捷多邦,专业PCB打样工厂,24小时加急出货

19-2750; Rev 0; 1/03

6-Channel Integrated Video Reconstruction Filters

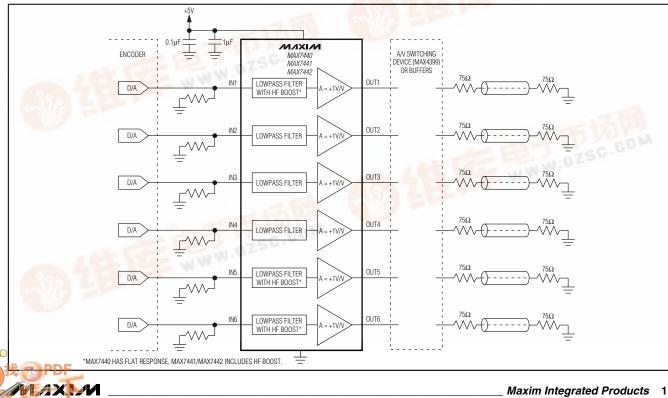
General Description

Annlications

The MAX7440/MAX7441/MAX7442 six-channel video reconstruction filters replace 30 or more discrete components. The devices are ideal for digital-to-analog converter (DAC) video reconstruction applications, when analog video is reconstructed from a digital data stream. The MAX7440/MAX7441/MAX7442 operate from a single +5V power supply. The inputs are DCcoupled from the DAC and the output can either be ACor DC-coupled. The DC-IN, DC-OUT architecture, leads to a perfect line-time distortion performance (zero tilt). The filters have a cutoff frequency optimized for PAL, NTSC, and SDTV video applications and offer three high-frequency boost options. The MAX7440 offers a flat passband response on all six channels; the MAX7441/MAX7442 offer high-frequency boost on the three channels used for CVBS and Y/C. The MAX7440/ MAX7441/MAX7442 are available in a 14-pin SO package and are fully specified over the extended temperature range.

STB	PVR
DVDs	SCART Video Applications
Hard Disk Recorders	General Video Filtering

Features


- Replace 30 or More Discrete Components
- Ideal for CVBS, Y/C (S-Video), and RGB or Y Pb Pr Applications
- 45dB Attenuation at 27MHz
- -0.2dB Passband Response
- Ideal for STBs with SCART Interface
- +5V Single-Supply Voltage
- Input Common-Mode Range Includes GND
- DC-Coupled Input, DC/AC-Coupled Output
- 14-Pin SO Package

_Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	HIGH- FREQUENCY BOOST
MAX7440ESD	-40°C to +85°C	14 SO	No
MAX7441ESD	-40°C to +85°C	14 SO	Yes
MAX7442ESD*	-40°C to +85°C	14 SO	Yes
*Eutura product	contact factory f	or availability	CO.

*Future product—contact factory for availability.

Typical Application Circuit

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	+6V
All Other Pins to GND	
Maximum Current into Any Pin	±50mÅ
Continuous Power Dissipation (T _A =	
14-Pin SO (derate 8.3mW/°C abov	/e +70°C)666.7mW

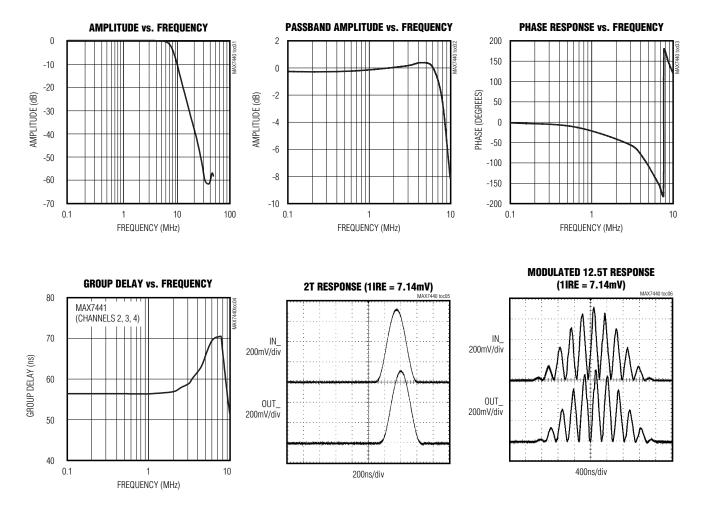
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

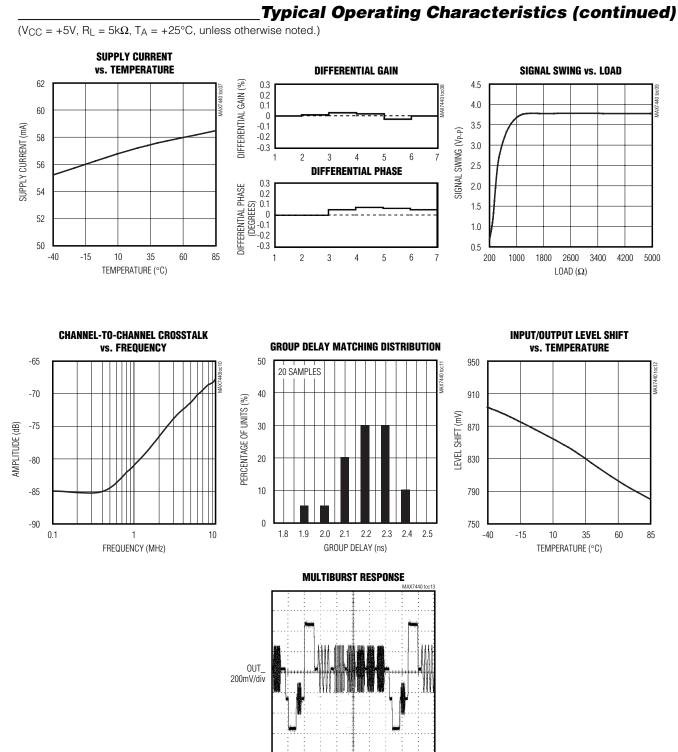
ELECTRICAL CHARACTERISTICS

$(V_{CC} = +5V \pm 5\%, R_{L} =$	= $5k\Omega$, C_L = 0 to 20pF, T	$x = T_{MIN}$ to T_{MAX} , unles	s otherwise noted. Typical	values are at $T_A = +25^{\circ}C$.)
----------------------------------	-------------------------------------	------------------------------------	----------------------------	---------------------------------------

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
Passband Response		DC to 3.5MHz, MAX7440/MAX7441 (channels 2, 3, 4)		-0.40	-0.2	+0.10	dB
rassualiu nespolise		DC to 5MHz, MAX744 (channels 2, 3, 4)	10/MAX7441	-0.80	-0.5	0	UD
Stopband Attenuation	A _{sb}	f = 27MHz		37	45		dB
Depet Amelitude		f = 4.5MHz	+1dB HF boost, MAX7441	0.4	0.60	0.91	dB
Boost Amplitude			+2dB HF boost, MAX7442		1.2		
Differential Gain	dG	5-step modulated sta	ircase		0.05		%
Differential Phase	dB	5-step modulated sta	ircase		0.05		Degrees
Signal-to-Noise Ratio	SNR	Peak signal (1V _{P-P}) to RMS noise, f = 10Hz to 100MHz			71		dB
Group Delay Matching		g(MATCH) (g(MATCH) (g(MATCH) (g(MATCH) (g(MATCH) (g(MATCH) (g(MATCH))) (g(MATCH))) (g(MATCH))) (g(MATCH))) (g(MATCH))) (g(MATCH))) (Channels 2, 3, 4		2		- ns
	(WATCH)		Channels 1, 5, 6		2		
			MAX7440/MAX7441/ MAX7442		10		
Group Delay Deviation	Δg	Deviation from 100kHz to 4.5MHz	MAX7441 (channels 1, 5, 6)		17		ns
			MAX7442 (channels 1, 5, 6)		17		
Line-Time Distortion	H _{dist}	18µs, 100IRE bar		-3	0	+3	mV
Field-Time Distortion	V _{dist}	130 lines, 18µs, 100IRE bar		-4		+4	mV
Low-Frequency Gain Variation	Av	Gain at f = 100kHz		-0.25		+0.25	dB
Low-Frequency Gain					0.975		V/V
Low-Frequency Gain Matching	tg	f = 100 kHz		-3		+3	%
Input Voltage Range				0		1.75	V
Channel-to-Channel Crosstalk	X _{TALK}	Channel-to-channel c	rosstalk, DC to 5MHz		71		dB
Input Leakage Current	lin	V _{IN} = 0V		2	6	25	μA


ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +5V \pm 5\%, R_L = 5k\Omega, C_L = 0 \text{ to } 20\text{pF}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted}. Typical values are at T_A = +25°C.)$


PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Resistance							kΩ
Input Capacitance					20		pF
Supply Voltage Range	Vcc			4.75		5.25	V
Supply Current	ICC	$V_{CC} = +5.5V$, no load			57	78	mA
	DODD	1001/	DC		39		
Power-Supply Rejection Ratio	PSRR	$V_{IN} = 100 m V_{P-P}$	f = 0 to 1MHz		30		dB
DC Level Shift		OUT_ to IN_			0.85	1.05	V

(V_{CC} = +5V, R_L = 5k Ω , T_A = +25°C, unless otherwise noted.)

Typical Operating Characteristics

10µs/div

MAX7440/MAX7441/MAX7442

_Pin Description

Output Stage

PIN	NAME	FUNCTION
1	IN1	Channel 1 Filter Input (Optional Boosted Channel)
2	IN2	Channel 2 Filter Input
3	IN3	Channel 3 Filter Input
4	V _{CC}	+5V Power Supply. Bypass to GND with a 0.1 μ F and 1 μ F capacitor.
5	IN4	Channel 4 Filter Input
6	IN5	Channel 5 Filter Input (Optional Boosted Channel)
7	IN6	Channel 6 Filter Input (Optional Boosted Channel)
8	OUT6	Channel 6 Filter Output
9	OUT5	Channel 5 Filter Output
10	OUT4	Channel 4 Filter Output
11	GND	Ground
12	OUT3	Channel 3 Filter Output
13	OUT2	Channel 2 Filter Output
14	OUT1	Channel 1 Filter Output

Detailed Description

The MAX7440/MAX7441/MAX7442 filter the outputs of DAC encoder chipsets that process digital video information in applications such as set-top boxes, hard disk recorders, DVD players, DVD recorders, and digital VCRs. These devices also filter and clean up analog video signals by rejecting out-of-band noise. Each channel in the MAX7440/MAX7441/MAX7442 includes a 4th-order lowpass filter and a gain of +1V/V output stage, as shown in the *Typical Application Circuit*.

Filter

Filter Response

Each channel of the reconstruction filter consists of a 4th-order Sallen-Key filter configured as two 2nd-order stages. The filter features a maximally flat passband for NTSC, PAL, and SDTV bandwidths. The stopband offers typically 45dB of attenuation at sampling frequencies of 27MHz and above (see *Typical Operating Characteristics*). The filter exhibits a Butterworth-type response resulting in excellent group delay deviation performance.

High-Frequency Boost

The high-frequency (HF) boost compensates for signal degradation and rolloff in the signal path prior to the filter. This performance increases the image sharpness. The MAX7441/MAX7442 offer a high-frequency boost on channels OUT1, OUT5, and OUT6.

The output stages of the MAX7440/MAX7441/MAX7442 are designed to drive 1VP-P signals into high-impedance (>5k Ω) loads. They require external buffers to drive standard video cables. Most standard audio/ video switching devices include these buffers for STB applications.

Applications Information

MAX7440/MAX7441/MAX7442 with an A/V Switching Device

The MAX7440/MAX7441/MAX7442 are designed to directly interface to an audio/video switching device used in video applications (i.e., STBs) with SCART interfaces (see *Typical Application Circuit*). The output of the analog filters can drive the high-impedance load of the switching device. The switching device provides the buffering to drive standard 150Ω video loads.

MAX7440/MAX7441/MAX7442 with External Buffers

External buffering is required for the MAX7440/ MAX7441/MAX7442 to drive standard 150 Ω video loads. Figure 1 shows the MAX4394 triple op amp, configured with a gain of +2V/V to drive standard video loads from the MAX7440/MAX7441/MAX7442.

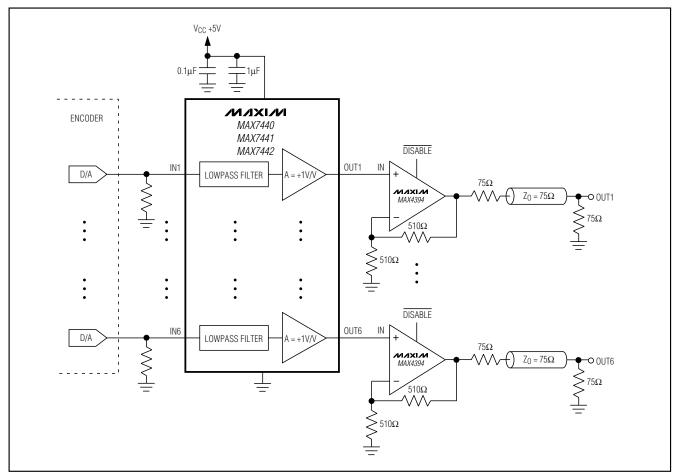
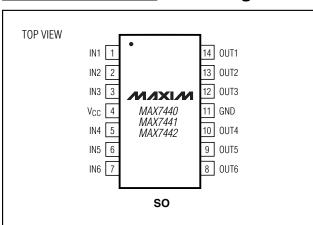
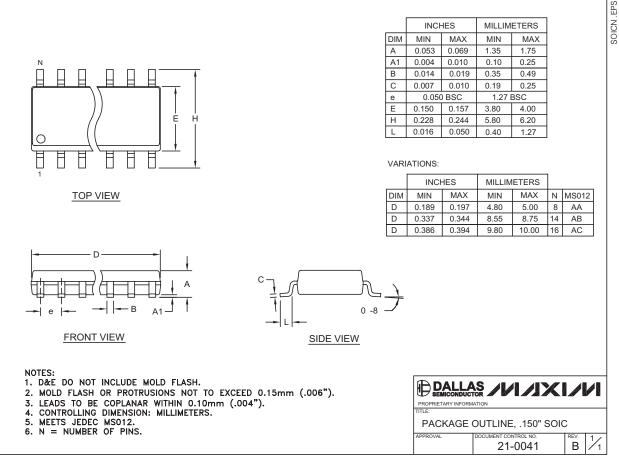



Figure 1. Typical Application Circuit with External Buffers

Pin Configuration

Power-Supply Bypassing and Layout

The MAX7440/MAX7441/MAX7442 operate from a single +5V supply. Bypass V_{CC} to GND with a 0.1µF and 1µF capacitor. These capacitors filter all frequencies over 1MHz. Place all external components as close to the devices as possible. To maintain good crosstalk performance ensure that input and output lines do not run parallel for any distance. If it is necessary to have parallel lines, run a ground trace in between each line. Refer to the *MAX7440 Evaluation Kit* for a proven PC board layout example.


_Chip Information

TRANSISTOR COUNT: 3691 PROCESS: BICMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

7