SONY

CXA1853AQ

RGB Driver for LCD

Description

The CXA1853AQ is an RGB driver for LCD panels. It supports a line alternative RGB drive system.

Features

- Built-in RGB signal phase matching sample-andhold circuit
- Effective frequency response (18MHz Typ.)
- Built-in gain and breakpoint variable 2-point γ compensation circuit
- Built-in side black generation circuit for 4:3/16:9 aspect conversion
- Built-in VCOM voltage output circuit

Structure

Bipolar silicon monolithic IC

Applications

- Liquid crystal projectors
- Liquid crystal viewfinders
- Compact liquid crystal monitors

Absolute Maximum Ratings (Ta = 25°C)

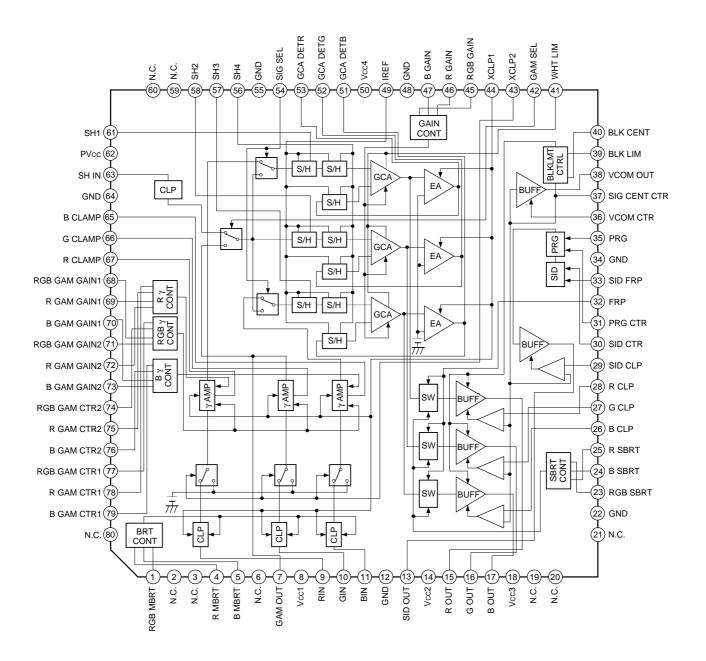
	J - (/	
 Supply voltage 	Vcc1	6	V
	Vcc2	15	V
Input pin voltage	VIN	Vcc1	V
Operating temperature	Topr	-25 to +75	°C
 Storage temperature 	Tstg	-55 to +150	°C
Allowable power dissipation	ation		
	PD	1500	mW

Operating Conditions

Vcc1	4.75 to 5.25	V
Vcc2	11.0 to 14.0	V
		Vcc1 4.75 to 5.25 Vcc2 11.0 to 14.0

• RGB input signal voltage

VIN 0.7 Vp-p Note


Note) Defined as the amplitude from the pedestal level to white.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

-1-

Block Diagram

Pin Description

(Vcc1 = 5V, Vcc2 = 13V)

Pin NO.	Symbol	Pin voltage	Equivalent circuit	Description
1	RGB MBRT	1.6 to 5.0V*	Vcc1 2k 80k 80k 40μA 40μA 40μA	RGB signal common main brightness control. Preset internally to 3.3V.
4	R MBRT	1.6 to 5.0V*	Vcc1 5k 80k	R signal main brightness control. Preset internally to 3.3V.
5	B MBRT	1.6 to 5.0V*	5 74k 80k 20μΑ 40μΑ 20μΑ	B signal main brightness control. Preset internally to 3.3V.
7	GAM OUT	2V Reference level	Vcc1 7	G signal output of which main bright and gamma are adjusted and insert the reference signal.
8	Vcc1	5V		5V power supply.
9	RIN		Vcc1	R signal input. Input a 0.7Vp-p signal. ^{Note 2)}
10	GIN		9 200	G signal input. Input a 0.7Vp-p signal. ^{Note 2)}
11	BIN		GND 6.2k ₹	B signal input. Input a 0.7Vp-p signal. ^{Note 2)}
12	GND	0V		GND.
13	SID OUT	9 .3∨p-p Typ.	Vcc2 10 10 GND	SID signal output.

Note 1) * in the Pin voltage indicates external applied voltage.

Note 2) Defined as the amplitude from the pedestal level to white.

Pin NO.	Symbol	Pin voltage	Equivalent circuit	Description
14	Vcc2	13V		13V power supply.
15	R OUT		Vcc2	R signal output.
16	G OUT	4.5V Typ.	10 \$ (15) 10 \$ (17)	G signal output.
17	B OUT		GND	B signal output.
18	Vcc3	5V		5V power supply.
22	GND	0V		GND.
23	RGB SBRT	1.6 to 5.0V*	Vcc3 3k 200 27k 53μΑ 53μΑ 13μΑ	RGB signal common sub brightness control.
24	B SBRT	1.6 to 5.0V*	Vcc3 3k 80k 80k	B signal sub brightness control. Preset internally to 3.3V.
25	R SBRT	1.6 to 5.0V*	25) 118k 80k 26µA 40µA	R signal sub brightness control. Preset internally to 3.3V.
26	B CLP		Vcc2	B output detection signal input.
27	G CLP	4.7 to 8.3V*	26) 200 2k W W W W W W W W W W W W W W W W W W	G output detection signal input.
28	R CLP		GND 10μA	R output detection signal input.

Note) * in the Pin voltage indicates external applied voltage.

Pin NO.	Symbol	Pin voltage	Equivalent circuit	Description
29	SID CLP	4.7 to 8.3V*	Vcc2 29 200 29 W 10μA	SID output detection signal input. Use an average value detecting external capacitor with a small leak current absolute value and tolerance.
30	SID CTR	1.6 to 5.0V*	Vcc3 30 30 30 35k 80k 53μΑ 40μΑ	SID output amplitude control. Preset internally to 3.3V.
31	PRG CTR	1.6 to 5.0V*	Vcc3 3k 90k 90k GND	Level control for the PRG signal inserted into the SID signal.
32	FRP	5V	Vcc3 10μA 200 GND	FRP input. This pulse is used to invert the polarity of the RGB output. Output is inverted when Low, and non-inverted when High. Input level: High ≥ 4V Low ≤ 1V
33	SID FRP	5V	Vcc3 10μA 200 M	FRP pulse input for SID output. This pulse is used to invert the polarity of the SID output. Output is inverted when Low, and non-inverted when High. Input level: High ≥ 4V Low ≤ 1V
34	GND	0V		GND.

Note) * in the Pin voltage indicates external applied voltage.

Pin NO.	Symbol	Pin voltage	Equivalent circuit	Description
35	PRG	5V 0V	Vcc3 200 35 W GND	PRG pulse input. This pulse is used to insert the PRG signal into the SID output. Input level: High ≥ 4V Low ≤ 1V
36	VCOM CTR	1.6 to 5.0V*	Vcc2 36 200 80k 50k 80k 40µА 17µА 17µА	VCOM voltage control. The VCOM voltage variable range is –0.8V to +1.3V with respect to the signal center voltage.
37	SIG CENT CTR	1.6 to 5.0V*	Vcc2 200 80k 50k 80k 26μΑ 40μΑ	RGB and SID signal center voltage control.
38	VCOM OUT	3.4 to 9.1V*	Vcc2 10 38 10 GND	VCOM voltage output.
39	BLK LIM	1.6 to 5.0V*	Усс2 2k 200 100k 100k 127k 100k 40µА 20µА 40µА	Limiter control for limiting the output amplitude of the RGB signal. Preset internally to 3.3V.

 $oldsymbol{ ext{Note}})^*$ in the Pin voltage indicates external applied voltage.

Pin NO.	Symbol	Pin voltage	Equivalent circuit	Description
40	BLK CENT	1.6 to 5.0V*	Vcc2 200 40 200 100k 100k 30k 100k 40μ 40μ 40μ 40μ 40μ 40μ 40μ 40μ	RGB signal output limiter center control. Preset internally to 3.3V. When preset, the limiter center becomes equal to the RGB output center.
41	WHT LIM	1.6 to 5.0V*	Vcc3 2k 200 41 37k 100k 40µА 40µА	RGB signal white peak limiter control. Preset internally to 3.3V.
42	GAM SEL	5.0V*	55k \$ 200 W	Gamma circuit control. Gamma ON when High, gamma OFF when Low. Input level: High ≥ 4V Low ≤ 1V
43	XCLP2	5V 0V 2.0μs	Vcc1	Reference signal pulse input. Reference level when Low. Input level: High ≥ 4V Low ≤ 1V
44	XCLP1	5V 0V 1.2μs	GND	Clamp pulse input. Clamped when Low. Input level: High ≥ 4V Low ≤ 1V
45	RGB GAIN	1.6 to 5.0V*	Vcc4 1.5k 200 45 40μΑ 40μΑ 20μΑ 20μΑ	Gain control for RGB signal common variable gain amplifier.

 $\mbox{\bf Note)}\ ^*$ in the Pin voltage indicates external applied voltage.

Pin NO.	Symbol	Pin voltage	Equivalent circuit	Description	
46	R GAIN	1.6 to 5.0V*	Vcc4 1k 200 48k 48k	Gain control for R signal variable gain amplifier. Preset internally to 3.3V.	
47	B GAIN	1.6 to 5.0V*	48k 80k 80μA 40μA 40μA	Gain control for B signal variable gain amplifier. Preset internally to 3.3V.	
48	GND	0V		GND.	
49	IREF	1.2V	Vcc4 5k 5	Sample-and -hold circuit current setting.	
50	Vcc4	5.0V		5V power supply.	
51	GCADET B		Vcc4 40μA	B GCA circuit clamp detection.	
52	GCADET G	1.8V Typ.	(51) (52) (53)	G GCA circuit clamp detection.	
53	GCADET R		GND ← 6.2k ▼	R GCA circuit clamp detection.	
54	SIG SEL	0 to 5.0V*	55k \$ 55k \$ GND	Selection of input signal to Sample-and -hold circuit. R and B signals selected when High, G signal selected when Low. Input level: High ≥ 4V Low ≤ 1V	
55	GND	0V		GND.	
56	SH4		PVcc (56) 100μA	Sample-and-hold pulse	
57	SH3	5V	57	input. Input level: High ≥ 3.0V	
58	SH2	0V		Low ≤ 1.0V Sampling when High, hold when Low.	
61	SH1		GND -		
62	PVcc	5V		5V power supply.	

Note) * in the Pin voltage indicates external applied voltage.

Pin NO.	Symbol	Pin voltage	Equivalent circuit	Description
63	SH IN	2.25V Reference level	Vcc4 100µA 63 W 6.2k≨ GND	Sample-and-hold circuit input.
64	GND	0V		GND.
65	B CLAMP		Vcc140μA	B signal clamp detection.
66	G CLAMP	2.1V Typ.	(65) (66) (67)	G signal clamp detection.
67	R CLAMP		GND	R signal clamp detection.
68	RGB GAM GAIN 1	1.6 to 5.0V*	Vcc1 1 k 200 200 40μΑ 40μΑ 40μΑ	RGB signal common black side voltage gain control.
69	R GAM GAIN 1	1.6 to 5.0V*	Vcc1	R signal black side voltage gain control. Preset internally to 3.3V.
70	B GAM GAIN 1	1.6 to 5.0V*	37k 80k 40μA 40μA 40μA	B signal black side voltage gain control. Preset internally to 3.3V.
71	RGB GAM GAIN 2	1.6 to 5.0V*	Vcc1 1k ≥ 200 71 → W → 200 37k → W → 40μA 40μA → 40μA	RGB signal common white side voltage gain control.

Note) * in the Pin voltage indicates external applied voltage.

Pin NO.	Symbol	Pin voltage	Equivalent circuit	Description
72	R GAM GAIN 2	1.6 to 5.0V*	Vcc1	R signal white side voltage gain control. Preset internally to 3.3V.
73	B GAM GAIN 2	1.6 to 5.0V*	37k 80k 40μA 40μA 40μA	B signal white side voltage gain control. Preset internally to 3.3V.
74	RGB GAM CTR 2	1.6 to 5.0V*	Vcc1 1k 200 200 37k 40μΑ 40μΑ 40μΑ	RGB signal common white side voltage gain change point control.
75	R GAM CTR 2	1.6 to 5.0V*	Vcc1 3k	R signal white side voltage gain change point control. Preset internally to 3.3V.
76	B GAM CTR 2	1.6 to 5.0V*	76 74k 80k W 40μA GND 20μA	B signal white side voltage gain change point control. Preset internally to 3.3V.
77	RGB GAM CTR 1	1.6 to 5.0V*	Vcc1 1 k 200 200 37k 40μΑ 40μΑ 40μΑ 40μΑ	RGB signal common black side voltage gain change point control.
78	R GAM CTR 1	1.6 to 5.0V*	Vcc1 3k 80k 80k	R signal black side voltage gain change point control. Preset internally to 3.3V.
79	B GAM CTR 1	1.6 to 5.0V*	79 74k 80k 20μΑ 40μΑ 20μΑ	B signal black side voltage gain change point control. Preset internally to 3.3V.

Note) * in the Pin voltage indicates external applied voltage.

Electrical Characteristics

Unless otherwise specified: Ta = 25°C, Vcc1 = Vcc3 = Vcc4 = PVcc = 5V, Vcc2 = 13V

 $SW1 = OFF, \, SW4 = OFF, \, SW5 = OFF, \, SW9 = a, \, SW10 = a, \, SW11 = a, \,$

SW24 = OFF, SW25 = OFF, SW26 = a, SW27 = a, SW28 = a, SW29 = a,

SW30 = OFF, SW36 = OFF, SW37 = OFF, SW39 = OFF, SW40 = OFF,

SW41 = OFF, SW46 = OFF, SW47 = OFF, SW51 = a, SW52 = a,

SW53 = a, SW63 = a, SW65 = a, SW66 = a, SW67 = a, SW69 = OFF,

SW70 = OFF, SW72 = OFF, SW73 = OFF, SW75 = OFF, SW76 = OFF,

SW78 = OFF, SW79 = OFF, V23 = 3.1V, V31 = 3.5V, V42 = 5.0V,

V45 = 2.8V, V54 = 5.0V, V68 = 1.6V, V71 = 1.6V, V74 = 1.6V, V77 = 5.0V

Set (R IN), (G IN), (B IN) and (TEST IN) = 0V, (SH1), (SH2), (SH3) and (SH4) = 5V, and input SG4 to (FRP) and (SID FRP), SG5 to (PRG), SG2 to (XCLP2) and SG3 to (XCLP1).

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
1	Current consumption (1)	Icc1	Measure the current entering Pin 8.	_	30	44	mA
2	Current consumption (2)	Icc2	Measure the current entering Pin 14.	_	11	18	mA
3	Current consumption (3)	Icc3	Measure the current entering Pin 18.	_	6	10	mA
4	Current consumption (4)	Icc4	Measure the current entering Pin 50.	_	29	43	mA
5	Current consumption (5)	Icc5	Measure the current entering Pin 62.	_	4	7	mA
6	R IN pin current "Z"	IZ9	SW9 → b, (XCLP1) = 5V, V9 = 2.4V	-1.5	0	1.5	μΑ
7	R IN pin current "H"	IH9	SW9 → b, (XCLP1) = 0V, V9 = 3.4V	13	25	_	μΑ
8	R IN pin current "L"	IL9	SW9 → b, (XCLP1) = 0V, V9 = 1.4V	_	-25	-13	μΑ
9	G IN pin current "Z"	IZ10	SW10 → b, (XCLP1) = 5V, V10 = 2.4V	-1.5	0	1.5	μΑ
10	G IN pin current "H"	IH10	SW10 → b, (XCLP1) = 0V, V10 = 3.4V	13	25	_	μΑ
11	G IN pin current "L"	IL10	SW10 → b, (XCLP1) = 0V, V10 = 1.4V	_	-25	-13	μΑ
12	B IN pin current "Z"	IZ11	SW11 → b, (XCLP1) = 5V, V11 = 2.4V	-1.5	0	1.5	μΑ
13	B IN pin current "H"	IH11	SW11 → b, (XCLP1) = 0V, V11 = 3.4V	13	25	_	μΑ
14	B IN pin current "L"	IL11	SW11 → b, (XCLP1) = 0V, V11 = 1.4V	_	-25	-13	μΑ
15	RGB SBRT pin current	123	V23 = 5.0V	_	2.5	6	μΑ
16	B CLP pin current	126	SW26 → b, V26 = 7.0V	-0.2	0	0.2	μΑ
17	G CLP pin current	127	SW27 → b, V27 = 7.0V	-0.2	0	0.2	μΑ
18	R CLP pin current	128	SW28 → b, V28 = 7.0V	-0.2	0	0.2	μΑ
19	SID CLP pin current	129	SW29 → b, V29 = 7.0V	-0.2	0	0.2	μΑ
20	PRG CTR pin current	I31	V31 = 5.0V	_	0.3	0.8	μΑ
21	FRP pin current "H"	IH32	(FRP) = 5V	-0.1	0	0.1	μΑ
22	FRP pin current "L"	IL32	(FRP) = 0V	-0.3	-0.1	_	μΑ
23	SID FRP pin current "H"	IH33	(SID FRP) = 5V	-0.1	0	0.1	μΑ
24	SID FRP pin current "L"	IL33	(SID FRP) = 0V	-0.3	-0.1	_	μΑ
25	PRG pin current "H"	IH35	(PRG) = 5V	-0.1	0	0.1	μΑ
26	PRG pin current "L"	IL35	(PRG) = 0V	-0.3	-0.1	_	μΑ
27	GAM SEL pin current "H"	IH42	V42 = 5V	-0.1	0	0.1	μΑ

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
28	GAM SEL pin current "L"	IL42	V42 = 0V	_	-1.7	-0.4	μΑ
29	XCLP2 pin current "H"	IH43	(XCLP2) = 5V	-0.1	0	0.1	μΑ
30	XCLP2 pin current "L"	IL43	(XCLP2) = 0V	_	-1.0	-0.3	μΑ
31	XCLP1 pin current "H"	IH44	(XCLP1) = 5V	-0.1	0	0.1	μΑ
32	XCLP1 pin current "L"	IL44	(XCLP1) = 0V	-1.0	-0.2	_	μΑ
33	RGB GAIN pin current	145	V45 = 5V	_	0.5	1.3	μΑ
34	GCA DET B pin current "Z"	IZ51	SW51 → b, (XCLP1) = 5V, V51 = 2.0V	-0.5	0	0.5	μΑ
35	GCA DET B pin current "H"	IH51	SW51 → b, (XCLP1) = 0V, V51 = 3.0V	15	30	_	μA
36	GCA DET B pin current "L"	IL51	SW51 → b, (XCLP1) = 0V, V51 = 1.0V	_	30	-15	μA
37	GCA DET G pin current "Z"	IZ52	SW52 → b, (XCLP1) = 5V, V52 = 2.0V	-0.5	0	0.5	μA
38	GCA DET G pin current "H"	IH52	SW52 → b, (XCLP1) = 5V, V52 = 3.0V	15	30	_	μΑ
39	GCA DET G pin current "L"	IL52	SW52 → b, (XCLP1) = 5V, V52 = 1.0V	_	-30	-15	μA
40	GCA DET R pin current "Z"	IZ53	SW53 → b, (XCLP1) = 5V, V53 = 2.0V	-0.5	0	0.5	μA
41	GCA DET R pin current "H"	IH53	SW53 → b, (XCLP1) = 5V, V53 = 3.0V	15	30	_	μA
42	GCA DET R pin current "L"	IL53	SW53 → b, (XCLP1) = 5V, V53 = 1.0V	_	-30	-15	μA
43	SIG SEL pin current "H"	I54H	V54 = 5V	-0.1	0	0.1	μA
44	SIG SEL pin current "L"	I54L	V54 = 0V	-3.0	-1.0	_	μA
45	SH4 pin current "H"	I56H	(SH4) = 5V	-0.1	0	0.1	μA
46	SH4 pin current "L"	156L	(SH4) = 0V	-5.0	-2.0	_	μA
47	SH3 pin current "H"	157H	(SH3) = 5V	-0.1	0	0.1	μA
48	SH3 pin current "L"	157L	(SH3) = 0V	-5.0	-2.0	_	μA
49	SH2 pin current "H"	I58H	(SH2) = 5V	-0.1	0	0.1	μA
50	SH2 pin current "L"	158L	(SH2) = 0V	-5.0	-2.0	_	μA
51	SH1 pin current "H"	I61H	(SH1) = 5V	-0.1	0	0.1	μA
52	SH1 pin current "L"	I61L	(SH1) = 0V	-5.0	-2.0	_	μA
53	SH IN pin current "Z"	IZ63	SW63 → b, (XCLP1) = 5V, V63 = 2.2V	-1.5	0	1.5	μA
54	SH IN pin current "H"	IH63	SW63 \rightarrow b, (XCLP1) = 0V, V63 = 3.2V	13	25	_	μA
55	SH IN pin current "L"	IL63	SW63 \rightarrow b, (XCLP1) = 0V, V63 = 1.2V	_	-25	-13	μΑ
56	B CLAMP pin current "Z"	IZ65	SW65 → b, (XCLP1) = 5V, V65 = 2.0V	-0.5	0	0.5	μA
57	B CLAMP pin current "H"	IH65	SW65 \rightarrow b, (XCLP1) = 0V, V65 = 3.0V	15	40	_	μA
58	B CLAMP pin current "L"	IL65	SW65 → b, (XCLP1) = 0V, V65 = 1.0V	_	-40	-15	μA
59	G CLAMP pin current "Z"	IZ66	SW66 → b, (XCLP1) = 5V, V66 = 2.0V	-0.5	0	0.5	μΑ
60	G CLAMP pin current "H"	IH66	SW66 → b, (XCLP1) = 0V, V66 = 3.0V	15	40	_	μΑ
61	G CLAMP pin current "L"	IL66	SW66 → b, (XCLP1) = 0V, V66 = 1.0V	_	-40	-15	μΑ
62	R CLAMP pin current "Z"	IZ67	SW67 → b, (XCLP1) = 5V, V67 = 2.0V	-0.5	0	0.5	μΑ
63	R CLAMP pin current "H"	IH67	SW67 → b, (XCLP1) = 0V, V67 = 3.0V	15	40	_	μΑ
64	R CLAMP pin current "L"	IL67	SW67 → b, (XCLP1) = 0V, V67 = 1.0V	_	-40	-15	μΑ
65	RGB GAM GAIN1 pin current	168	V68 = 5.0V	_	0.5	1.3	μΑ

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
66	RGB GAM GAIN2 pin current	I71	V71 = 5.0V		0.5	1.3	μA
67	RGB GAM CTR2 pin current	174	V74 = 5.0V	_	0.5	1.3	μA
68	RGB GAM CTR1 pin current	177	V77 = 5.0V	_	0.5	1.3	μA
69	RIN pin voltage	V9		1.3	1.7	2.1	V
70	GIN pin voltage	V10		1.3	1.7	2.1	V
71	BIN pin voltage	V11		1.3	1.7	2.1	٧
72	B SBRT pin voltage	V24		2.9	3.3	3.7	V
73	R SBRT pin voltage	V25		2.9	3.3	3.7	V
74	SID CTR pin voltage	V30		2.9	3.3	3.7	V
75	VCOM CTR pin voltage	V36		2.9	3.3	3.7	V
76	SIG CENT CTR pin voltage	V37		2.9	3.3	3.7	V
77	BLK LIM pin voltage	V39		2.9	3.3	3.7	V
78	BLK CENT pin voltage	V40		2.9	3.3	3.7	V
79	WHT LIM pin voltage	V41		2.9	3.3	3.7	V
80	R GAIN pin voltage	V46		2.9	3.3	3.7	V
81	B GAIN pin voltage	V47		2.9	3.3	3.7	V
82	IREF pin voltage	V49		0.8	1.2	1.6	V
83	GCA DET B pin voltage	V51		1.2	1.8	2.4	V
84	GCA DET G pin voltage	V52		1.2	1.8	2.4	V
85	GCA DET R pin voltage	V53		1.2	1.8	2.4	V
86	SH IN pin voltage	V63		1.9	2.3	2.7	V
87	B CLAMP pin voltage	V65		1.6	2.1	2.6	V
88	G CLAMP pin voltage	V66		1.6	2.1	2.6	V
89	R CLAMP pin voltage	V67		1.6	2.1	2.6	V
90	R GAM GAIN1 pin voltage	V69		2.9	3.3	3.7	V
91	B GAM GAIN1 pin voltage	V70		2.9	3.3	3.7	V
92	R GAM GAIN2 pin voltage	V72		2.9	3.3	3.7	V
93	B GAM GAIN2 pin voltage	V73		2.9	3.3	3.7	V
94	R GAM CTR2 pin voltage	V75		2.9	3.3	3.7	V
95	B GAM CTR2 pin voltage	V76		2.9	3.3	3.7	V
96	R GAM CTR1 pin voltage	V78		2.9	3.3	3.7	V
97	B GAM CTR1 pin voltage	V79		2.9	3.3	3.7	V
98	RGB MBRT pin voltage	V1		2.9	3.3	3.7	V
99	R MBRT pin voltage	V4		2.9	3.3	3.7	V
100	B MBRT pin voltage	V5		2.9	3.3	3.7	V
101	RGB MBRT input impedance	Z1		45	80	110	kΩ

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
102	R MBRT input impedance	Z4		45	80	110	kΩ
103	B MBRT input impedance	Z5		45	80	110	kΩ
104	B SBRT input impedance	Z24		45	80	110	kΩ
105	R SBRT input impedance	Z25		45	80	110	kΩ
106	SID CTR input impedance	Z30		45	80	110	kΩ
107	VCOM CTR input impedance	Z36		45	80	110	kΩ
108	SIG CENT CTR input impedance	Z37		45	80	110	kΩ
109	BLK LIM input impedance	Z39		55	100	150	kΩ
110	BLK CENT input impedance	Z40		55	100	150	kΩ
111	WHT LIM input impedance	Z41		55	100	150	kΩ
112	R GAIN input impedance	Z46		45	80	110	kΩ
113	B GAIN input impedance	Z47		45	80	110	kΩ
114	R GAM GAIN1 input impedance	Z69		45	80	110	kΩ
115	B GAM GAIN1 input impedance	Z70		45	80	110	kΩ
116	R GAM GAIN2 input impedance	Z72		45	80	110	kΩ
117	B GAM GAIN2 input impedance	Z73		45	80	110	kΩ
118	R GAM CTR2 input impedance	Z75		45	80	110	kΩ
119	B GAM CTR2 input impedance	Z76		45	80	110	kΩ
120	R GAM CTR1 input impedance	Z78		45	80	110	kΩ
121	B GAM CTR1 input impedance	Z79		45	80	110	kΩ

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
122	RGB GAIN adjustment range (1)	ΔGCS1	Set SW41 → ON, V41 = 1.6V, V42 = 0V, V54 = 0V and input SG1 (0 dB) to (TEST IN). Then adjust V45 so that the non-inverted output amplitude (black to white) at TP16 is 5 times the input signal amplitude and label this as VI. Input SG1 (−6 dB) to (TEST IN) and label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 with V45 = VI as VRST, VGST and VBST, and the inverted output amplitudes as VRSTA, VGSTA and VBSTA, respectively. Next, label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 with V45 = 5.0V as VRSM, VGSM and VBSM, and the inverted output amplitudes as VRSMA, VGSMA and VBSMA, respectively. Next, label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 with V45 = 1.6V as VRSN, VGSN and VBSN, and the inverted output amplitudes as VRSNA, VGSNA and VBSNA, respectively. ΔGCS1 = 20log (VRSM (A)/VRST (A)) = 20log (VGSM (A)/VRST (A)) = 20log (VGSN (A)/VRST (A)) = 20log (VGSN (A)/VGST (A))	4.0	6.0	1	dВ
123	RGB GAIN adjustment range (2)	ΔGcs2		_	-6.0	-4.0	dB
124	R GAIN adjustment range (1)	ΔGRS1	Set V42 = 0V, V54 = 0V, input SG1 ($-6dB$) to (TEST IN), and set V45 = VI, SW46 \rightarrow ON, SW41 \rightarrow ON, V41 = 1.6V and V46 = 5.0V. Then label the non-inverted output amplitude (black to white) at TP15 as VRSTM and the inverted output amplitude as VRSTMA.	2.5	4.6	_	dB
125	R GAIN adjustment range (2)	ΔGRS2	Next, label the non-inverted output amplitude (black to white) at TP15 with V46 = 1.6V as VRSTN and the inverted output amplitude as VRSTNA. ΔGRS1 = 20log (VRSTM (A)/VGST (A)) ΔGRS2 = 20log (VRSTN (A)/VGST (A))	_	-4.6	-2.5	dB
126	B GAIN adjustment range (1)	ΔGBS1	Set V42 = 0V, V54 = 0V, input SG1 ($-6dB$) to (TEST IN), and set V45 = VI, SW47 \rightarrow ON, SW41 \rightarrow ON, V41 = 1.6V and V47 = 5.0V. Then label the non-inverted output amplitude (black to white) at TP17 as VBSTM and the inverted output amplitude as VBSTMA.	2.5	4.6	_	dB
127	B GAIN adjustment range (2)	ΔGBS2	Next, label the non-inverted output amplitude (black to white) at TP17 with V47 = 1.6V as VBSTN and the inverted output amplitude as VBSTNA. $\Delta GBS1 = 20log \ (VBSTM \ (A)/VGST \ (A))$ $\Delta GBS2 = 20log \ (VBSTN \ (A)/VGST \ (A))$	_	-4.6	-2.5	dB

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
128	RGB MBRT adjustment range (1)	ΔVBM1	Label the DC potentials at TP9, TP10 and TP11 as VRT, VGT and VBT, respectively. Next, label the DC potentials at TP9, TP10 and TP11 with SW1 → ON and V1 = 5.0V as VRN, VGN and VBN, respectively. Next, label the DC potentials at TP9, TP10	_	-0.35	-0.30	V
129	RGB MBRT adjustment range (2)	ΔVBM2	and TP11 with V1 = 1.6 V as VRM, VGM and VBM, respectively. $\Delta VBM1 = VRN - VRT, VGN - VGT, \\ VBN - VBT$ $\Delta VBM2 = VRM - VRT, VGM - VGT, \\ VBM - VBT$ Label the DC potential at TP9 with SW4 \rightarrow ON	0.30	0.35		V
130	R MBRT adjustment range (1)	ΔVBR1	and V4 = 5.0V as VRTN. Next, label the DC potential at TP9 with V4 =	-	-0.16	-0.12	٧
131	R MBRT adjustment range (2)	ΔVBR2	1.6V as VRTM. Δ VBR1 = VRTN - VGT Δ VBR2 = VRTM - VGT	0.12	0.16	_	V
132	B MBRT adjustment range (1)	ΔVBB1	Label the DC potential at TP11 with SW5 \rightarrow ON and V5 = 5.0V as VBTN. Next, label the DC potential at TP11 with V5 =	_	-0.16	-0.12	V
133	B MBRT adjustment range (2)	ΔVBB2	1.6V as VBTM. ΔVBB1 = VBTN - VGT ΔVBB2 = VBTM - VGT	0.12	0.16	_	V
134	Maximum RGB output amplitude	ΔVΒΜΑΧ	Set SW39 \rightarrow ON, V39 = 1.6V, V45 = 5.0V and V23 = 5.0V. Then measure the amplitudes (black to black) at TP15, TP16 and TP17.	10.0	10.7	_	Vp-p
135	RGB SBRT adjustment range (1)	Vsbn	Set SW39 → ON and V39 = 1.6V. Then label the non-inverted reference level potentials at TP15, TP16 and TP17 as VSRT, VSGT and VSBT, and the inverted reference level potentials as VSRTA, VSGTA and VSBTA, respectively. Next, label the non-inverted reference level potentials at TP15, TP16 and TP17 with V23 = 1.6V as VSRN, VSGN and VSBN, and the inverted reference level potentials as VSRNA,	_	-0.7	0	V
136	RGB SBRT adjustment range (2)	VSBM	VSGNA and VSBNA, respectively. Next, label the non-inverted reference level potentials at TP15, TP16 and TP17 with V23 = 5.0V as VSRM, VSGM and VSBM, and the inverted reference level potentials as VSRMA, VSGMA and VSBMA, respectively. VSBN = VSRNA - VSRN, VSGNA - VSGN, VSBNA - VSBN VSBM = VSRMA - VSRM, VSGMA - VSGM, VSBMA - VSBM	8.5	10.7	-	V

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
137	R SBRT adjustment range (1)	ΔVssr1	Set SW39 → ON, V39 = 1.6V, SW25 → ON and V25 = 1.6V. Then label the non-inverted reference level potential at TP15 as VSRTN and the inverted reference level potential as VSRTNA. Next, label the non-inverted reference level potential	_	-1.8	-1.2	V
138	R SBRT adjustment range (2)	ΔVssr2	at TP15 with V25 = 5.0V as VSRTM and the inverted reference level potential as VSRTMA. ΔVSSR1 = (VSRTNA – VSRTN) – (VSGTA – VSGT) ΔVSSR2 = (VSRTMA – VSRTM) – (VSGTA – VSGT)	1.2	1.8	_	V
139	B SBRT adjustment range (1)	ΔVssв1	Set SW39 → ON, V39 = 1.6V, SW24 → ON and V24 = 1.6V. Then label the non-inverted reference level potential at TP17 as VSBTN and the inverted reference level potential as VSBTNA. Next, label the non-inverted reference level potential at TP17 with V24 = 5.0V as VSBTM and the inverted	_	-1.8	-1.2	V
140	B SBRT adjustment range (2)	ΔVSSB2	reference level potential as VSBTMA. ΔVSSB1 = (VSBTNA – VSBTN) – (VSGTA – VSGT) ΔVSSB2 = (VSBTMA – VSBTM) – (VSGTA – VSGT)	1.2	1.8	_	V
141	Reference level difference between R, G and B	ΔVs	ΔVs = VSRT (A) - VSGT (A), VSGT (A) - VSBT (A), VSBT (A) - VSRT (A)	-200	0	200	mV
142	Gain difference between R, G and B	Δ G RGB	Set V45 = VI, SW41 \rightarrow ON, V41 = 1.6V and input SG1 (0dB) to (R IN), (G IN) and (B IN). Then label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 as VRVT, VGVT and VBVT, and the inverted output amplitudes as VRVTA, VGVTA and VBVTA, respectively. $\Delta \text{GRGB} = 20 \text{log} \text{ (VBVT/VRVT)}, \\ 20 \text{log} \text{ (VRVT/VGVT)}, \\ 20 \text{log} \text{ (VGVT/VBVT)}$	-0.8	0	0.8	dB
143	Difference between the inverted and non-inverted gain	ΔGΙΝΥ	ΔGINV = 20log (VRVT/VRVTA), 20log (VGVT/VGVTA), 20log (VBVT/VBVTA)	-0.7	0	0.7	dB
144	Difference between the reference level and 50 IRE	ΔV50Ι	Set V45 = VI. Then label the non-inverted output signal reference level amplitudes at TP15, TP16 and TP17 as Vsr, VsG and VsB, and the inverted output signal reference level amplitudes as Vsra, VsGa and VsBa, respectively. V50I = VSR (A) – VRVT (A)/2 = VSG (A) – VGVT (A)/2 = VSB (A) – VBVT (A)/2	-150	0	150	mV
145	Gamma intermediate region gain	GGN	(See "Black Side Gamma Measurement Method".) Set V45 = VI. Then measure the minimum gain GN of the non- inverted and inverted signals at TP15, TP16 and TP17. GGN = 20 log (GN)	8.0	9.8	12.0	dB
146	Minimum RGB gamma black side gain	Gсви	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V and V77 = 1.6V. Then obtain the gamma gain of the non-inverted and inverted signals at TP15, TP16 and TP17. — 17 —	-1.5	0	1.5	dB

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
147	Maximum RGB gamma black side gain	ΔGGВМ	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V68 = 5.0V and V77 = 1.6V. Then obtain the gamma gain of the non-inverted and inverted signals at TP15, TP16 and TP17.	15	18	_	dB
148	Gamma black side gain difference between R, G and B	ΔGGВТ	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V68 = 3.0V and V77 = 1.6V. Then label the non-inverted side gamma gain at TP15, TP16 and TP17 as GBRT, GBGT and GBBT, and the inverted side gamma gain as GBRTA, GBGTA and GBBTA, respectively. $\Delta GGBT = GBRT(A) - GBGT(A) = GBGT(A) - GBBT(A) = GBBT(A) - GBRT(A)$	-1.0	0	1.0	dB
149	R gamma black side sub gain adjustment range (1)	Δ G GBR1	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V68 = 3.0V, V77 = 1.6V, SW69 → ON and V69 = 1.6V. Then measure the gamma gain at TP15, and label the non-inverted side as GBRN and the inverted side as GBRNA	_	-4.5	-2.5	dB
150	R gamma black side sub gain adjustment range (2)	$\Delta GGBR2$	$\Delta G_{\rm GBR1} = G_{\rm BRN} ({\rm A}) - G_{\rm BGT} ({\rm A})$ Next, measure the gamma gain at TP15 with V69 = 5.0V, and label the non-inverted side as GBRM and the inverted side as GBRMA. $\Delta G_{\rm GBR2} = G_{\rm BRM} ({\rm A}) - G_{\rm BGT} ({\rm A})$	2.5	4.5		dB
151	B gamma black side sub gain adjustment range (1)	Δ G GBB1	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V68 = 3.0V, V77 = 1.6V, SW70 → ON and V70 = 1.6V. Then measure the gamma gain at TP17, and label the non-inverted side as GBBN and the inverted side as GBBNA.	_	-4.5	-2.5	dB
152	B gamma black side sub gain adjustment range (2)	Δ G GBB2	Next, measure the gamma gain at TP17 with V70 = 5.0V, and label the non-inverted side as GBBM and the inverted side as GBBMA. Δ GGBB2 = GBBM (A) $-$ GBGT (A)	2.5	4.5		dB
153	Minimum RGB gamma white side gain	Ggwn	(See "White Side Gamma Measurement Method".) Set V45 = Vi, V23 = 1.6V, SW41 → ON, V41 = 1.6V, V71 = 1.6V and V74 = 5.0V. Then measure the gamma gain of the non-inverted and inverted sides at TP15, TP16 and TP17.	-1.5	0	1.5	dB
154	Maximum RGB gamma white side gain	Ggwn	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, SW41 → ON, V41 = 1.6V, V71 = 5.0V and V74 = 5.0V. Then measure the gamma gain of the non-inverted and inverted sides at TP15, TP16 and TP17.	15	18	_	dB

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
155	Gamma white side gain difference between R, G and B	Δ G GWT	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V71 = 3.0V, V74 = 5.0V, SW41 \rightarrow ON and V41 = 1.6V. Then label the non-inverted side gamma gain at TP15, TP16 and TP17 as Gwrt, Gwgt and Gwbt, and the inverted side gamma gain as Gwrta, Gwgta and Gwbta, respectively. $\Delta G = G = G = G = G = G = G = G = G = G $	-1.0	0	1.0	dB
156	R gamma white side sub gain adjustment range (1)	Δ G GWR1	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V71 = 3.0V, V74 = 5.0V, SW41 \rightarrow ON, V41 = 1.6V, SW72 \rightarrow ON and V72 = 1.6V. Then measure the gamma gain at TP15, and label the non-inverted side as GWRN and the	_	-4.5	-2.5	dB
157	R gamma white side sub gain adjustment range (2)	Δ G GWR2	inverted side as GWRNA. $\Delta G GWR1 = GWRN \text{ (A)} - GWGT \text{ (A)}$ Next, measure the gamma gain at TP15 with V72 = 5.0V, and label the non-inverted side as GWRM and the inverted side as GWRMA. $\Delta G GWR2 = GWRM \text{ (A)} - GWGT \text{ (A)}$	2.5	4.5		dB
158	B gamma white side sub gain adjustment range (1)	Δ G GWB1	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V71 = 3.0V, V74 = 5.0V, SW41 \rightarrow ON, V41 = 1.6V, SW73 \rightarrow ON and V73 = 1.6V. Then measure the gamma gain at TP17, and label the non-inverted side as GWBN and the	_	-4.5	-2.5	dB
159	B gamma white side sub gain adjustment range (2)	Δ G GWB2	inverted side as GWBNA. $\Delta \text{GGWB1} = \text{GWBN (A)} - \text{GWGT (A)}$ Next, measure the gamma gain at TP17 with V73 = 5.0V, and label the non-inverted side as GWBM and the inverted side as GWBMA. $\Delta \text{GGWB2} = \text{GWBM (A)} - \text{GWGT (A)}$	2.5	4.5		dB
160	Minimum RGB gamma black side breakpoint value	Pgbn	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V68 = 5.0V and V77 = 1.6V. Then measure the gamma breakpoints of the non-inverted and inverted sides at TP15, TP16 and TP17.	-0.45	-0.15	_	V
161	Maximum RGB gamma black side breakpoint value	Рдвм	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V68 = 5.0V, V77 = 5.0V, SW1 \rightarrow ON and V1 = 4.0V. Then measure the gamma breakpoints of the non-inverted and inverted sides at TP15, TP16 and TP17.	_	-1.05	-0.75	V

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
162	Gamma black side breakpoint difference between R, G and B	ΔР <table-cell>вт</table-cell>	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V68 = 5.0V and V77 = 3.3V. Then measure the gamma breakpoints at TP15, TP16 and TP17 and label the non-inverted side as PGBRT, PGBGT and PGBBT, and the inverted side as PGBRTA, PGBGTA and PGBBTA, respectively. $\Delta PGBT = PGBRT(A) - PGBGT(A) = PGBGT(A) - PGBBT(A) = PGBBT(A) - PGBBT(A)$	-0.15	0	0.15	V
163	R gamma black side breakpoint sub adjustment range (1)	ΔPgBR1	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V68 = 5.0V, V77 = 3.3V, SW78 → ON and V78 = 1.6V. Then measure the gamma breakpoint at TP15, and label the non-inverted side as PGBRN and the inverted side as PGBRNA.	0.15	0.3	_	V
164	R gamma black side breakpoint sub adjustment range (2)	ΔPgbr2	Δ PGBR1 = PGBRN (A) $-$ PGBGT (A) Next, measure the gamma breakpoint at TP15 with V78 = 5.0V, SW1 \rightarrow ON and V1 = 4.0V, and label the non-inverted side as PGBRM and the inverted side as PGBMA. Δ PGBR2 = PGBRM (A) $-$ PGBGT (A)	_	-0.3	-0.15	٧
165	B gamma black side breakpoint sub adjustment range (1)	ΔРGВВ1	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V68 = 5.0V, V77 = 3.3V, SW79 \rightarrow ON and V79 = 1.6V. Then measure the gamma breakpoint at TP17, and label the non-inverted side as PGBBN and the inverted side as PGBBNA.	0.15	0.3	_	V
166	B gamma black side breakpoint sub adjustment range (2)	ΔPGBB2	Δ PGBB1 = PGBBN (A) $-$ PGBGT (A) Next, measure the gamma breakpoint at TP17 with V79 = 5.0V, SW1 \rightarrow ON and V1 = 4.0V, and label the non-inverted side as PGBBM and the inverted side as PGBBMA. Δ PGBB2 = PGBBM (A) $-$ PGBGT (A)	_	-0.3	-0.15	٧
167	Minimum RGB gamma white side breakpoint value	Pgwn	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V71 = 5.0V, V74 = 5.0V, SW41 \rightarrow ON and V41 = 1.6V. Then measure the gamma breakpoints of the non-inverted and inverted sides at TP15, TP16 and TP17.	_	-0.35	-0.05	V
168	Maximum RGB gamma white side breakpoint value	Pgwm	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V71 = 5.0V, V74 = 1.6V, SW1 \rightarrow ON, V1 = 2.3V, SW41 \rightarrow ON and V41 = 1.6V. Then measure the gamma breakpoints of the non-inverted and inverted sides at TP15, TP16 and TP17.	0.75	1.20	_	V
169	Gamma white side breakpoint difference between R, G and B	ΔPgwτ	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V71 = 5.0V, V74 = 3.3V, SW41 \rightarrow ON and V41 = 1.6V. Then measure the gamma breakpoints at TP15, TP16 and TP17 and label the non-inverted sides as PGWRT, PGWGT and PGWBT, and the inverted sides as PGWRTA, PGWGTA and PGWBTA, respectively. $\Delta PGWT = PGWRT(A) - PGWGT(A) = PGWGT(A) - PGWBT(A) = PGWBT(A) - PGWBT(A) - PGWBT(A)$	-0.15	0	0.15	V

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
170	R gamma white side breakpoint sub adjustment range (1)	ΔPgwR1	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V71 = 5.0V, V74 = 3.3V, SW41 \rightarrow ON and V41 = 1.6V. Then measure the gamma breakpoint at TP16, and label the non-inverted side as PGWGT and the inverted side as PGWGTA. Next, measure the gamma breakpoint at TP15 with SW75 \rightarrow ON and V75 = 5.0, and label the non-	_	-0.3	-0.15	V
171	R gamma white side breakpoint sub adjustment range (2)	ΔPgwr2	inverted side as PGWRN and the inverted side as PGWRNA. $\Delta PGWR1 = PGWRN \text{(A)} - PGWGT \text{(A)}$ Next, measure the gamma breakpoint at TP15 with V75 = 1.6V, SW1 \rightarrow ON and V1 = 2.3V, and label the non-inverted side as PGWRM and the inverted side as PGWRMA. $\Delta PGWR2 = PGWRM \text{(A)} - PGWGT \text{(A)}$	0.15	0.3	_	٧
172	B gamma white side breakpoint sub adjustment range (1)	ΔPgwb1	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 = 1.6V, V71 = 5.0V, V74 = 3.3V, SW41 → ON, V41 = 1.6V, SW76 → ON and V76 = 5.0V. Then measure the gamma breakpoint at TP17, and label the non-inverted side as PGWBN and the inverted side as PGWBNA.	_	-0.3	-0.15	V
173	B gamma white side breakpoint sub adjustment range (2)	ΔPgwb2	Δ PGWB1 = PGWBN (A) − PGWGT (A) Next, measure the gamma breakpoint at TP17 with V75 = 1.6V, SW1 → ON and V1 = 2.3V, and set the non-inverted side as PGWBM and the inverted side as PGWBMA. Δ PGWB2 = PGWBM (A) − PGWGT (A)	0.15	0.3		V
174	WHT LIM standard voltage value	VwT	Set V45 = 5.0V, V42 = 0V, V54 = 0V and input SG1 (0dB) to (TEST IN). Label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 as VWRLT, VWGLT and VWBLT, and the inverted output amplitudes as VWRLTA, VWGLTA and VWBLTA, respectively. Next, label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 with	1.7	2.0	2.3	V
175	WHT LIM adjustment range (1)	ΔVw1	SW41 → ON and V41 = 5.0V as VWRLN, VWGLN and VWBLN, and the inverted output amplitudes as VWRLNA, VWGLNA and VWBLNA, respectively. Next, label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 with V41 = 1.6V as VWRLM, VWGLM and VWBLM, and the inverted output amplitudes as VWRLMA, VWGLMA and VWBLMA, respectively.	_	-1.7	-1.3	V
176	WHT LIM adjustment range (2)	ΔVw2	$VWT = VWRLT (A), VWGLT (A),$ $VWBLT (A)$ $\Delta VW1 = VWRLN (A) - VWRLT (A)$ $= VWGLN (A) - VWGLT (A)$ $= VWBLN (A) - VWBLT (A)$ $\Delta VW2 = VWRLM (A) - VWRLT (A)$ $= VWGLM (A) - VWGLT (A)$ $VWBLM (A) - VWBLT (A)$	2.4	2.8	_	V

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
177	BLK LIM standard voltage value (non-inverted side)	VBLT	Set V23 = 1.6V and V37 = 2.8V. Then label the DC voltages at TP15, TP16 and TP17 as VcR1, VcG1 and VcB1, respectively. Next, set V23 = 5.0V, SW26 \rightarrow (b), SW27 \rightarrow (b), SW28 \rightarrow (b), V26 = 7.0V, V27 = 7.0V and V28 = 7.0V, and then label the non-inverted limiter levels at TP15, TP16 and TP17 as VBRLT, VBGLT and VBBLT, and the inverted limiter levels as VBRLTA,	4.2	4.8	5.4	V
178	BLK LIM standard voltage value (inverted side)	VBLTA	VBGLTA and VBBLTA, respectively. Next, label the non-inverted limiter levels at TP15, TP16 and TP17 with SW39 → ON and V39 = 1.6V as VBRLM, VBGLM and VBBLM, and the inverted limiter levels as VBRLMA, VBGLMA and VBBLMA, respectively. Next, label the non-inverted limiter levels at TP15, TP16 and TP17 with V39 = 5.0V as VBRLN, VBGLN	4.2	4.8	5.4	V
179	BLK LIM adjustment range (1) (non-inverted side)	ΔVBL1	and VBBLN, and the inverted limiter levels as VBRLNA, VBGLNA and VBBLNA, respectively. VBLT = VCR1 - VBRLT = VCG1 - VBGLT = VCB1 - VBBLT VBLTA = VBRLTA - VCR1 = VBGLTA - VCB1	0.7	1.2	_	V
180	BLK LIM adjustment range (2) (non-inverted side)	ΔVBL2	ΔVBL1 = (VCR1 - VBRLM) - (VCR1 - VBRLT) = (VCG1 - VBGLM) - (VCG1 - VBGLT) = (VCB1 - VBBLM) - (VCB1 - VBBLT) ΔVBL2 = (VCR1 - VBRLN) - (VCR1 - VBRLT)	_	-2.7	-2.2	V
181	BLK LIM adjustment range (3) (inverted side)	ΔVBL3	= (VCG1 - VBGLN) - (VCG1 - VBGLT) = (VCB1 - VBBLN) - (VCB1 - VBBLT) ΔVBL3 = (VBRLMA - VCR1) - (VBRLTA - VCR1) = (VBGLMA - VCG1) - (VBGLTA - VCG1)	-0.5	0	0.5	V
182	BLK LIM adjustment range (4) (inverted side)	ΔVBL4	= (VBBLMA - VCB1) - (VBBLTA - VCB1) ΔVBL4 = (VBRLNA - VCR1) - (VBRLTA - VCR1) = (VBGLNA - VCG1) - (VBGLTA - VCG1) = (VBBLNA - VCB1) - (VBBLNA - VCB1)	_	-2.7	-2.2	V
183	RGB output DC voltage	Vcrgb	Set V42 = 0V and V23 = 2.1V. Then label the DC voltages at TP15, TP16 and TP17 as VCRT, VCGT and VCBT, respectively. VCRGB = VCRT, VCGT, VCBT	6.35	6.50	6.65	V
184	SID output DC voltage	VCSID	Set V31 = 1.6V, SW30 \rightarrow ON and V30 = 1.6V. Then measure the DC voltage at TP13.	6.35	6.50	6.65	V

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
185	DC voltage difference between RGB and SID outputs	ΔVcsrgb	Set V42 = 0V, V31 = 1.6V, SW30 \rightarrow ON, V30 = 1.6V and V37 = 2.8V. Then measure the DC voltages at TP13, TP15, TP16 and TP17, and level these voltages as Vcs2, VcR2, VcG2 and VcB2, respectively. $\Delta V CSRGB = V CS2 - V CR2, V CS2 - V CG2, V CS2 - V CB2$ $= V CR2 - V CB2$ $= V CR2 - V CB2, V CR2 - V CB2, V CG2 - V CB2$	-150	0	150	mV
186	Minimum SIG CENT adjustment voltage	VC1	Set V42 = 0V, V37 = 5.0V, SW37 \rightarrow ON. Then measure the DC voltages at TP13, TP15, TP16 and TP17.	_	4.7	5.3	V
187	Maximum SIG CENT adjustment voltage	VC2	Set V42 = 0V, V37 = 1.6V, SW37 \rightarrow ON. Then measure the DC voltages at TP15, TP16 and TP17.	7.7	8.3	-	V
188	DC voltage difference between VCOM OUT and RGB output	ΔVсом	ΔVCOM = VCRT - VCOM = VCGT - VCOM = VCBT - VCOM	100	300	500	mV
189	VCOM control range (1)	ΔVсом1	Set SW36 \rightarrow ON and V36 = 5.0V. Then label the voltage at TP38 as VCOM1. $\Delta VCOM1 = VCRT - VCOM1$ $= VCGT - VCOM1$ $= VCBT - VCOM1$		-1.9	-1.6	V
190	VCOM control range (2)	ΔVCOM2	Set SW36 \rightarrow ON and V36 = 1.6V. Then label the voltage at TP38 as VCOM2. $\Delta VCOM2 = VCRT - VCOM2$ $= VCGT - VCOM2$ $= VCBT - VCOM2$	2.1	2.4		>
191	SID OUT amplitude	VSID	Set V31 = 1.6V. Then measure the output amplitude at TP13.	8.3	9.3	10.3	Vp-p
192	Maximum SID CTR control voltage	VSMAX	Set V31 = 1.6V, SW30 \rightarrow ON, V30 = 5.0V and Vcc2 = 13V. Then measure the output amplitude at TP13.	10	11	_	Vp-p
193	Minimum SID CTR control voltage	Vsmin	Set V31 = 1.6V, SW30 \rightarrow ON, V30 = 1.6V and VCC2 = 13V. Then measure the output amplitude at TP13.	_	5.0	6.5	Vp-p
194	Maximum PRG CTR control voltage	VPRGM	Set V31 = 5.0V. Then measure the amplitude of the PRG section using the output waveform at TP13.	2.0	3.2	I	Vp-p

No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
195	Minimum PRG CTR control voltage	Vprgn	Set V31 = 1.6V. Then measure the amplitude of the PRG section using the output waveform at TP13.	_	0	0.4	Vp-p
196	Frequency response (1) (RGB input – RGB output)	fкgв	Frequency response from (R IN), (G IN) and (B IN) to TP15, TP16 and TP17 (frequency which goes to –3dB with respect to 100kHz)		18	_	MHz
197	Frequency response (3) (RGB input – γ)	fγ	Frequency response from (R IN), (G IN) and (B IN) to the sample-and-hold circuit input (frequency which goes to –3dB with respect to 100kHz)	20	25	_	MHz
198	Slew rate (RGB input – RGB output)	Rsrgb	Input SG6 to (R IN), (G IN) and (B IN). Then adjust V45 so that the output amplitude (black to white) at TP16 is 3V. Measure the slew rate from the 10 to 90% rise and fall time of TP15, TP16 and TP17.	60	100	_	V/µs
199	Input dynamic range	Vdin	Set SW41 → ON, V41 = 1.6V and input SG1 (variable amplitude) to (R IN), (G IN) and (B IN). Then label the amplitude of the 1st, 5th and 10th steps as b1, b5 and b10, respectively, using the non-inverted output waveform at TP15, TP16 and TP17. The input dynamic range is defined as the minimum value for the input amplitude (black to white) at which b1/b5 < 0.8 or b10/b5 < 0.8.	0.8	1.1	_	Vp-p
200	Sample-and-hold circuit droop rate	RDLP	Set V45 = VI and input SG7 to (SH1), (SH2) and (SH3). Then measure the droop rate at TP15, TP16 and TP17. Next, input SG7 to (SH4). Then measure the droop rate of TP15, TP16 and TP17.		_	40	mV/μs
201	GAM OUT reference voltage amplitude	Vgs	Measure the reference signal voltage amplitude of TP7.	0.15	0.22	0.29	Vp-p
202	GAM OUT GAIN (Maximum GAM gain)	GG	Input SG1 to (G IN). Then measure the output amplitude (black to white) of TP7, and label it as VG.	-5.2	-4.2	-3.2	dB

Note) The symbol (A) in the Measurement conditions inscription indicates that the measurement values for both the inverted and non-inverted sides are used.

(Example)

20 log (VRSM (A)/VRST (A)) means both

20 log (VRSM/VRST) and

20 log (VRSMA/VRSTA).

In this example, VRSM and VRSTA are non-inverted side measurement values and VRSMA and VRSTA are inverted side measurement values.

SONY CXA1853AQ

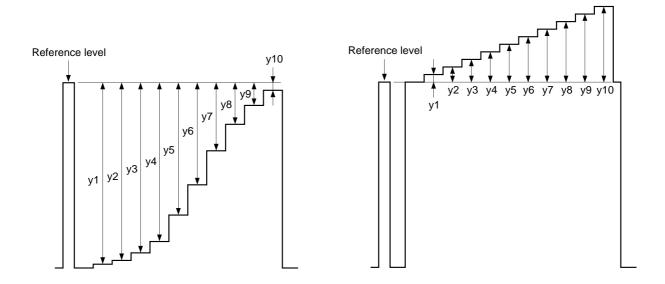
Black Side Gamma Measurement Method

Measure the output voltages y₁ to y₁₀ which correspond to the input voltages a₁ to a₁₀ using SG8 as the input signal. (Measure the voltage from the reference level. Label the white side from the reference level as positive, and the black side as negative.)

Select the two points where $|y_n - y_{n-1}|$ (n = 2 to 10) is a maximum, and label these points y_k and y_{k-1} . Also, label the input voltages which correspond to y_k and y_{k-1} as a_k and a_{k-1} , respectively.

Next, measure the output voltages y₁ to y₁₀ which correspond to the input voltages a₁ to a₁₀ using SG9 as the input signal.

Select the two points where $|y_n - y_{n-1}|$ (n = 2 to 10) is a maximum, and label these points y_h and y_{h-1} . Also, label the input voltages which correspond to y_h and y_{h-1} as a_h and a_{h-1} , respectively.


From the above:

Maximum gain GM = $(y_k - y_{k-1})/(a_k - a_{k-1})$ Minimum gain GN = $(y_h - y_{h-1})/(a_h - a_{h-1})$

The black side gamma gain is defined as the ratio of the maximum gain to the minimum gain. In other words: Gamma gain = 20 log (GM/GN)

The gamma breakpoint is defined as the intersection between the straight line passing through points (ak, yk) and (ak-1, yk-1) and the straight line passing through points (ah, yh) and (ah-1, yh-1). In other words:

Gamma breakpoint = $(GM * GN * (a_k - a_h) - GN * y_k + GM * y_h)/(GM - GN)$

RGB output waveform (SG8)

RGB output waveform (SG9)

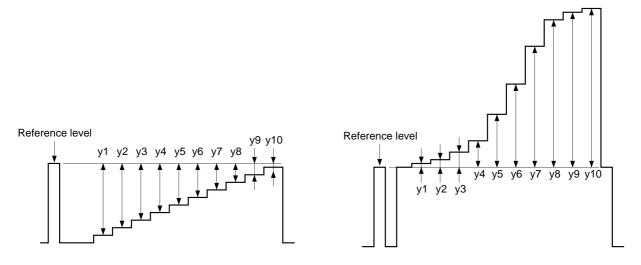
White Side Gamma Measurement Method

Measure the output voltages y₁ to y₁₀ which correspond to the input voltages a₁ to a₁₀ using SG9 as the input signal. (Measure the voltage from the reference level. Label the white side from the reference level as positive, and the black side as negative.)

Select the two points where $|y_n - y_{n-1}|$ (n = 2 to 10) is a maximum, and label these points y_k and y_{k-1} . Also, label the input voltages which correspond to y_k and y_{k-1} as a_k and a_{k-1} , respectively.

Next, measure the output voltages y₁ to y₁₀ which correspond to the input voltages a₁ to a₁₀ using SG8 as the input signal.

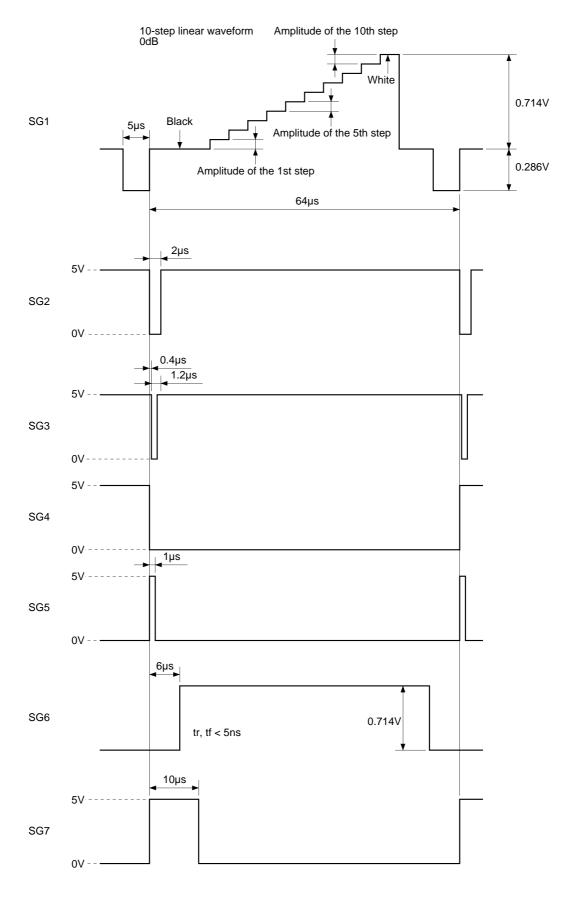
Select the two points where $|y_n - y_{n-1}|$ (n = 2 to 10) is a maximum, and label these points y_h and y_{h-1} . Also, label the input voltages which correspond to y_h and y_{h-1} as a_h and a_{h-1} , respectively.

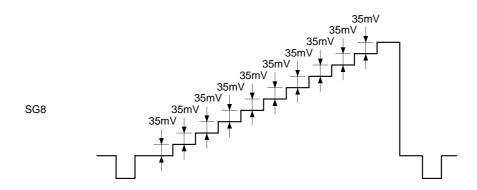

From the above:

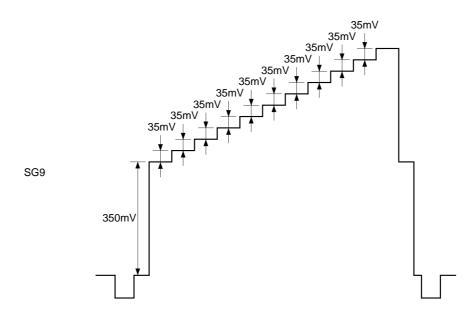
Maximum gain GM = $(y_k - y_{k-1})/(a_k - a_{k-1})$ Minimum gain GN = $(y_h - y_{h-1})/(a_h - a_{h-1})$

The white side gamma gain is defined as the ratio of the maximum gain to the minimum gain. In other words: Gamma gain = 20 log (GM/GN)

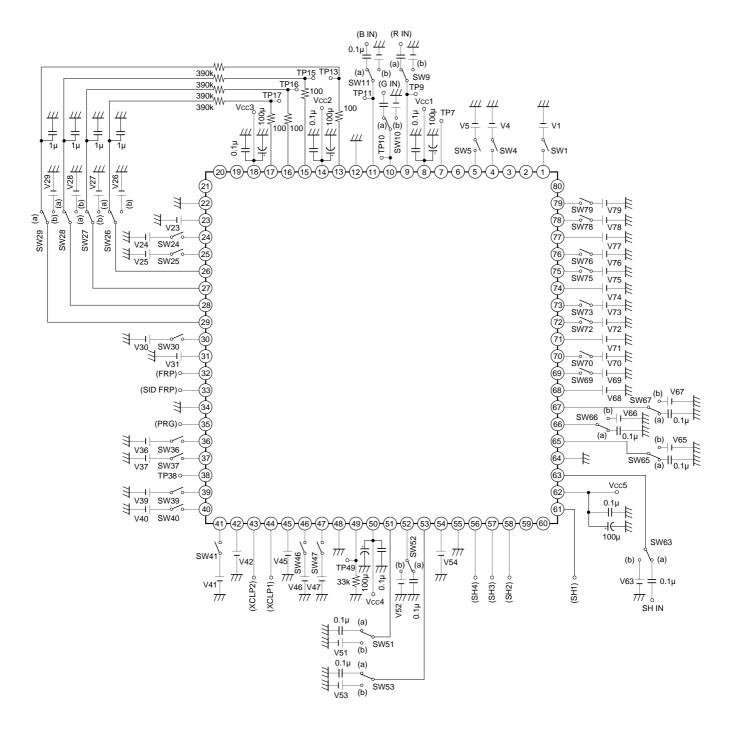
The gamma breakpoint is defined as the intersection between the straight line passing through points (ak, yk) and (ak-1, yk-1) and the straight line passing through points (ah, yh) and (ah-1, yh-1). In other words:

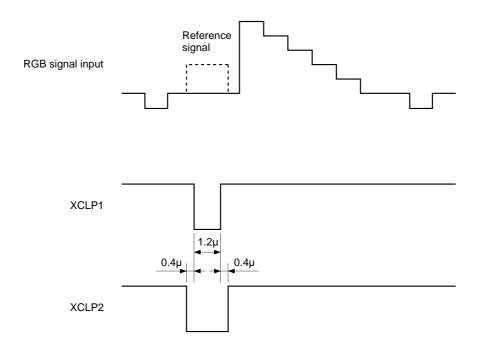

Gamma breakpoint = $(GM * GN * (a_k - a_h) - GN * y_k + GM * y_h)/(GM - GN)$



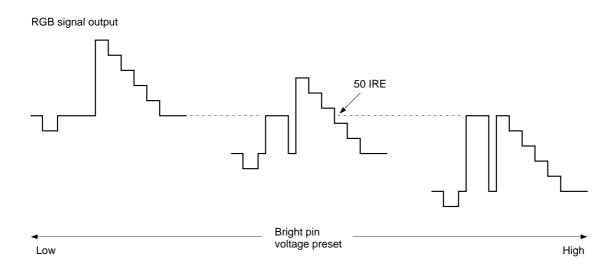

RGB output waveform (SG8)

RGB output waveform (SG9)

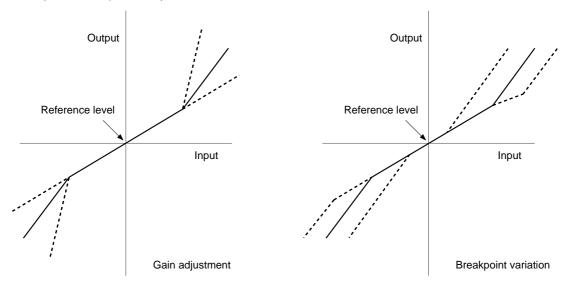

Input Waveforms


Electrical Characteristics Measurement Circuit

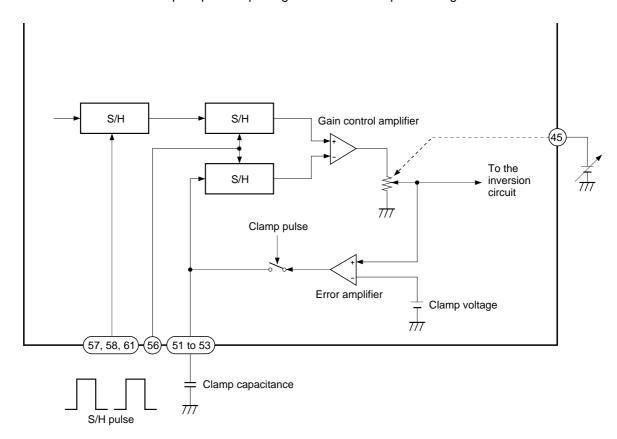
Description of Operation


Reference signal

The reference level is inserted into the RGB signal by inputting the XCLP2 signal shown below during the RGB input signal pedestal level interval. Gamma compensation and clamping operation are performed based on this level.

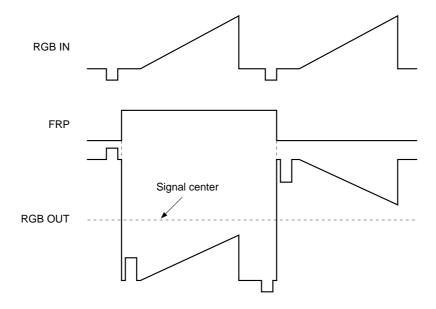

Bright adjustment

The position of the RGB signal relative to the reference level changes according to the voltage applied to RGB MBRT (Pin 1). Bright can be controlled without changing the γ characteristics to the panel because the input bias is changed with the breakpoint for output kept constant.

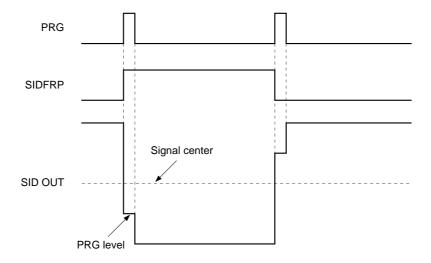

Gamma compensation

The gamma compensation curve establishes the gain change points (breakpoints) on both the black and white sides from the reference level. The black and white side gains and the black and white side gain change points can each be adjusted independently.

Sample-and-hold, gain control and pedestal clamp


Since sample-and-hold circuits are established in the R, G and B lines and each of these circuits is operated by an independent pulse, the delay can be set freely. In addition, the pulse leak is canceled by establishing a sample-and-hold circuit in the clamp loop and inputting the differential input of the gain control circuit.

SONY CXA1853AQ


RGB inversion amplifier

The polarity of the RGB output is inverted according to the FRP pulse. The relationship between input and output is as shown in the figure below.

SID output

The CXA1853Q outputs a side black signal for 4:3/16:9 aspect conversion. The black level is adjusted by the SID CTR pin. In addition, the PRG level can be set in part of the side black signal by inputting the PRG pulse. The PRG level is adjusted by the PRG CTR pin. The relationship between each input and output is as shown in the figure below.

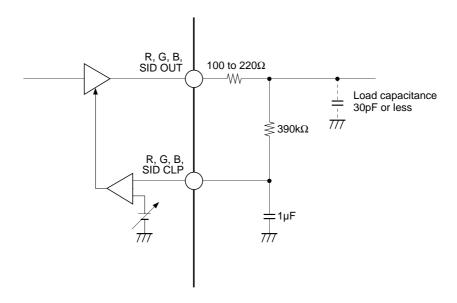
Signal center control

The RGB and SID output center voltages are adjusted by the SIG CENT CTR (Pin 37). When SIG CENT CTR is preset, the output pin center voltage goes to Vcc2/2.

Output clamp

The average value of each RGB and SID output signal is detected with external RC circuits and input to the RGB CLP and SID CLP pins. Then the center voltage offsets among R, G, B and SID outputs are reduced by feedback which equalizes these detected values and the signal center voltage set by the SIG CENT CTR pin.

Notes on Operation

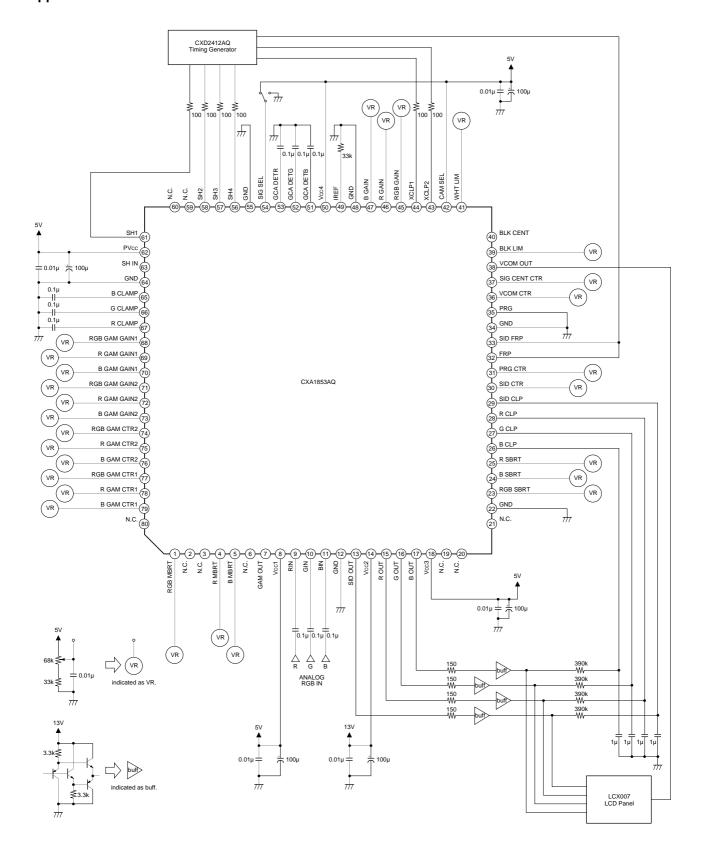

1) R IN (Pin 9), G IN (Pin 10), B IN (Pin 11) input signal impedance An external capacitor is used as the hold capacitor for the clamp at the input of this IC. Therefore, the input signal impedance must be sufficiently low (75 Ω or less) and the external capacitor must have a small leak current.

- 2) Clamp hold capacitors (Pins 51 to 53 and 65 to 67)

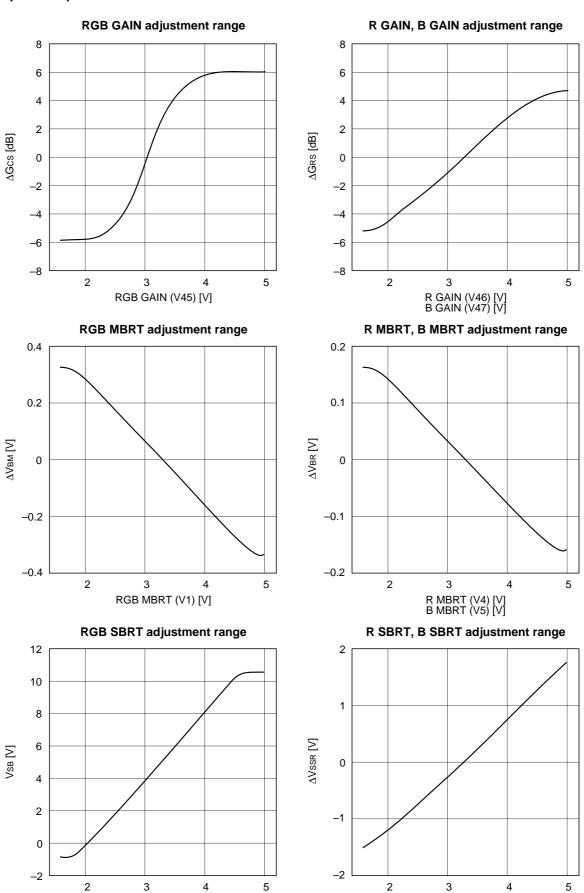
 The external capacitors connected to these pins must have a small leak current.
- 3) R, G, B, SID OUT load capacitance The output signal will tend to oscillate if the R, G, B and SID OUT load capacitance increases. Be sure to insert a 100 to 220Ω resistor in series to these output pins, and design to keep the load capacitance from exceeding 30pF.
- 4) External capacitor at the output

 The leak current absolute value and tolerance for the R, G, B and SID OUT average value detecting

Note that if there is an offset in the leak current between R, G and B, offset voltage is also generated between R, G and B in the external resistor, which causes a DC offset of the output signal.

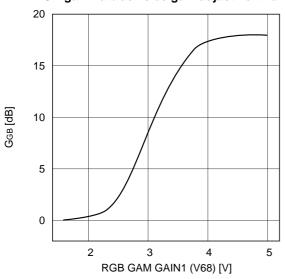


5) GND and power supply pins

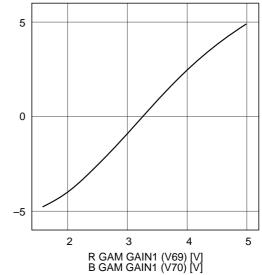

capacitors should be small.

Pins 12, 22, 34, 48, 55 and 64 (GND) should be set to the minimum identical potential applied to the IC, and should not be left open. In addition, the potential at Pins 8, 18, 50 and 62 should be the same.

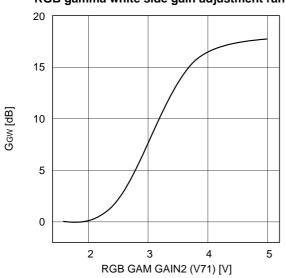
Application Circuit


Example of Representative Characteristics

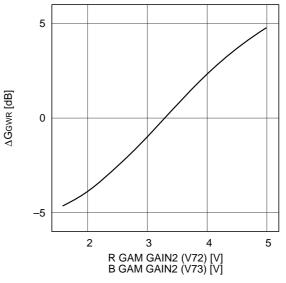
RGB SBRT (V23) [V]

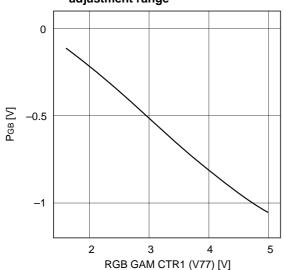

R SBRT (V25) [V] B SBRT (V24) [V]

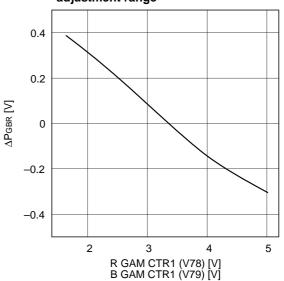
RGB gamma black side gain adjustment range

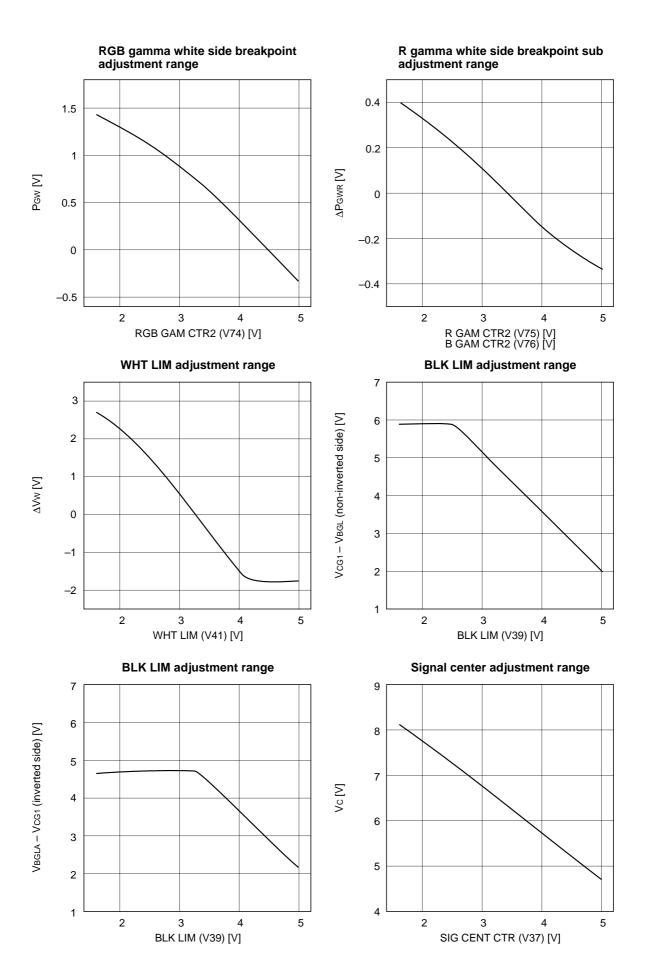


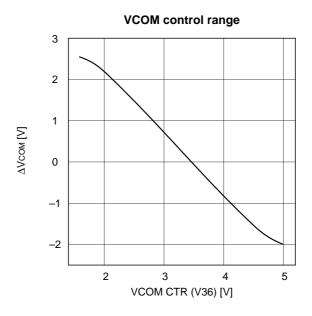
∆GGBR [dB]

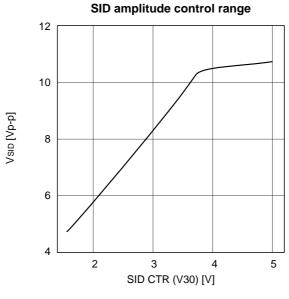

R, B gamma black side gain adjustment range

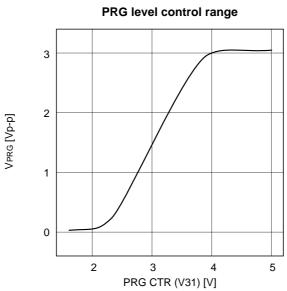

RGB gamma white side gain adjustment range

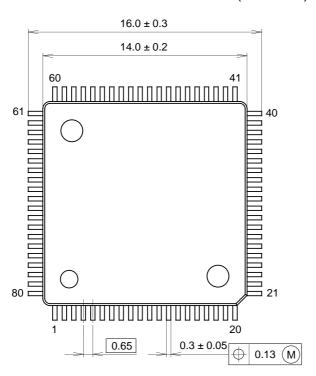

R, B gamma white side gain adjustment range

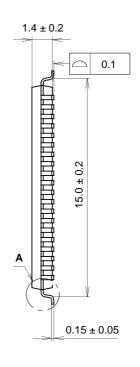


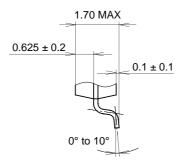

RGB gamma black side breakpoint adjustment range




R, B gamma black side breakpoint sub adjustment range






Package Outline

Unit: mm

80PIN QFP (PLASTIC)

DETAIL A

SONY CODE	QFP-80P-L111
EIAJ CODE	QFP080-P-1414
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE WEIGHT	0.6g