查询BT152X-400R供应商

捷多邦,专业PCB打样工厂,24小时加急出货

Philips Semiconductors

Thyristors

Product specification

BT152X series

MAX.

800R

800

13

20

200

UNIT

V

А

А

А

GENERAL DESCRIPTION

Glass passivated thyristors in a full pack, plastic envelope, intended for use in applications requiring high bidirectional blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating and static switching.

PINNING - SOT186A

PIN CONFIGURATION

QUICK REFERENCE DATA

voltages

current

PARAMETER

Repetitive peak off-state

Average on-state current

Non-repetitive peak on-state

RMS on-state current

SYMBOL

V_{DRM},

V_{RRM}

T(AV)

I_{TSM}

T(RMS)

SYMBOL

MAX.

400R

450

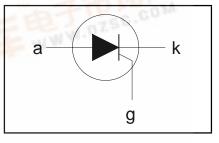
13

20

200

BT152X-

MAX.


600R

650

13

20

200

PIN	DESCRIPTION			
1	cathode			
2	anode			
3	gate			
case	isolated			

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

WWW.DZSC

SYMBOL	PARAMETER	CONDITIONS	MIN.	da	MAX.	0.00	UNIT
V _{drm}	Repetitive peak off-state voltages	6 1	19	-400R 450 ¹	-600R 650 ¹	-800R 800	V
I _{T(AV)} I _{T(RMS)} I _{TSM}	Average on-state current RMS on-state current Non-repetitive peak on-state current	half sine wave; $T_{hs} \le 43 \degree C$ all conduction angles half sine wave; $T_j = 25 \degree C$ prior to surge	-		13 20		A A
300		t = 10 ms t = 8.3 ms	-		200 220		A A
l ² t dl _T /dt	I ² t for fusing Repetitive rate of rise of on-state current after triggering		:	da-	200 200	30	A²s A/μs
I _{GM} V _{GM} V _{RGM} P _{GM}	Peak gate current Peak gate voltage Peak reverse gate voltage Peak gate power			WW	5 5 5 20	3.9.0	A V V W
$\begin{array}{c} P_{G(AV)}^{\text{G}(AV)} \\ T_{stg}^{\text{stg}} \\ T_{j} \end{array}$	Average gate power Storage temperature Operating junction temperature	over any 20 ms period	- -40 -		0.5 150 125		ວໍວູ≷

Although not recommended, off-state voltages up to 800V may be applied without damage, but the thyristor may switch to the on-state. The rate of rise of current should not exceed 15 A/μs.

BT152X series

ISOLATION LIMITING VALUE & CHARACTERISTIC

 $T_{hs} = 25$ °C unless otherwise specified

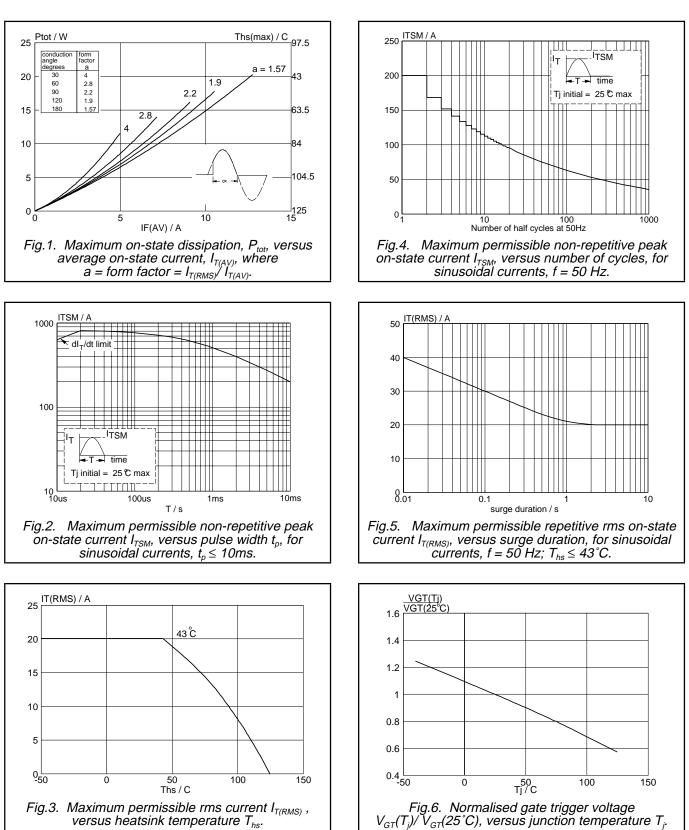
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{isol}	R.M.S. isolation voltage from all three terminals to external heatsink	f = 50-60 Hz; sinusoidal waveform; R.H. \leq 65% ; clean and dustfree	-		2500	V
C _{isol}	Capacitance from T2 to external heatsink	f = 1 MHz	-	10	-	pF

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-hs}	Thermal resistance	with heatsink compound	-	-	4.0	K/W
R_{thj-hs}	Thermal resistance junction to heatsink	without heatsink compound	-	-	5.5	K/W
R _{th j-a}	Thermal resistance junction to ambient	in free air	-	55	-	K/W

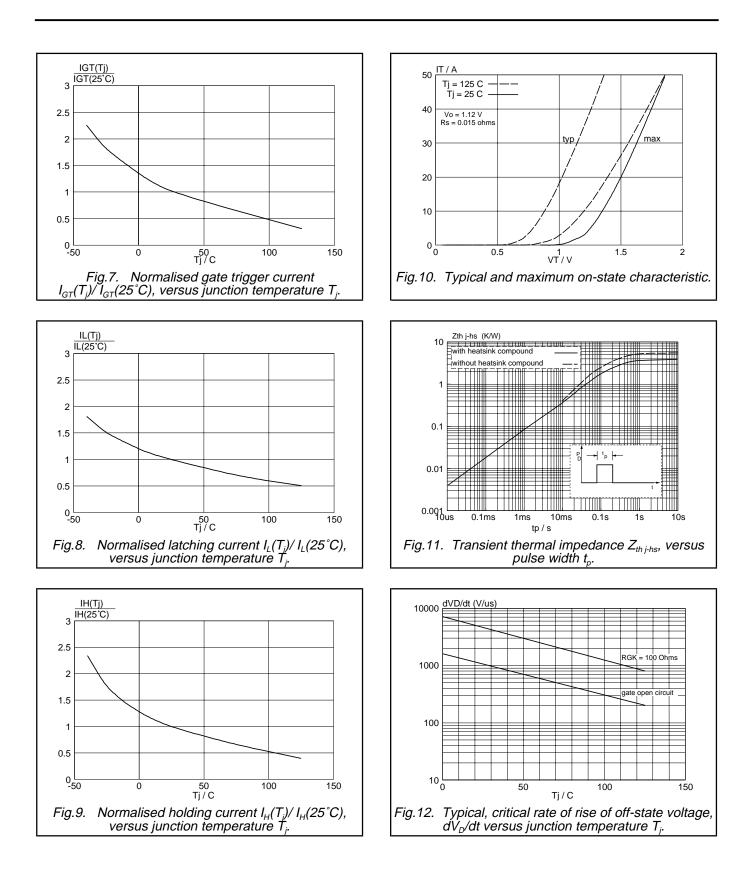
STATIC CHARACTERISTICS

 $T_i = 25$ °C unless otherwise stated

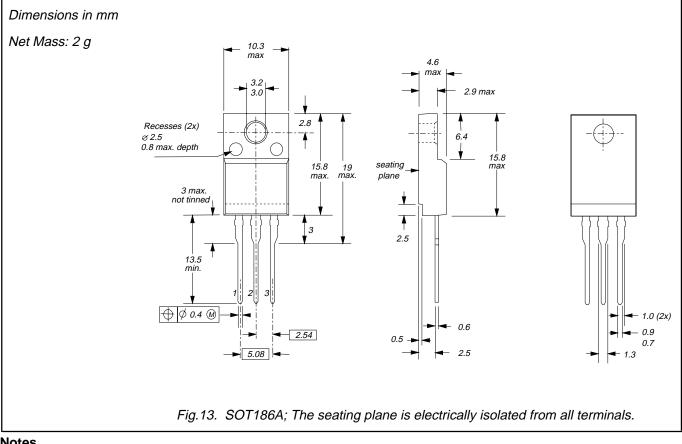

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{GT}	Gate trigger current	$V_{\rm D} = 12 \text{ V}; \text{ I}_{\rm T} = 0.1 \text{ A}$	-	3	32	mA
	Latching current	$V_{\rm D} = 12 \text{ V}; I_{\rm GT} = 0.1 \text{ A}$	-	25	80	mA
I I _H	Holding current	$V_{\rm D} = 12 \text{ V}; I_{\rm GT} = 0.1 \text{ A}$	-	15	60	mA
V _T	On-state voltage	$I_{T} = 40 \text{ A}$	-	1.4	1.75	V
V _{GT}	Gate trigger voltage	$\dot{V}_{\rm D} = 12 \text{ V}; \text{ I}_{\rm T} = 0.1 \text{ A}$	-	0.6	1.5	V
		$V_{D} = V_{DRM(max)}$; $I_{T} = 0.1 \text{ A}$; $T_{j} = 125 \text{ °C}$	0.25	0.4	-	V
I _D , I _R	Off-state leakage current	$V_D = V_{DRM(max)}^{ORM(max)}; V_R = V_{RRM(max)}; T_j = 125 °C$	-	0.2	1.0	mA

DYNAMIC CHARACTERISTICS

 $T_i = 25$ °C unless otherwise stated


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
dV _D /dt	Critical rate of rise of off-state voltage	$V_{DM} = 67\% V_{DRM(max)}; T_j = 125 °C;$ exponential waveform gate open circuit	200	300	-	V/µs
t _{gt}	Gate controlled turn-on	$V_D = V_{DRM(max)}$; $I_G = 0.1$ Å; $dI_G/dt = 5$ Å/µs; $I_{TM} = 40$ Å	-	2	-	μs
t _q	Circuit commutated turn-off time	$V_{D}^{o} = 67\% V_{DRM(max)}; T_{j} = 125 °C;$ $I_{TM} = 50 A; V_{R} = 25 V; dI_{TM}/dt = 30 A/\mu s;$ $dV_{D}/dt = 50 V/\mu s; R_{GK} = 100 \Omega$	-	70	-	μs
		$100 \text{ p/ul} = 30 \text{ v/}\mu3, \text{ N}_{\text{GK}} = 100 \text{ sz}$				l

BT152X series


versus heatsink temperature T_{hs} .

BT152X series

BT152X series

MECHANICAL DATA

Notes 1. Refer to mounting instructions for F-pack envelopes. 2. Epoxy meets UL94 V0 at 1/8".

BT152X series

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1997

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.