PARAMETER	SYM.	W25P022A-6		W25P022A-7		UNIT	NOTES
		MIN.	MAX.	MIN.	MAX.		
Clock Cycle Time	Тсүс	13.3	-	15	-	nS	
Clock High Pulsh Width	Ткн	5	-	6	-	nS	
Clock Low Pulse Width	Tĸl	5	-	6	-	nS	
Clock to Output Valid	Τκα	-	6	-	7	nS	
Clock to Output High-Z	Ткнz	2	13.3	2	15	nS	1
Clock to Output Low-Z	Tĸlz	0	-	0	-	nS	1
Clock to Output Invalid	Ткх	2	-	2	-	nS	1
Output Enable to Output Valid	TOE	-	6	-	7	nS	
Output Enable to Output High-Z	Тонz	-	6	-	7	nS	1
Output Enable to Output Low-Z	Tolz	0	-	0	-	nS	1
Output Enable to Output Invalid	Тох	0	-	0	-	nS	
ZZ Standby Time	Tzzs	-	100	-	100	nS	2
ZZ Recover Time	Tzzr	100	-	100	-	nS	3

Notes:

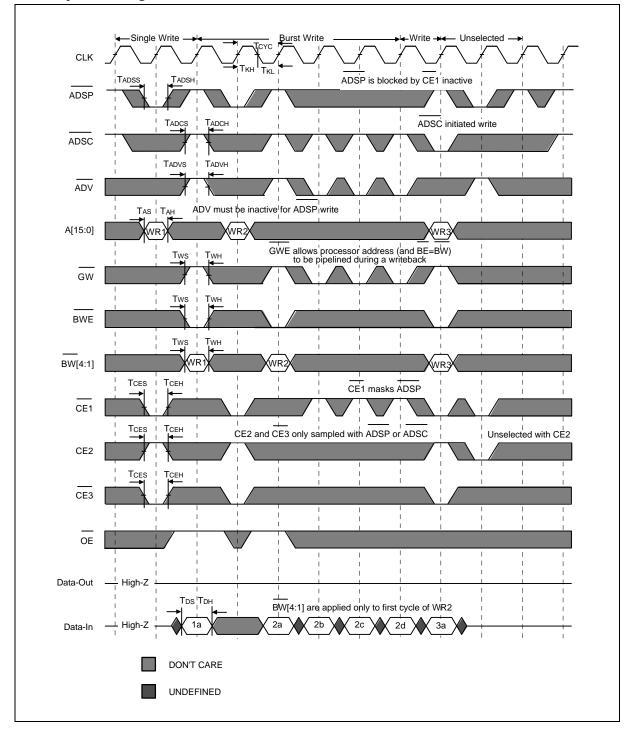
1. These parameters are sampled but not 100% tested

2. In the ZZ mode, the SRAM will enter a low-power state. In this mode, data retention is guaranteed and the clock is active.

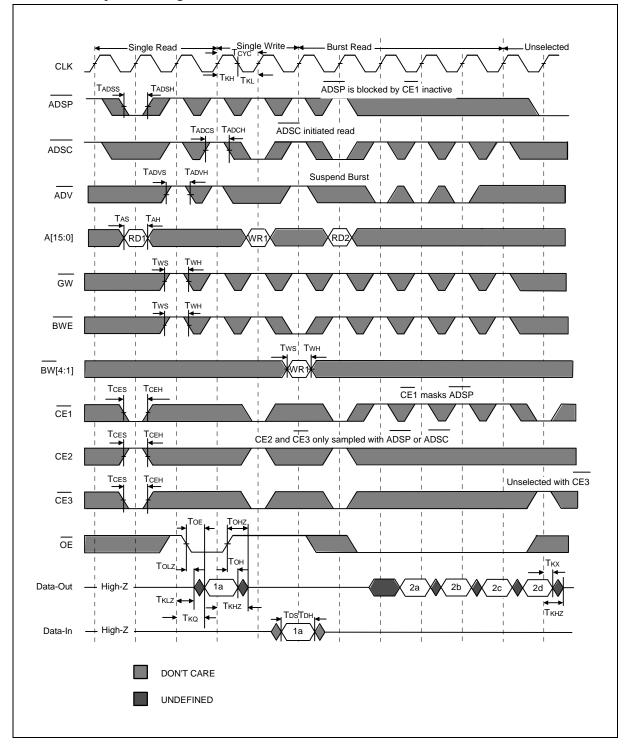

3. ADSC and ADSP should not be accessed for at least 100 nS after chip leaves ZZ mode.

4. Configuration signals $\overline{\text{LBO}}$ and $\overline{\text{FT}}$ are static and should not be changed during operation.

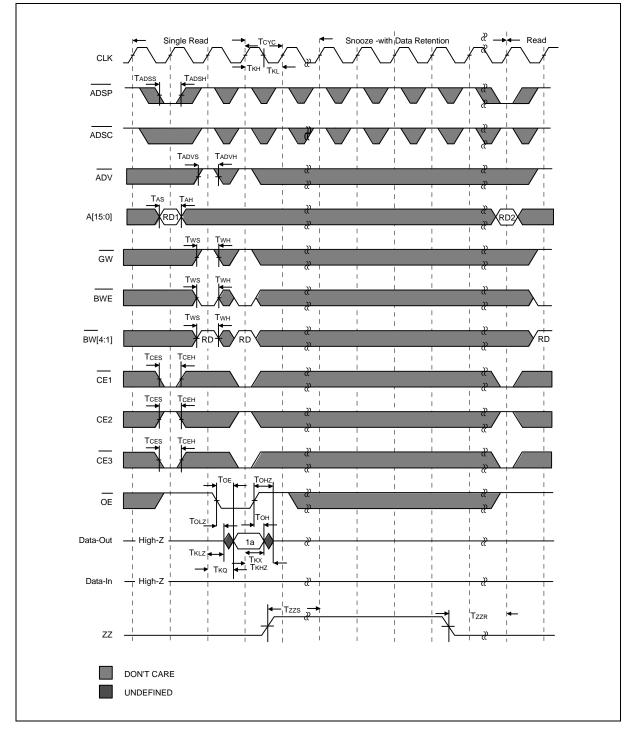
TIMING WAVEFORMS


Read Cycle Timing

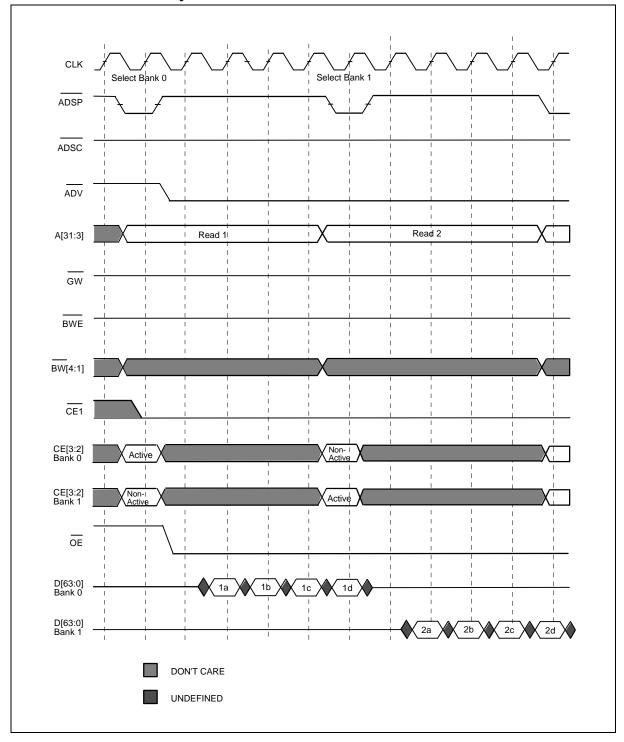
Timing Waveforms, continued


Write Cycle Timing

Timing Waveforms, continued


Read/Write Cycle Timing

Timing Waveforms, continued


ZZ and RD Timing

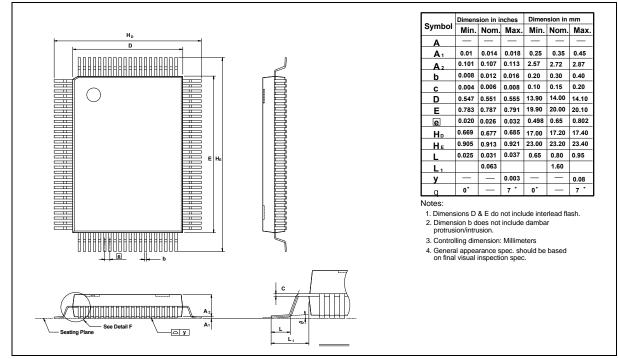
Timing Waveforms, continued

Dual-bank Burst Read Cycle

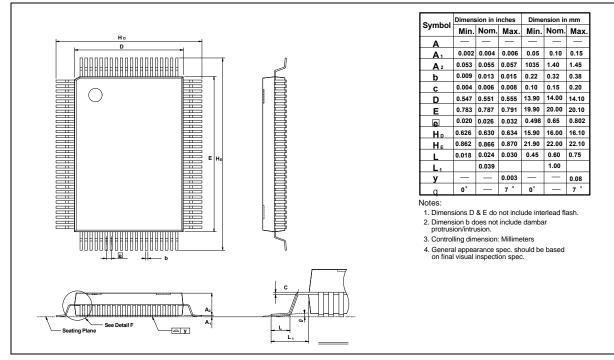
ORDERING INFORMATION

PART NO.	ACCESS TIME (nS)	OPERATING CURRENT MAX. (mA)	STANDBY CURRENT MAX. (mA)	PACKAGE
W25P022AF-6	6	250	80	100-pin QFP
W25P022AF-7	7	250	80	100-pin QFP
W25P022AD-6	6	250	80	100-pin TQFP
W25P022AD-7	7	250	80	100-pin TQFP

Notes:


1. Winbond reserves the right to make changes to its products without prior notice.

2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.



PACKAGE DIMENSIONS

100-pin QFP

100-pin TQFP

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5792647 http://www.winbond.com.tw/ Voice & Fax-on-demand: 886-2-7197006

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan TEL: 886-2-7190505 FAX: 886-2-7197502

Winbond Electronics (H.K.) Ltd. Rm. 803, World Trade Square, Tower II, 123 Hoi Bun Rd., Kwun Tong, Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

Winbond Electronics North America Corp. Winbond Memory Lab. Winbond Microelectronics Corp. Winbond Systems Lab. 2730 Orchard Parkway, San Jose, CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-9436668

Note: All data and specifications are subject to change without notice.