# MIXIM

# **±15kV ESD-Protected USB Transceivers**

### **General Description**

The MAX3450E/MAX3451E/MAX3452E USB-compliant transceivers interface low-voltage ASICs with USB devices. The devices fully comply with USB 1.1 and USB 2.0 when operating at full (12Mbps) and low (1.5Mbps) speeds. The MAX3450E/MAX3451E/ MAX3452E operate with V<sub>L</sub> as low as +1.65V, ensuring compatibility with low-voltage ASICs.

The MAX3450E/MAX3451E/MAX3452E feature a logicselectable suspend mode that reduces current consumption to less than 40µA. Integrated ±15kV ESD protection protects the USB D+ and D- bidirectional bus connections. The MAX3450E is pin compatible with Micrel's MIC2550A. The MAX3451E features an internal  $1.5k\Omega$  USB pullup resistor and an enumeration function that allows devices to logically disconnect while plugged in. The MAX3452E provides a push-pull busdetect (BD) output that asserts high when VBUS is greater than +4.0V.

The MAX3450E/MAX3451E/MAX3452E operate over the -40°C to +85°C extended temperature range and are available in 14-pin TSSOP and 3mm x 3mm 16-pin thin QFN packages.

### **Applications**

**PDAs** 

PC Peripherals

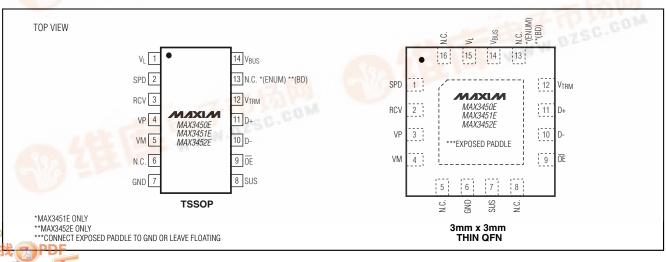
Cellular Telephones

**Data Cradles** 

MP3 Players

MAXMU

## **Features**


- ♦ ±15kV ESD Protection on D+ and D-
- ♦ Combined VP and VM Inputs/Outputs
- ♦ +1.65V to +3.6V V<sub>L</sub> Logic Supply Input for Interfacing with Low-Voltage ASICs
- **♦** Enumerate Input Function (MAX3451E)
- ♦ Powered from Li+ Battery as Low as +3.1V (MAX3450E and MAX3451E)
- ♦ VBUS Detection (MAX3452E)
- ♦ Pin Compatible with Micrel MIC2550A (MAX3450E)
- ◆ Internal D+ or D- Pullup Resistor (MAX3451E)
- ♦ No Power-Supply Sequencing Required

## **Ordering Information**

| PART        | TEMP RANGE     | PIN-PACKAGE |
|-------------|----------------|-------------|
| MAX3450EEUD | -40°C to +85°C | 14 TSSOP    |
| MAX3450EETE | -40°C to +85°C | 16 Thin QFN |
| MAX3451EEUD | -40°C to +85°C | 14 TSSOP    |
| MAX3451EETE | -40°C to +85°C | 16 Thin QFN |
| MAX3452EEUD | -40°C to +85°C | 14 TSSOP    |
| MAX3452EETE | -40°C to +85°C | 16 Thin QFN |
|             |                |             |

### Typical Operating Circuit appears at end of data sheet.

# Pin Configurations



### **ABSOLUTE MAXIMUM RATINGS**

| V <sub>BUS</sub> , V <sub>L</sub> , D+, D- to GND | 0.3V to +6.0V                     |
|---------------------------------------------------|-----------------------------------|
| V <sub>TRM</sub> to GND                           | 0.3V to (V <sub>BUS</sub> + 0.3V) |
| VP, VM, SUS, SPD, ENUM,                           |                                   |
| RCV, OE, BD to GND                                | 0.3V to (V <sub>L</sub> + 0.3V)   |
| Current (into any pin)                            | ±15mA                             |
| Short-Circuit Current (D+ and D-)                 | ±150mA                            |

| Continuous Power Dissipation $(T_A = +70^{\circ}C)$ |                |
|-----------------------------------------------------|----------------|
| 14-Pin TSSOP                                        |                |
| (derate 9.1mW/°C above +70°C)                       | 727mW          |
| 16-Pin Thin QFN 3mm x 3mm                           |                |
| (derate 14.7mW/°C above +70°C)                      | 1176mW         |
| Operating Temperature Range                         | 40°C to +85°C  |
| Junction Temperature                                | +150°C         |
| Storage Temperature Range                           | 65°C to +150°C |
| Lead Temperature (soldering, 10s)                   | +300°C         |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### DC ELECTRICAL CHARACTERISTICS

 $(V_{BUS} = +4.0V \text{ to } +5.5V \text{ or } V_{TRM} = +3.0V \text{ to } +3.6V, V_{L} = +1.65V \text{ to } +3.6V, T_{A} = T_{MIN} \text{ to } T_{MAX}, unless otherwise noted. Typical values are at <math>V_{BUS} = +5.0V, V_{L} = +2.5V, \text{ and } T_{A} = +25^{\circ}C.)$  (Note 1)

| PARAMETER                               | SYMBOL               | CONDITIONS                                                            |                                       | MIN | TYP | MAX | UNITS |
|-----------------------------------------|----------------------|-----------------------------------------------------------------------|---------------------------------------|-----|-----|-----|-------|
| SUPPLY INPUTS (VBUS, VTRM,              | V <sub>L</sub> )     |                                                                       |                                       |     |     |     |       |
| Regulated Supply Voltage<br>Output      | V <sub>TRM</sub>     | Internal regulator                                                    |                                       | 3.0 | 3.3 | 3.6 | V     |
| Operating Supply Current                | Ivbus                | Full-speed transmitting, C <sub>L</sub> = 50pF on D+ and [            |                                       |     |     | 10  | mA    |
| Operating V <sub>L</sub> Supply Current | I <sub>VL</sub>      | Full-speed transmitting, (Note 2)                                     | /receiving at 12Mbps                  |     |     | 2.5 | mA    |
| Full-Speed Idle and SE0 Supply          | hannaan e            | Full-speed idle: V <sub>D+</sub> >                                    | 2.7V, V <sub>D-</sub> < 0.3V          |     | 250 | 350 |       |
| Current                                 | IVBUS(IDLE)          | SE0: V <sub>D+</sub> < 0.3V, V <sub>D-</sub> <                        | 0.3V                                  |     | 250 | 350 | μΑ    |
| Static V <sub>L</sub> Supply Current    | lvl(static)          | Full-speed idle,<br>SE0, or suspend                                   | MAX3450E,<br>MAX3451E                 |     |     | 5   | μА    |
|                                         |                      | mode                                                                  | MAX3452E                              |     |     | 15  |       |
| Suspend Supply Current                  | Ivbus(susp)          | VM = VP = open,<br>$SUS = \overline{OE} = high$                       | MAX3450E,<br>MAX3451E<br>(ENUM = low) |     |     | 35  | μА    |
|                                         |                      |                                                                       | MAX3452E                              |     |     | 40  | 1     |
| Disable-Mode Supply Current             | Ivbus(dis)           | V <sub>L</sub> = GND or open                                          |                                       |     |     | 20  | μΑ    |
| Sharing-Mode V <sub>L</sub> Supply      | h., (21.1.21.12)     | $\frac{V_{BUS}}{OE} = GND \text{ or open,}$<br>OE = low, VP = low  or | MAX3450E,<br>MAX3451E                 |     |     | 5   |       |
| Current                                 | IVL(SHARING)         | high, VM = low or<br>high, SUS = high                                 | MAX3452E                              |     |     | 20  | μΑ    |
| D+/D- Sharing-Mode<br>Load Current      | ID_(SHARING)         | V <sub>BUS</sub> = GND or open, V <sub>D</sub> = 0 or +5.5V           |                                       |     |     | 20  | μА    |
| D+/D- Disable-Mode<br>Load Current      | I <sub>D_(DIS)</sub> | $V_L = GND$ or open, $V_{D_L}$                                        | _ = 0 or +5.5V                        |     |     | 5   | μА    |

## **DC ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{BUS} = +4.0V \text{ to } +5.5V \text{ or } V_{TRM} = +3.0V \text{ to } +3.6V, V_{L} = +1.65V \text{ to } +3.6V, T_{A} = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$  Typical values are at  $V_{BUS} = +5.0V, V_{L} = +2.5V, \text{ and } T_{A} = +25^{\circ}C.)$  (Note 1)

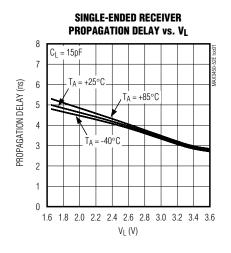
| PARAMETER                                          | SYMBOL             | CONDITIONS                                     | MIN                  | TYP  | MAX                  | UNITS |
|----------------------------------------------------|--------------------|------------------------------------------------|----------------------|------|----------------------|-------|
|                                                    |                    | MAX3450E/MAX3451E, supply lost                 |                      |      | 0.8                  |       |
| USB Power-Supply Detection                         |                    | MAX3450E/MAX3451E, supply present (Note 3)     | 3.6                  |      |                      | .,,   |
| Threshold                                          | VTH_VBUS           | MAX3452E, supply lost                          |                      |      | 3.6                  | V     |
|                                                    |                    | MAX3452E, supply present                       | 4.0                  |      |                      |       |
| USB Power-Supply Detection                         |                    | MAX3450E/MAX3451E                              |                      | 75   |                      | \/    |
| Hysteresis                                         | VHYST_VBUS         | MAX3452E                                       |                      | 40   |                      | mV    |
| V <sub>L</sub> Power-Supply Detection<br>Threshold | V <sub>TH_VL</sub> |                                                |                      | 0.85 |                      | V     |
| DIGITAL INPUTS/OUTPUTS (VF                         | , VM, RCV, SL      | JS, OE, SPD, BD, ENUM)                         | •                    |      |                      |       |
| Input Voltage Low                                  | V <sub>I</sub> L   | VM, VP, SUS, SPD, ENUM, $\overline{\text{OE}}$ |                      |      | 0.3 x V <sub>L</sub> | V     |
| Input Voltage High                                 | VIH                | VM, VP, SUS, SPD, ENUM, OE                     | 0.7 x V <sub>L</sub> |      |                      | V     |
| Output Voltage Low                                 | V <sub>OL</sub>    | VM, VP, RCV, BD, I <sub>OL</sub> = +2mA        |                      |      | 0.4                  | V     |
| Output Voltage High                                | Voh                | VM, VP, RCV, BD, I <sub>OH</sub> = -2mA        | V <sub>L</sub> - 0.4 |      |                      | V     |
| Input Leakage Current                              | l <sub>LKG</sub>   |                                                | -1                   |      | +1                   | μΑ    |
| Input Capacitance                                  | CIN                | Measured from input to GND                     |                      | 10   |                      | рF    |
| ANALOG INPUTS/OUTPUTS (D                           | +, D-)             |                                                | •                    |      |                      |       |
| Differential Input Sensitivity                     | V <sub>ID</sub>    | IV <sub>D+</sub> - V <sub>D-</sub> I           | 0.2                  |      |                      | V     |
| Differential Common-Mode<br>Voltage                | Vсм                | Includes V <sub>ID</sub> range                 | 0.8                  |      | 2.5                  | V     |
| Single-Ended Input Low Voltage                     | VILSE              |                                                |                      |      | 0.8                  | V     |
| Single-Ended Input High Voltage                    | V <sub>IHSE</sub>  |                                                | 2.0                  |      |                      | V     |
| Hysteresis                                         | V <sub>H</sub> YST |                                                |                      | 250  |                      | mV    |
| Output Voltage Low                                 | Vold               | $R_L = 1.5k\Omega \text{ to } +3.6V$           |                      |      | 0.3                  | V     |
| Output Voltage High                                | VOHD               | $R_L = 15k\Omega$ to GND                       | 2.8                  |      | 3.6                  | V     |
| Off-State Leakage Current                          | ILZ                |                                                | -1                   |      | +1                   | μΑ    |
| Transceiver Capacitance                            | CIND               | Measured from D_ to GND                        |                      | 20   |                      | рF    |
| Driver Output Impedance                            | Z <sub>DRV</sub>   | Steady-state drive                             | 4.0                  |      | 15.5                 | Ω     |
| Input Impedance                                    | Z <sub>IN</sub>    | Driver off                                     | 10                   |      |                      | МΩ    |
| Internal Pullup Resistance                         | RPULLUP            | I <sub>LOAD</sub> = 500μA (MAX3451E) (Note 4)  | 1.425                |      | 1.575                | kΩ    |
| ESD PROTECTION (D+, D-)                            |                    |                                                |                      |      |                      |       |
| Human Body Model                                   |                    |                                                |                      | ±15  |                      | kV    |
| IEC 1000-4-2 Contact Discharge                     |                    |                                                |                      | ±8   |                      | kV    |

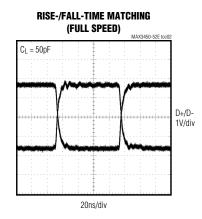
### TIMING CHARACTERISTICS

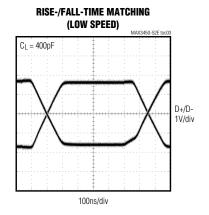
 $(V_{BUS} = +4.0V \text{ to } +5.5V \text{ or } V_{TRM} = +3.0V \text{ to } +3.6V, V_L = +1.65V \text{ to } +3.6V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{BUS} = +5V, V_L = +2.5V, \text{ and } T_A = +25^{\circ}C.) \text{ (Note 1)}$ 

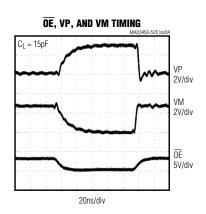
| PARAMETER                                   | SYMBOL                           | CONDITIONS                                                         | MIN | TYP | MAX | UNITS    |  |
|---------------------------------------------|----------------------------------|--------------------------------------------------------------------|-----|-----|-----|----------|--|
| DRIVER CHARACTERISTICS (F                   | ULL-SPEED I                      | MODE, C <sub>L</sub> = 50pF)                                       |     |     |     | 1        |  |
| Rise Time                                   | tFR                              | 10% to 90% of IV <sub>OHD</sub> - V <sub>OLD</sub> I, Figures 1, 6 | 4   |     | 20  | ns       |  |
| Fall Time                                   | tFF                              | 90% to 10% of IV <sub>OHD</sub> - V <sub>OLD</sub> I, Figures 1, 6 | 4   |     | 20  | ns       |  |
| Rise-/Fall-Time Matching (Note 2)           | t <sub>FR</sub> /t <sub>FF</sub> | Excluding the first transition from idle state, (Figures 1, 6)     | 90  |     | 110 | %        |  |
| Output-Signal Crossover<br>Voltage (Note 2) | V <sub>CRS_F</sub>               | Excluding the first transition from idle state, (Figures 2, 6)     | 1.3 |     | 2.0 | V        |  |
| Driver Propagation Delay                    | tplh_drv                         | Low-to-high transition                                             |     |     | 18  |          |  |
| (Figures 2, 6)                              | t <sub>PHL_DRV</sub>             | High-to-low transition                                             |     |     | 18  | ns       |  |
| Driver Disable Delay                        | tphz_drv                         | High-to-off transition                                             |     | 20  |     |          |  |
| (Figure 3)                                  | tplz_drv                         | Low-to-off transition                                              |     |     | 20  | ns       |  |
| Driver Enable Delay                         | tpzh_drv                         | Off-to-high transition                                             |     |     | 20  | ns       |  |
| (Figure 3)                                  | tpzl_drv                         | Off-to-low transition                                              |     |     | 20  | 115      |  |
| DRIVER CHARACTERISTICS (L                   | OW-SPEED N                       | MODE, C <sub>L</sub> = 200pF TO 600pF)                             |     |     |     |          |  |
| Rise Time                                   | tLR                              | 10% to 90% of IV <sub>OHD</sub> - V <sub>OLD</sub> I, Figures 1, 6 | 75  |     | 300 | ns       |  |
| Fall Time                                   | tLF                              | 90% to 10% of IV <sub>OHD</sub> - V <sub>OLD</sub> I, Figures 1, 6 | 75  |     | 300 | ns       |  |
| Rise-/Fall-Time Matching                    | t <sub>LR</sub> /t <sub>LF</sub> | Excluding the first transition from idle state, Figures 1, 6       | 80  |     | 125 | %        |  |
| Output-Signal Crossover<br>Voltage          | VCRS_L                           | Excluding the first transition from idle state, Figures 2, 6       | 1.3 |     | 2.0 | V        |  |
| RECEIVER CHARACTERISTICS                    | (C <sub>L</sub> = 15pF)          |                                                                    | •   |     |     | •        |  |
| Differential Receiver Propagation           | tplh_rcv                         | Low-to-high transition                                             |     |     | 22  |          |  |
| Delay, Figures 4, 6                         | tphl_rcv                         | High-to-low transition                                             |     |     | 22  | ns       |  |
| Single-Ended Receiver                       | tplh_se                          | Low-to-high transition                                             |     |     | 12  |          |  |
| Propagation Delay, Figures 4, 6             | tphl_se                          | High-to-low transition                                             |     |     | 12  | ns<br>12 |  |
| Single-Ended Receiver Disable               | tphz_se                          | High-to-off transition                                             |     |     | 15  |          |  |
| Delay, Figure 5                             | t <sub>PLZ_SE</sub>              | Low-to-off transition                                              |     |     | 15  | ns       |  |
| Single-Ended Receiver Enable                | tpzh_se                          | Off-to-high transition                                             |     |     | 15  |          |  |
| Delay, Figure 5                             | tpzl_se                          | Off-to-low transition                                              |     |     | 15  | ns       |  |

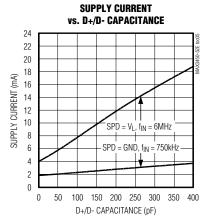
**Note 1:** Parameters are 100% production tested at +25°C, unless otherwise noted. Limits over temperature are guaranteed by design.

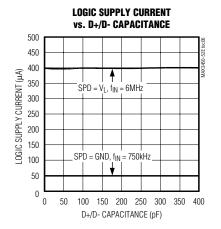

Note 2: Guaranteed by design, not production tested.


**Note 3:** Production tested to +2.7V for  $V_L \le +3.0V$ .


Note 4: Including external  $24.3\Omega$  series resistor.


## Typical Operating Characteristics

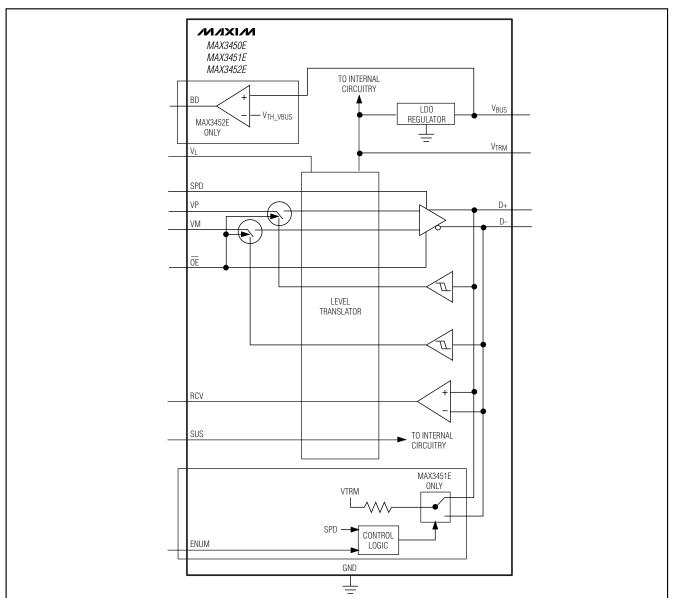

(V<sub>BUS</sub> = +5.0V, V<sub>L</sub> = +3.3V, T<sub>A</sub> = +25°C, unless otherwise noted.)












# Pin Description

| Р     | IN       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSSOP | QFN      | NAME             | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1     | 15       | VL               | Digital I/O Connections Logic Supply. Connect a +1.65V to +3.6V supply to V <sub>L</sub> . Bypass V <sub>L</sub> to GND with a 0.1µF ceramic capacitor.                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2     | 1        | SPD              | Speed-Selector Input. Connect SPD to GND to select the low-speed data rate (1.5Mbps). Connect SPD to $V_L$ to select the full-speed data rate (12Mbps).                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3     | 2        | RCV              | Differential-Receiver Output. RCV responds to the differential input on D+ and D- (Tables 3 and 4). RCV asserts low if SUS = V <sub>L</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4     | 3        | VP               | Receiver Output/Driver Input. VP functions as a receiver output when $\overline{OE} = V_L$ . VP duplicates D+ when receiving. VP functions as a driver input when $\overline{OE} = \text{GND}$ .                                                                                                                                                                                                                                                                                                                                                                  |
| 5     | 4        | VM               | Receiver Output/Driver Input. VM functions as a receiver output when $\overline{OE} = V_L$ . VM duplicates Dwhen receiving. VM functions as a driver input when $\overline{OE} = \text{GND}$ .                                                                                                                                                                                                                                                                                                                                                                    |
| 6     | 5, 8, 16 | N.C.             | No Connection. Not internally connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7     | 6        | GND              | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8     | 7        | SUS              | Suspend Input. Drive SUS low for normal operation. Drive SUS high to put the MAX3450E/MAX3451E/MAX3452E into suspend mode. RCV asserts low in suspend mode. VP and VM remain active in suspend mode.                                                                                                                                                                                                                                                                                                                                                              |
| 9     | 9        | ŌĒ               | Output Enable. Drive $\overline{OE}$ to GND to enable the transmitter outputs. Drive $\overline{OE}$ to V <sub>L</sub> to disable the transmitter outputs. $\overline{OE}$ also controls the I/O direction of VP and VM (Tables 3 and 4).                                                                                                                                                                                                                                                                                                                         |
| 10    | 10       | D-               | USB Input/Output. For $\overline{OE}$ = GND, D- functions as a USB output, with VM providing the input signal. For $\overline{OE}$ = V <sub>L</sub> , D- functions as a USB input, with VM functioning as a single-ended receiver output. Connect a 1.5k $\Omega$ resistor from D- to V <sub>TRM</sub> for low-speed (1.5Mbps) operation (MAX3450E and MAX3452E).                                                                                                                                                                                                 |
| 11    | 11       | D+               | USB Input/Output. For $\overline{OE}$ = GND, D+ functions as a USB output, with VP providing the input signal. For $\overline{OE}$ = V <sub>L</sub> , D+ functions as a USB input, with VP functioning as a single-ended receiver output. Connect a 1.5k $\Omega$ resistor from D+ to V <sub>TRM</sub> for full-speed (12Mbps) operation (MAX3450E and MAX3452E).                                                                                                                                                                                                 |
| 12    | 12       | V <sub>TRM</sub> | Internal Regulator Output. V <sub>TRM</sub> provides a regulated +3.3V output. Bypass V <sub>TRM</sub> to GND with a 1µF (min) ceramic capacitor as close to the device as possible. V <sub>TRM</sub> normally derives power from V <sub>BUS</sub> . Alternatively, drive V <sub>TRM</sub> directly with a +3.3V ±10% supply (MAX3450E and MAX3451E). V <sub>TRM</sub> provides power to internal circuitry and provides the pullup voltage for an external USB pullup resistor (MAX3450E and MAX3452E). Do not use V <sub>TRM</sub> to power external circuitry. |
|       |          | N.C.             | No Connection. Not internally connected (MAX3450E).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13    | 13       | ENUM             | Enumerate Function Selection Input (MAX3451E). Drive ENUM to $V_L$ to connect the internal 1.5k $\Omega$ resistor between $V_{TRM}$ and D+ or D-, depending on the SPD state. Drive ENUM to GND to disconnect the internal 1.5k $\Omega$ resistor. For SPD = $V_L$ , the 1.5k $\Omega$ pullup resistor connects to D+. For SPD = GND, the 1.5k $\Omega$ pullup resistor connects to D                                                                                                                                                                             |
|       |          | BD               | Bus-Detection Output (MAX3452E). The push-pull BD output asserts low and the device enters sharing mode if V <sub>BUS</sub> < +3.6V. BD asserts high if V <sub>BUS</sub> > +4.0V.                                                                                                                                                                                                                                                                                                                                                                                 |
| 14    | 14       | V <sub>BUS</sub> | USB Power-Supply Input. Connect a +4.0V to +5.5V power supply to V <sub>BUS</sub> . V <sub>BUS</sub> provides power to the internal linear regulator. Bypass V <sub>BUS</sub> to GND with a $0.1\mu F$ ceramic capacitor as close to the device as possible. Connect V <sub>BUS</sub> and V <sub>TRM</sub> together when powering the MAX3450E or MAX3451E with an external power supply (+3.3V $\pm 10\%$ ).                                                                                                                                                     |

### Functional Diagram



## Detailed Description

The MAX3450E/MAX3451E/MAX3452E USB-compliant transceivers convert single-ended or differential logic-level signals to USB signals and USB signals to single-ended or differential logic-level signals. The devices fully comply with USB 1.1, as well as USB 2.0 at full- (12Mbps) and low-speed (1.5Mbps) operation. The MAX3450E/MAX3451E/MAX3452E operate with V<sub>L</sub>

as low as +1.65V, ensuring compatibility with low-voltage ASICs.

The MAX3450E/MAX3451E/MAX3452E derive power from the USB host (V<sub>BUS</sub>) or from a single-cell Li+ battery (MAX3450E and MAX3451E) connected to V<sub>BUS</sub> or from a +3.3V regulated supply connected to V<sub>BUS</sub> and V<sub>TRM</sub>. The MAX3450E/MAX3451E/MAX3452E meet the physical-layer specifications for logic-level supply volt-

ages ( $V_L$ ) from +1.65V to +3.6V. Integrated ±15kV ESD protection protects the D+ and D- USB I/O ports.

The MAX3451E features an enumerate function providing an internal 1.5k $\Omega$  pullup resistor to VTRM. The enumerate function disconnects the 1.5k $\Omega$  pullup resistor, allowing the MAX3451E to simulate a bus disconnect while powered and connected to the USB cable. The MAX3450E is pin-for-pin compatible with Micrel's MIC2550A. The MAX3452E features a BD output that asserts high if VBUS is greater than +4.0V. BD asserts low if VBUS is less than +3.6V. The MAX3450E and MAX3452E require external pullup resistors from either D+ or D- to VTRM to set the bus speed.

### **Applications Information**

## **Power-Supply Configurations**

## Normal Operating Mode

Connect  $V_L$  and  $V_{BUS}$  to system power supplies (Table 1). Connect  $V_L$  to a +1.65V to +3.6V supply. Connect  $V_{BUS}$  to a +4.0V to +5.5V supply. Alternatively, the MAX3450E and MAX3451E can derive power from

a single Li+ battery. Connect the battery to V<sub>BUS</sub>. V<sub>TRM</sub> remains above +3.0V for V<sub>BUS</sub> as low as +3.1V.

Additionally, the MAX3450E and MAX3451E can derive power from a +3.3V  $\pm 10\%$  voltage regulator. Connect VBUS and VTRM to an external +3.3V voltage regulator. VBUS no longer consumes current to power the internal linear regulator in this configuration.

### Disable Mode

Connect V<sub>BUS</sub> to a system power supply and leave V<sub>L</sub> unconnected or connect to GND. D+ and D- enter a tristate mode and V<sub>BUS</sub> (or V<sub>BUS</sub> and V<sub>TRM</sub>) consumes less than  $20\mu$ A of supply current. D+ and D- withstand external signals up to +5.5V in disable mode (Table 2).

### Sharing Mode

Connect V<sub>L</sub> to a system power supply and leave V<sub>BUS</sub> (or V<sub>BUS</sub> and V<sub>TRM</sub>) unconnected or connect to GND. D+ and D- enter a tri-state mode, allowing other circuitry to share the USB D+ and D- lines, and V<sub>L</sub> consumes less than 20µA of supply current. D+ and D- withstand external signals up to +5.5V in sharing mode (Table 2).

Table 1. Power-Supply Configurations

| V <sub>BUS</sub> (V) | V <sub>TRM</sub> (V) | V <sub>L</sub> (V) | CONFIGURATION            | NOTES              |
|----------------------|----------------------|--------------------|--------------------------|--------------------|
| +4.0 to +5.5         | +3.0 to +3.6 output  | +1.65 to +3.6      | Normal mode              |                    |
| +3.1 to +4.5         | +3.0 to +3.6 output  | +1.65 to +3.6      | Battery supply           | MAX3450E, MAX3451E |
| +3.0 to +3.6         | +3.0 to +3.6 input   | +1.65 to +3.6      | Voltage regulator supply | MAX3450E, MAX3451E |
| GND or floating      | Output               | +1.65 to +3.6      | Sharing mode             | Table 2            |
| +3.0 to +5.5         | V <sub>BUS</sub>     | GND or floating    | Disable mode             | Table 2            |

 Table 2. Disable-Mode and Sharing-Mode Connections

| INPUTS/OUTPUTS                                     | DISABLE MODE                                                                                                                                                  | SHARING MODE                                                                                           |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| V <sub>BUS</sub> /V <sub>TRM</sub>                 | <ul> <li>+5V input/+3.3V output</li> <li>+3.3V input/+3.3V input (MAX3450E and MAX3451E)</li> <li>+3.7V input/+3.3V output (MAX3450E and MAX3451E)</li> </ul> | <ul> <li>Floating or connected to GND (MAX3450E and MAX3451)</li> <li>&lt; +3.6V (MAX3452E)</li> </ul> |
| VL                                                 | Floating or connected to GND                                                                                                                                  | +1.65V to +3.6V input                                                                                  |
| D+ and D-                                          | High impedance                                                                                                                                                | High impedance                                                                                         |
| VP and VM                                          | Invalid*                                                                                                                                                      | High impedance for $\overline{OE}$ = low                                                               |
| VF and vivi                                        | IIIvaliu                                                                                                                                                      | High for $\overline{OE}$ = high                                                                        |
| RCV                                                | Invalid*                                                                                                                                                      | Undefined**                                                                                            |
| SPD, SUS, $\overline{\text{OE}}$ , ENUM (MAX3451E) | High impedance                                                                                                                                                | High impedance                                                                                         |
| BD (MAX3452E)                                      | Invalid*                                                                                                                                                      | Low                                                                                                    |

<sup>\*</sup>High impedance or low

<sup>\*\*</sup>High or low

### **Device Control**

ŌΕ

 $\overline{\text{OE}}$  controls the direction of communication. Drive  $\overline{\text{OE}}$  low to transfer data from the logic side to the USB side. For  $\overline{\text{OE}}$  = low, VP and VM serve as differential driver inputs to the USB transmitter.

Drive  $\overline{OE}$  high to transfer data from the USB side to the logic side. For  $\overline{OE}$  = high, VP and VM serve as single-ended receiver outputs from the USB inputs (D+ and D-). RCV serves as a differential receiver output, regardless of the state of  $\overline{OE}$ .

### ENUM (MAX3451E)

The MAX3451E features an enumerate function that allows software control of USB enumeration. USB protocol requires a 1.5k $\Omega$  pullup resistor to D+ or D- to indicate the transmission speed to the host (see the *SPD* section). The MAX3451E provides an internal 1.5k $\Omega$  pullup resistor. Remove the pullup resistor from the circuit to simulate a device disconnect from the USB. Drive ENUM low to disconnect the internal pullup resistor. Drive ENUM high to connect the internal pullup resistor. The SPD state determines whether the pullup resistor connects to D+ or D-. For ENUM = high, the internal 1.5k $\Omega$  pullup resistor connects to D+ when SPD = VL (full speed) or to D- when SPD = GND (low speed).

### **SPD**

SPD sets the transceiver speed. Connect SPD to GND to select the low-speed data rate (1.5Mbps). Connect SPD to V<sub>L</sub> to select the full-speed data rate (12Mbps). The MAX3451E provides an internal pullup resistor for selecting the bus speed. The MAX3450E and MAX3452E require an external pullup resistor to D+ or D- to set the bus speed. Connect the 1.5k $\Omega$  resistor between D+ and V<sub>TRM</sub> to set the full-speed (12Mbps) data rate, or connect the 1.5k $\Omega$  resistor between D- and V<sub>TRM</sub> to set the low-speed (1.5 Mbps) data rate.

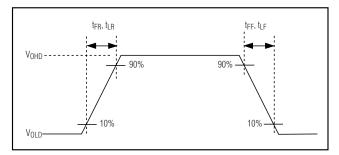



Figure 1. Rise and Fall Times

#### SUS

The SUS state determines whether the MAX3450E/MAX3451E/MAX3452E operate in normal mode or in suspend mode. Connect SUS to GND to enable normal operation. Drive SUS high to enable suspend mode. RCV asserts low and VP and VM remain active in suspend mode (Tables 3 and 4). Supply current decreases in suspend mode (see the *Electrical Characteristics*).

# Table 3a. Transmit Truth Table (OE = 0, SUS = 0)

| INPUTS |    | OUTPUTS |    |     | OUTPUT STATE |
|--------|----|---------|----|-----|--------------|
| VP     | VM | D+      | D- | RCV | OUIPUI SIAIE |
| 0      | 0  | 0       | 0  | Х   | SE0          |
| 0      | 1  | 0       | 1  | 0   | Logic 0      |
| 1      | 0  | 1       | 0  | 1   | Logic 1      |
| 1      | 1  | 1       | 1  | Х   | Undefined    |

X = Undefined.

# Table 3b. Transmit Truth Table $(\overline{OE} = 0, SUS = 1)$

| INP | INPUTS |    | OUTPUT | OUTPUT STATE |              |
|-----|--------|----|--------|--------------|--------------|
| VP  | VM     | D+ | D-     | RCV          | OUIPUI SIAIE |
| 0   | 0      | 0  | 0      | 0            | SE0          |
| 0   | 1      | 0  | 1      | 0            | Logic 0      |
| 1   | 0      | 1  | 0      | 0            | Logic 1      |
| 1   | 1      | 1  | 1      | 0            | Undefined    |

# Table 4a. Receive Truth Table (OE = 1 and SUS = 0)

| INPUTS |    | OUTPUTS |    |     | OUTPUT STATE |  |  |
|--------|----|---------|----|-----|--------------|--|--|
| D+     | D- | VP      | VM | RCV | OUIPUI SIAIE |  |  |
| 0      | 0  | 0       | 0  | Χ   | SE0          |  |  |
| 0      | 1  | 0       | 1  | 0   | Logic 0      |  |  |
| 1      | 0  | 1       | 0  | 1   | Logic 1      |  |  |
| 1      | 1  | 1       | 1  | Х   | Undefined    |  |  |

X = Undefined.

# Table 4b. Receive Truth Table (OE = 1 and SUS = 1)

| INPUTS |    | (  | OUTPUT | OUTPUT STATE |              |  |
|--------|----|----|--------|--------------|--------------|--|
| D+     | D- | VP | VM     | RCV          | OUIPUI SIAIE |  |
| 0      | 0  | 0  | 0      | 0            | SE0          |  |
| 0      | 1  | 0  | 1      | 0            | Logic 0      |  |
| 1      | 0  | 1  | 0      | 0            | Logic 1      |  |
| 1      | 1  | 1  | 1      | 0            | Undefined    |  |

### BD (MAX3452E)

The push-pull bus detect (BD) output monitors  $V_{BUS}$  and asserts high if  $V_{BUS}$  is greater than +4.0V. BD asserts low if  $V_{BUS}$  is less than +3.6V and the MAX3452E enters sharing mode (Table 2).

### VTRM

An internal linear regulator generates the V<sub>TRM</sub> voltage (+3.3V typ). V<sub>TRM</sub> derives power from V<sub>BUS</sub> (see the *Power-Supply Configurations* section). V<sub>TRM</sub> powers the internal portions of the USB circuitry and provides the pullup voltage for an external USB pullup resistor MAX3450E/MAX3452E. Bypass V<sub>TRM</sub> to GND with a 1µF ceramic capacitor as close to the device as possible. Do not use V<sub>TRM</sub> to provide power to external circuitry.

#### D+ and D-

D+ and D- serve as bidirectional bus connections and are ESD protected to  $\pm 15 \text{kV}$  (Human Body Model). For  $\overline{\text{OE}} = \text{low}$ , D+ and D- serve as transmitter outputs. For  $\overline{\text{OE}} = \text{high}$ , D+ and D- serve as receiver inputs.

### **VBUS**

For most applications, V<sub>BUS</sub> connects to the V<sub>BUS</sub> terminal on the USB connector. V<sub>BUS</sub> can also connect to an external supply as low as +3.1V (MAX3450E and MAX3451E). See the *Power-Supply Configurations* section. Drive V<sub>BUS</sub> low to enable sharing mode. Bypass V<sub>BUS</sub> to GND with a 0.1µF ceramic capacitor as close to the device as possible.

## External Components

### **External Resistors**

Proper USB operation requires two external resistors, each  $24.3\Omega$  ±1%, 1/8W (or greater). Install one resistor in series between D+ of the MAX3450E/MAX3451E/MAX3452E and D+ on the USB connector. Install the other resistor in series between D- of the MAX3450E/MAX3451E/MAX3452E and D- on the USB connector (see the *Typical Operating Circuit*).

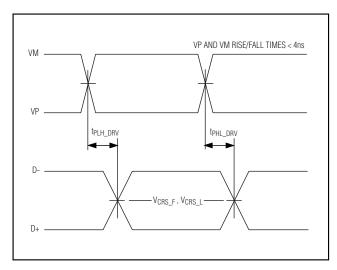



Figure 2. Timing of VP and VM to D+ and D-

The MAX3450E/MAX3452E requires an external 1.5k $\!\Omega$  pullup resistor between VTRM and D+ or D- to set the bus speed.

### External Capacitors

The MAX3450E/MAX3451E/MAX3452E require three external capacitors for proper operation. Bypass  $V_L$  to GND with a 0.1µF ceramic capacitor. Bypass  $V_B$ US to GND with a 0.1µF ceramic capacitor. Bypass  $V_{TRM}$  to GND with a 1µF (min) ceramic capacitor. Install all capacitors as close to the device as possible.

#### **Data Transfer**

### Transmitting Data to the USB

The MAX3450E/MAX3451E/MAX3452E transmit data to the USB differentially on D+ and D-. VP and VM serve as differential input signals to the driver (Tables 3a and 3b).

#### Receiving Data from the USB

To receive data from the USB, drive  $\overline{OE}$  high and SUS low. Differential data received by D+ and D- appears as a differential logic signal at RCV. Single-ended receivers on D+ and D- drive VP and VM, respectively (Tables 4a and 4b).



Figure 3. Enable and Disable Timing, Driver

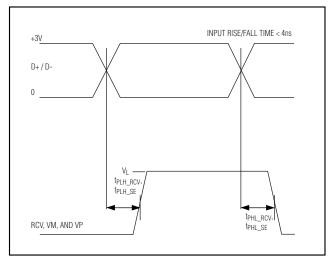



Figure 4. Timing of D+ and D- to RCV, VM, and VP

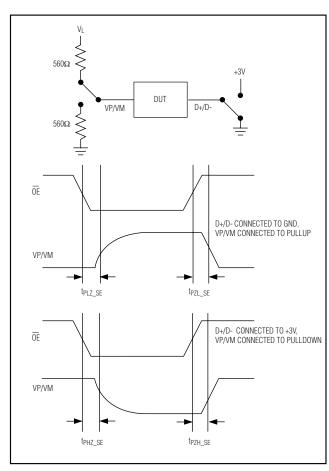



Figure 5. Enable and Disable Timing, Receiver

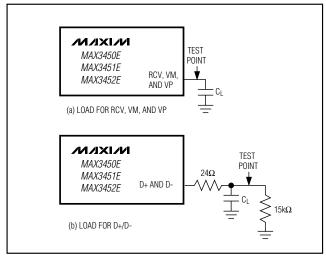



Figure 6. Test Circuits



### **ESD Protection**

D+ and D- possess extra protection against static electricity to protect the devices up to ±15kV. The ESD structures withstand high ESD in all operating modes: normal operation, suspend mode, and powered down. D+ and D- provide protection to the following limits:

- ±15kV using the Human Body Model
- ±8kV using the Contact Discharge method specified in IEC 1000-4-2

### **ESD Test Conditions**

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

### **Human Body Model**

Figure 7 shows the Human Body Model and Figure 8 shows the current waveform generated when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which then discharges into the test device through a  $1.5 \mathrm{k}\Omega$  resistor.

### IEC 1000-4-2

The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to integrated circuits. The major difference between tests done using the Human Body Model and IEC 1000-4-2 is a higher peak current in IEC 1000-4-2, due to lower series resistance. Hence, the ESD withstand voltage measured to IEC 1000-4-2 generally is lower than that measured using the Human Body Model. Figure 9 shows the IEC 1000-4-2 model. The Contact Discharge method connects the probe to the device before the probe is charged.

### **Machine Model**

The Machine Model for ESD tests all connections using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. All pins require this protection during manufacturing, not just inputs and outputs. After PC board assembly, the Machine Model is less relevant to I/O ports.

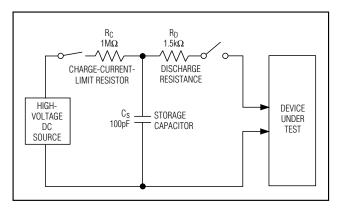



Figure 7. Human Body ESD Test Models

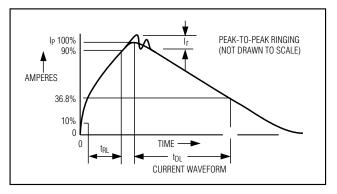



Figure 8. Human Body Model Current Waveform

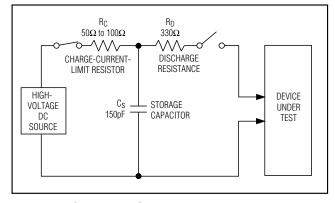
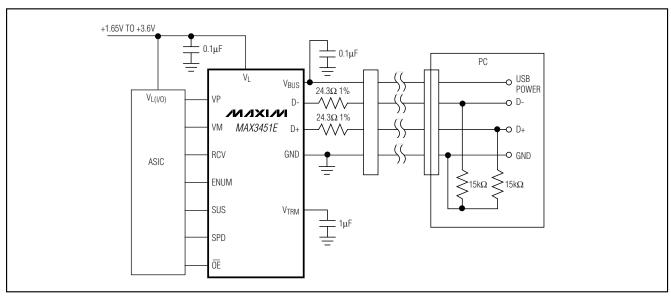
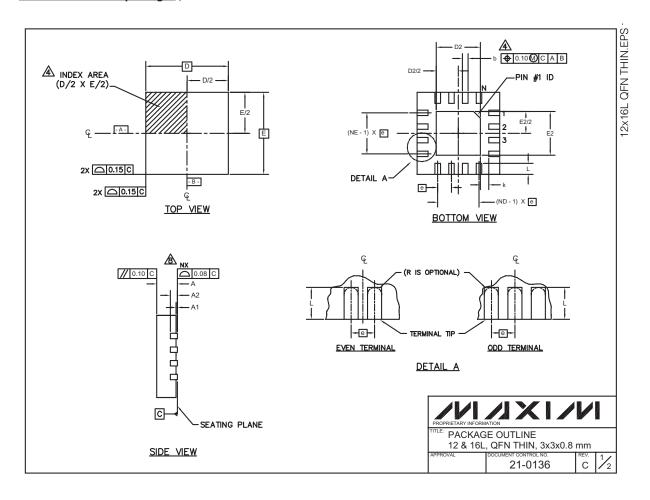




Figure 9. IEC 1000-4-2 ESD Test Model

## **Typical Operating Circuit**




Chip Information

TRANSISTOR COUNT: 873 PROCESS: BICMOS

## **Package Information**

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <a href="https://www.maxim-ic.com/packages">www.maxim-ic.com/packages</a>.)

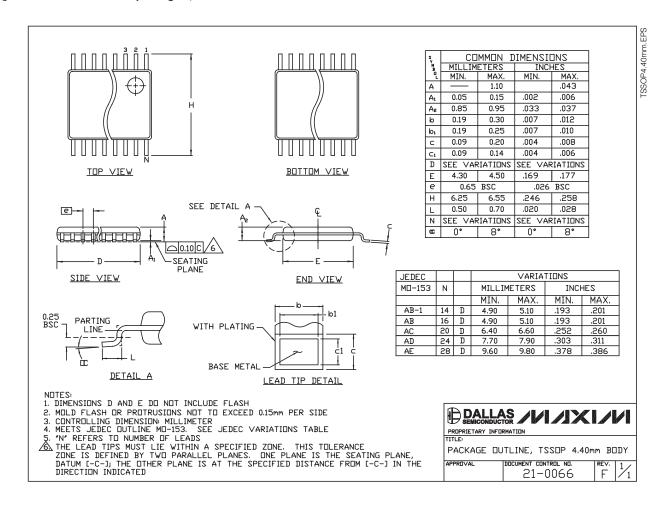


## Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <a href="https://www.maxim-ic.com/packages">www.maxim-ic.com/packages</a>.)

| PKG  | 12L 3x3   |      |      | 16L 3x3   |      |      |  |
|------|-----------|------|------|-----------|------|------|--|
| REF. | MIN.      | NOM. | MAX. | MIN.      | NOM. | MAX. |  |
| Α    | 0.70      | 0.75 | 0.80 | 0.70      | 0.75 | 0.80 |  |
| ь    | 0.20      | 0.25 | 0.30 | 0.20      | 0.25 | 0.30 |  |
| D    | 2.90      | 3.00 | 3.10 | 2.90      | 3.00 | 3.10 |  |
| Е    | 2.90      | 3.00 | 3.10 | 2.90      | 3.00 | 3.10 |  |
| е    | 0.50 BSC. |      |      | 0.50 BSC. |      |      |  |
| L    | 0.45      | 0.55 | 0.65 | 0.30      | 0.40 | 0.50 |  |
| N    | 12        |      |      | 16        |      |      |  |
| ND   |           | 3    |      | 4         |      |      |  |
| NE   | 3         |      |      | 4         |      |      |  |
| A1   | 0         | 0.02 | 0.05 | 0         | 0.02 | 0.05 |  |
| A2   | 0.20 REF  |      |      | 0.20 REF  |      |      |  |
| k    | 0.25      | -    | -    | 0.25      | -    | -    |  |

| EXPOSED PAD VARIATIONS |      |      |      |      |      |      |             |        |
|------------------------|------|------|------|------|------|------|-------------|--------|
| PKG.<br>CODES          | D2   |      |      | E2   |      |      | DILLID      | IEDEO  |
|                        | MIN. | NOM. | MAX. | MIN. | NOM. | MAX. | PIN ID      | JEDEC  |
| T1233-1                | 0.95 | 1.10 | 1.25 | 0.95 | 1.10 | 1.25 | 0.35 x 45°  | WEED-1 |
| T1633-1                | 0.95 | 1.10 | 1.25 | 0.95 | 1.10 | 1.25 | 0.35 x 45°  | WEED-2 |
| T1633F-3               | 0.65 | 0.80 | 0.95 | 0.65 | 0.80 | 0.95 | 0.225 x 45° | -      |


#### NOTES:

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- 3. N IS THE TOTAL NUMBER OF TERMINALS.
- THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- ⚠ DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP.
- ⚠ ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- ⚠ COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- 9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.



## Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <a href="https://www.maxim-ic.com/packages">www.maxim-ic.com/packages</a>.)



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.