

19-2713: Rev 1: 11/03

EVALUATION KIT AVAILABLE

12.5Gbps Settable Receive Equalizer

General Description

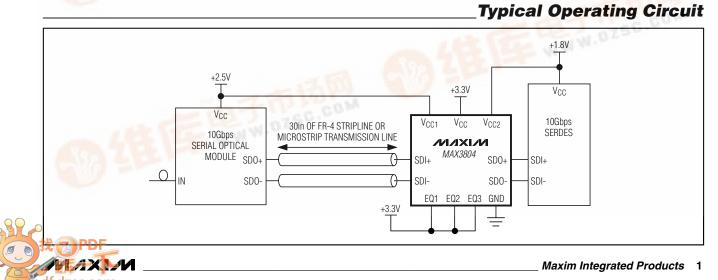
The MAX3804 driver with integrated analog equalizer compensates up to 20dB of loss at 5GHz. It is designed to ensure PC board signal integrity up to 12.5Gbps, where frequency-dependent skin effect and dielectric losses typically produce unacceptable amounts of intersymbol interference. The MAX3804 can extend the practical chip-to-chip transmission distance for 10Gbps NRZ serial data up to 30in (0.75m) on FR-4, and it significantly decreases deterministic jitter. Residual jitter after equalization for 10.7Gbps signals is typically 24ps_{P-P} on the maximum path length.

The MAX3804 is ideal for 10Gbps chip-to-chip serial interconnections on inexpensive FR-4 material. Its $3mm \times 3mm$ package affords optimal placement and routing flexibility. It has separate V_{CC} connections for internal logic and current-mode logic (CML) I/O. This allows the CML input and output to be referenced to isolated supplies, providing independent DC-coupled interfacing to 1.8V, 2.5V, or 3.3V ICs. Eight discrete levels of input equalization can be selected through a digital control input, enabling the equalizer to be matched to a range of transmission line path loss. When correctly set to match the path loss, the MAX3804 provides optimal performance over a wide range of data rates and formats.

OC-192 and 10Gb Ethernet Switches and Routers

OC-192 and 10Gb Ethernet Serial Modules

High-Speed Signal Distribution


_Features

- Compensates Up to 30in (0.75m) of 6-mil FR-4 Transmission Line Loss
- 115mW Operating Power
- Up to 12.5Gbps Data Rate
- ♦ Compatible with 8B10B, 64B66B, and PRBS Data
- Less than 30ps_{P-P} Residual Jitter After Equalization
- 3-Bit Equalization Level Select Input
- 3mm x 3mm Thin QFN Package
- DC-Coupling to 1.8V, 2.5V, or 3.3V CML I/O
- ♦ -40°C to +85°C Operation
- +3.3V Core Supply Voltage

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PACKAGE CODE
MAX3804ETE	-40°C to +85°C	16 Thin QFN (3mm x 3mm)	T1633F-3

Pin Configuration appears at end of data sheet.

Applications

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at

TE

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC})	-0.5V to +4.0V
CML Supply Voltage (VCC1, VCC2)	0.5V to (V _{CC} + 0.5V)
Current at Serial Output (SDO+, SDO-)	±25mÅ
Input Voltage (SDI+, SDI-, EQ1,	
EQ2, EQ3)	0.5V to (V _{CC} + 0.5V)

1398mW
40°C to +85°C
55°C to +150°C
+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

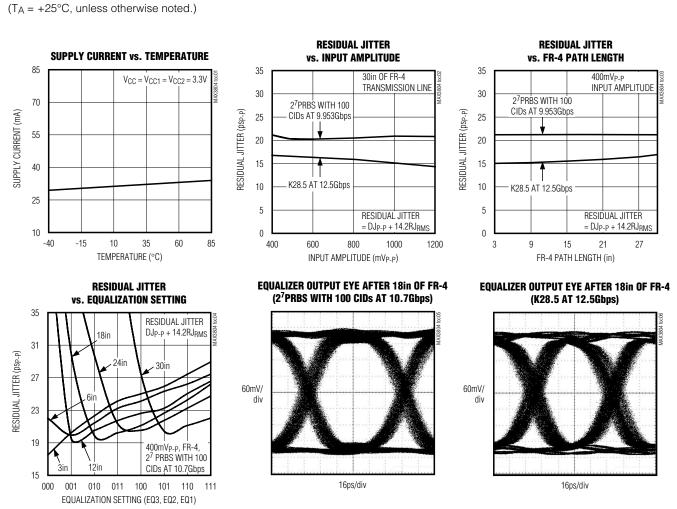
ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \text{ to } +3.6V, V_{CC1} = V_{CC2} = +1.65V \text{ to } +3.6V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.$ Typical values are at $V_{CC} = V_{CC1} = V_{CC2} = +3.3V$, and $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	ICC			35	50	mA
CML Input Differential	VIN	AC-coupled or DC-coupled (Note 1)	400		1200	mV_{P-P}
CML Input Common Mode		DC-coupled	V _{CC1} - 0.4		V _{CC1} + 0.1	V
CML Input Termination		Single ended	42.5	50	57.5	Ω
CML Input Return Loss		Up to 5GHz		10		dB
CML Output Differential	Vout		400	500	600	mV_{P-P}
CML Output Impedance		Single ended	42.5	50	57.5	Ω
CML Output Transition Time	t _R , t _F	20% to 80% (Notes 2, 6)			35	ps
Residual Jitter Output		At 10.7Gbps (Notes 3, 4, 5, 6)		24	30	100
(Total RJ, PWD, and PDJ)		At 12.5Gbps (Notes 3, 4, 5, 6)		17	30	psp-p
LVTTL Input Current	I _{IH} , I _{IL}		-30		+30	μA
LVTTL Input Low	VIL				0.8	V
LVTTL Input High	VIH		2.0			V

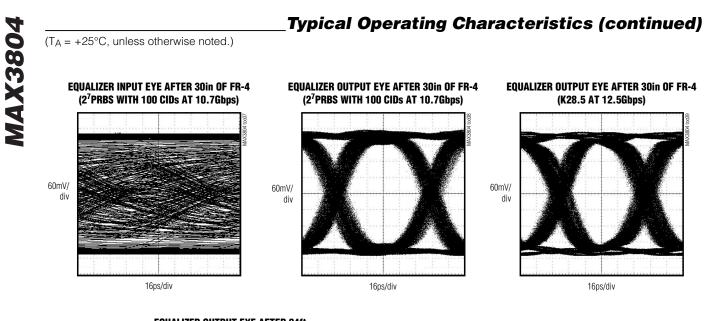
Note 1: Differential Input Sensitivity is defined at the input to a transmission line. The transmission line is differential $Z_0 = 100\Omega$, 6-mil microstrip in FR-4, $\epsilon_r = 4.5$, and tan $\delta = 0.02$, $V_{IN} = (SDI + -SDI -)$.

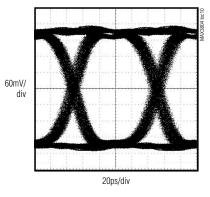
Note 2: Measured with 0000011111 pattern at 12.5Gbps.


Note 3: Residual jitter is the difference in total jitter (RJ, PWD, and PDJ) between the transmitted signal (at the input to the transmission line) and equalizer output. Total residual jitter is DJP-P + 14.2 x RJ_{RMS}.

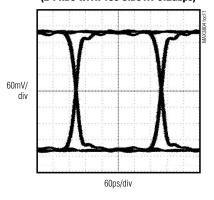
Note 4: Measured at 10.7Gbps using a pattern of 100 ones, 2⁷PRBS, 100 zeros, 2⁷PRBS, and at 12.5Gbps using a K28.5 pattern. Deterministic jitter at the input is from frequency-dependent, media-induced loss only.

Note 5: V_{IN} = 400mV_{P-P} to 1200mV_{P-P}, input path is 0 to 30in, 6-mil microstrip in FR-4, $\epsilon_r = 4.5$, and tan $\delta = 0.02$.


Note 6: Guaranteed by design and characterization.



Typical Operating Characteristics


MAX3804

EQUALIZER OUTPUT EYE AFTER 30in OF FR-4 (2⁷PRBS WITH 100 CIDs AT 3.2Gbps)

Pin Description

PIN	NAME	FUNCTION
1, 4	V _{CC1}	CML Input Supply Voltage. Connect to +1.8V to +3.3V for DC-coupled CML. Input can also be AC-coupled.
2	SDI+	Positive Serial Data Input, CML
3	SDI-	Negative Serial Data Input, CML
5	EQ1	Equalizer Boost Control Logic Input LSB, LVTTL. See Table 1.
6	EQ2	Equalizer Boost Control Logic Input, LVTTL. See Table 1.
7	EQ3	Equalizer Boost Control Logic Input MSB, LVTTL. See Table 1.
8, 16	GND	Supply Ground
9, 12	V _{CC2}	CML Output Supply Voltage. Connect to +1.8V to +3.3V for DC-coupled CML. Output can also be AC-coupled.
10	SDO-	Negative Serial Data Output, CML
11	SDO+	Positive Serial Data Output, CML
13, 14	N.C.	No Connection. Leave unconnected.
15	V _{CC}	+3.3V Core Supply Voltage
EP	Exposed Pad	Ground. Must be soldered to the circuit board ground for proper thermal and electrical performance (see the <i>Package and Layout Considerations</i> section).

Detailed Description

CML Input and Output Buffers

General Theory of Operation The MAX3804's low-noise linear input stage includes two amplifiers, one with flat-frequency response, and one with response that compensates for the loss characteristic of an FR-4 PC board transmission line. A current-steering network allows the designer to control the amount of equalization to match the path loss for specific applications. This network consists of a pair of variable attenuators feeding into a summing node. Equalization is set by a 3-bit LVTTL-compatible input (EQ3, EQ2, and EQ1). By employing fixed control of the equalization level, the MAX3804 provides optimal performance for a specific path loss. A high-speed limiting amplifier follows the equalizer circuitry to shape the output signal (see Figure 1). The MAX3804 input and output CML buffers are terminated with 50Ω to V_{CC1} and V_{CC2}, respectively. The equivalent circuit for the output is shown in Figure 2. Separate supply voltage connections are provided for the core (V_{CC}), input (V_{CC1}), and output (V_{CC2}) circuitry to control noise coupling, and to allow DC-coupling to +1.8V, +2.5V, or +3.3V CML ICs. The CML inputs and outputs can also be AC-coupled.

Use AC-coupling for single-ended cable applications. The unused CML input must be connected through an AC-coupling capacitor to a 50Ω termination.

The low-frequency cutoff of the input-stage offset-cancellation circuit is nominally 21kHz.

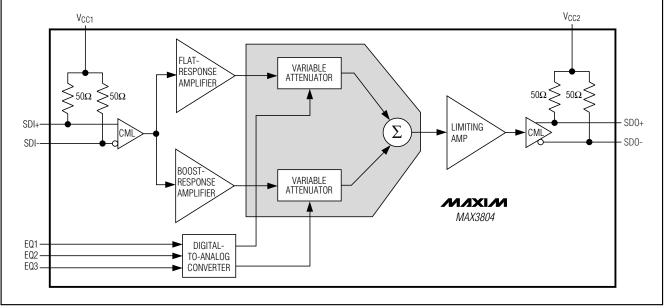


Figure 1. Functional Diagram

Applications Information

Equalizer Boost Level Control

The MAX3804 equalizer is intended for use at the receive end of an FR-4 PC board transmission line, typically up to 30in of differential 6-mil stripline or microstrip. It is specifically designed to mitigate intersymbol interference caused by the frequency-dependent path loss of FR-4 transmission lines. It can also be used with a variety of other transmission-line materials and geometries, including coaxial cable, or PC board paths that include well-engineered connectors. Table 1 shows the relationship between nominal 6-mil FR-4 transmission line length and equalization setting.

Supply Voltage Connections

The CML input and output supplies (V_{CC1}, V_{CC2}) can be connected to +1.8V to +3.3V. V_{CC1} and V_{CC2} need not be connected to the same supply voltage; however, the core supply (V_{CC}) must be connected to +3.3V.

Package and Layout Considerations

The MAX3804 is packaged in a 3mm x 3mm plasticencapsulated 16-lead thin QFN package. The package has an exposed pad that provides thermal and electrical connectivity to the IC and must be soldered to a high-frequency ground. Use good layout techniques for the SDI± and SDO± PC board transmission lines, and configure the trace geometry near the IC

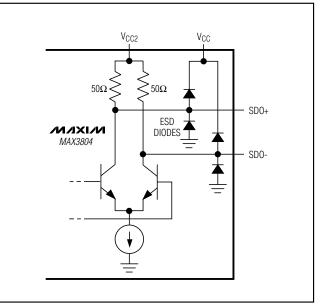


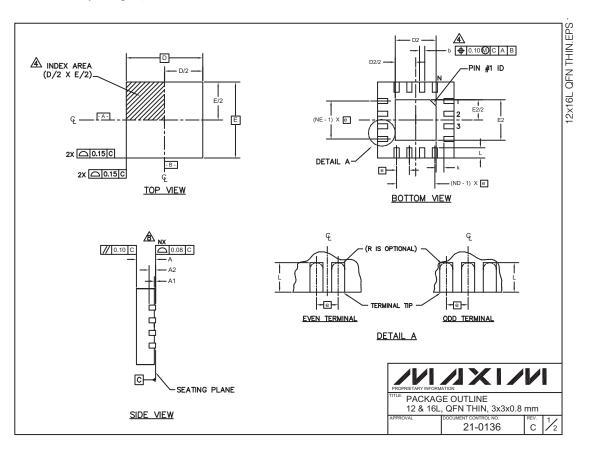
Figure 2. Simplified Output Structure

package to minimize impedance discontinuities. Power-supply decoupling capacitors should be as close as possible to the IC.

Pin Configuration GND VCC N.C. 16 15 14 13 12 V_{CC1} 1 V_{CC2} 2 SDO+ SDI+ 11 MIXIM SDO-SDI-MAX3804 10 3 V_{CC1} 4 9 V_{CC2} 8 7 6 5 EQ1 EQ2 GND Thin QFN* (3mm x 3mm) *THE EXPOSED PAD MUST BE CONNECTED TO CIRCUIT BOARD GROUND FOR PROPER THERMAL AND ELECTRICAL PERFORMANCE.

Table 1. Nominal 6-mil FR-4 TransmissionLine Length and Equalization Settings

EQ3	EQ2	EQ1	NOMINAL 6-mil FR-4 MICROSTRIP LENGTH (in)
0	0	0	2
0	0	1	6
0	1	0	10
0	1	1	14
1	0	0	18
1	0	1	22
1	1	0	26
1	1	1	30


Chip Information

TRANSISTOR COUNT: 1007 PROCESS: SiGe bipolar

MAX3804

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

PKG		12L 3x3			16L 3x3											
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.				EXF	POSE	D PAE		IATIC	NS	
Α	0.70	0.75	0.80	0.70	0.75	0.80	PKG. CODES	3.		D2			E2		-	JEDEC
b	0.20	0.25	0.30	0.20	0.25	0.30	CODES	DES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	PIN ID	JEDEC
D	2.90	3.00	3.10	2.90	3.00	3.10	T1233-1	33-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1
Е	2.90	3.00	3.10	2.90	3.00	3.10	T1633-1		0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2
e		0.50 BSC			0.50 BSC	i –	T1633F-3	33F-3	0.65	0.80	0.95	0.65	0.80	0.95	0.225 x 45°	-
L	0.45	0.55	0.65	0.30	0.40	0.50										
ND ND		12 3			16 4											
NE		3			4											
A1	0	0.02	0.05	0	0.02	0.05										
A2		0.20 REF		L	0.20 REF											
k	0.25	-	-	0.25	-	-										
ALL D	IMENS		RE IN MI	LLIMET	ERS. AN	I TO ASI GLES AR										
DIMEI ALL D N IS T THE T JESD WITH MARH DIMEI	IMENS THE TO 95-1 SI IN THE CED FE	IONS AF TAL NUM IAL #1 ID PP-012. ZONE IN ATURE. b APPLIE	RE IN MI MBER O DENTIFII DETAIL NDICATI	ER AND S OF TI ED. THE	ERS. ANG INALS. TERMIN ERMINAL TERMIN	GLES AR AL NUME #1 IDEN IAL #1 ID	ITION SHALL COI IONAL, BUT MUS E EITHER A MOL 2D BETWEEN 0.20	T MUST E	BE LOO OR	CATED						
DIMEI ALL D N IS T THE T JESD WITH MARF DIMEI FROM	IMENS THE TO ERMIN 95-1 SI IN THE CED FE NSION 1 TERM	IONS AF TAL NUM IAL #1 IC PP-012. ZONE IN ATURE. b APPLIE IINAL TIF	RE IN MI MBER O DENTIFII DETAIL NDICATI	ILLIMET F TERM ER AND S OF TI ED. THE	ERS. ANG INALS. TERMINAL ERMINAL TERMIN ZED TER	gles ar al nume . #1 iden ial #1 id RMINAL A	DONAL, BUT MUS E EITHER A MOL	T MUST E A MOLD (EN 0.20 m	BE LOO OR 1m ANI	CATED						
DIME ALL D N IS T THE T JESD WITH MARF DIME FROM	IMENS THE TO TERMIN 95-1 SI IN THE GED FE NSION 1 TERM	IONS AF TAL NUM IAL #1 ID PP-012. ZONE IN ATURE. b APPLIE IINAL TIF REFER T	RE IN MI MBER O DENTIFII DETAIL NDICATI ES TO M P. TO THE	ILLIMET F TERM ER AND S OF TI ED. THE METALLI NUMBE	ERS. ANG INALS. TERMINAL ERMINAL TERMIN ZED TER R OF TEI	gles ar al nume . #1 iden ial #1 id RMINAL A	IONAL, BUT MUS E EITHER A MOL	T MUST E A MOLD (EN 0.20 m	BE LOO OR 1m ANI	CATED						
DIME ALL D N IS T THE T JESD WITH MARK DIME FROM ND AN DEPO COPL	IMENS THE TO TERMIN 95-1 S IN THE CED FE VSION 1 TERM ND NE I PULAT ANARI	IONS AF TAL NUM IAL #1 ID PP-012. ZONE IN ATURE. b APPLIE INAL TIF REFER T ION IS P TY APPL	RE IN MI MBER O DENTIFII DETAIL NDICATI ES TO M P. TO THE POSSIBL JES TO	ILLIMET F TERM ER AND S OF TI ED. THE METALLI NUMBE LE IN A S THE EX	ERS. ANG INALS. TERMINAL TERMINAL TERMIN ZED TER R OF TEI SYMMET POSED H	GLES AR AL NUME 41 IDEN IAL #1 ID RMINAL A RMINALS RICAL F	DONAL, BUT MUS E EITHER A MOL	T MUST E A MOLD (EN 0.20 m ESPECTI	BE LOO OR Im ANE IVELY.	CATED						
DIME ALL D N IS T THE T JESD WITH MARK DIME FROM ND AN DEPO COPL	IMENS THE TO TERMIN 95-1 S IN THE CED FE VSION 1 TERM ND NE I PULAT ANARI	IONS AF TAL NUM IAL #1 ID PP-012. ZONE IN ATURE. b APPLIE INAL TIF REFER T ION IS P TY APPL	RE IN MI MBER O DENTIFII DETAIL NDICATI ES TO M P. TO THE POSSIBL JES TO	ILLIMET F TERM ER AND S OF TI ED. THE METALLI NUMBE LE IN A S THE EX	ERS. ANG INALS. TERMINAL TERMINAL TERMIN ZED TER R OF TEI SYMMET POSED H	GLES AR AL NUME #1 IDEN JAL #1 ID RMINAL A RMINALS RICAL F/ HEAT SIN	IONAL, BUT MUS E EITHER A MOL ED BETWEEN 0.20 D E SIDE RESPEC	T MUST E A MOLD (EN 0.20 m ESPECTI	BE LOO OR Im ANE IVELY.	CATED					IX	
DIME ALL D N IS T THE T JESD WITH MARK DIME FROM ND AN DEPO COPL	IMENS THE TO TERMIN 95-1 S IN THE CED FE VSION 1 TERM ND NE I PULAT ANARI	IONS AF TAL NUM IAL #1 ID PP-012. ZONE IN ATURE. b APPLIE INAL TIF REFER T ION IS P TY APPL	RE IN MI MBER O DENTIFII DETAIL NDICATI ES TO M P. TO THE POSSIBL JES TO	ILLIMET F TERM ER AND S OF TI ED. THE METALLI NUMBE LE IN A S THE EX	ERS. ANG INALS. TERMINAL TERMINAL TERMIN ZED TER R OF TEI SYMMET POSED H	GLES AR AL NUME #1 IDEN JAL #1 ID RMINAL A RMINALS RICAL F/ HEAT SIN	IONAL, BUT MUS E EITHER A MOL ED BETWEEN 0.20 D E SIDE RESPEC	T MUST E A MOLD (EN 0.20 m ESPECTI	BE LOO OR Im ANE IVELY.	CATED	mm T	TITLE: P	ACKA	GE C	UTLINE S	8x3x0.8

MAX3804

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _