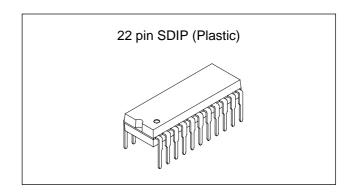


CXA2093S


Sharpness for Display

Description

The CXA2093S is a bipolar IC which performs contour accentuation for display RGB signals.

Features

- Sharpness time constant selection (50ns/100ns)
- · Built-in sync separator for sync on green
- · Differential output pins
- Built-in wide-band amplifier (200MHz/–3dB@0.7Vp-p)

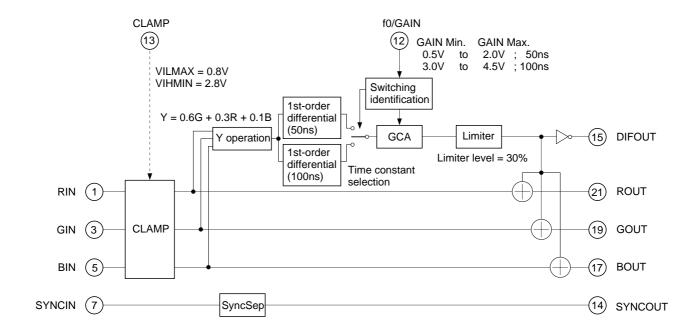
Applications

Display

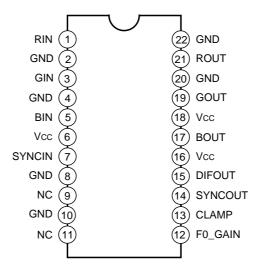
Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta = 25°C, GND = 0V)


Supply voltage
 Operating temperature
 Storage temperature
 Allowable power dissipation
 Vcc
 Topr
 -20 to +75
 °C
 Tstg
 -65 to +150
 °C
 1.13
 W

Operating Conditions


Supply voltage $Vcc 5 \pm 0.25$ V

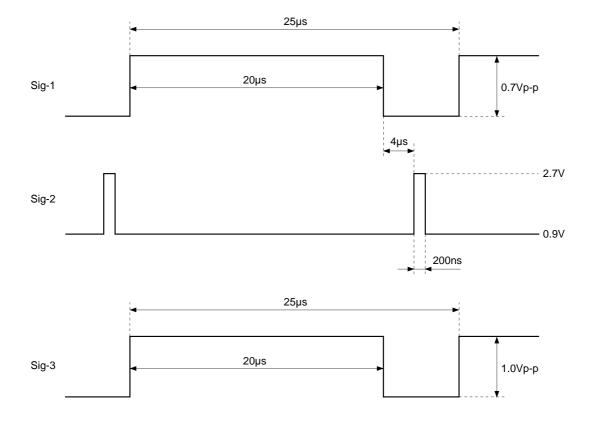
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

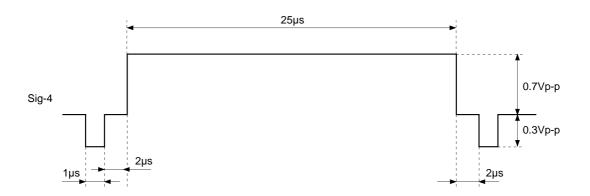
Block Diagram

Pin Configuration

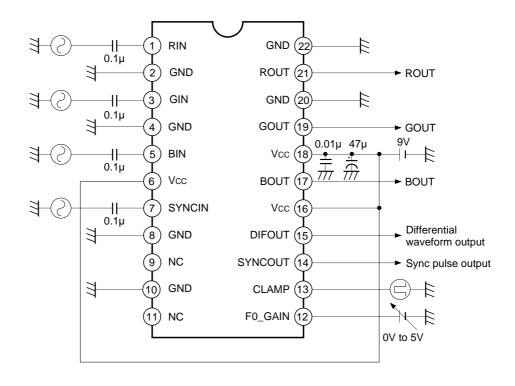
Pin Description

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description		
1 3 5	RIN GIN BIN		Vcc	RGB input pins. Input these pins through capacitor.		
2, 4 8, 10 20, 22	GND			GND pins.		
7	SYNCIN		Vcc Vcc Vcc Vcc Vcc Vcc γcc γcc γcc γcc	Sync input pin for sync on green. Input this pin through capacitor.		
12	F0_GAIN		Vcc Vcc Vcc	Sharpness time constant selection and gain control pin.		
13	CLAMP		Vcc Vcc	Clamp pulse input pin. ILMAX; 0.8V IHMIN; 2.8V		

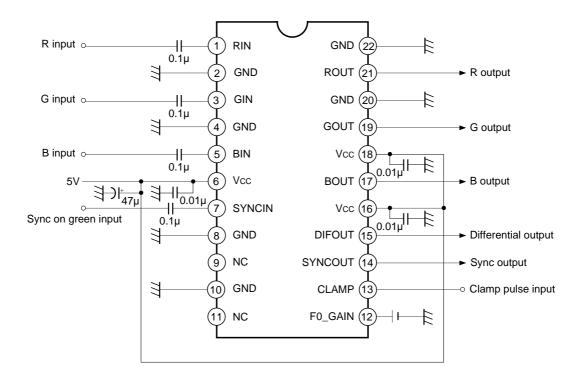

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
14	SYNCOUT		14 Wcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc	Sync output pin. 0 to 4.3V positive polarity pulse is output in synchronizing with sync.
15	DIFOUT		Vcc Vcc Vcc 1p	Differential signal output pin.
6, 16 18, 20	Vcc	5V (applied)		Power supply pins.
19 21 23	BOUT GOUT ROUT		Vcc Vcc Vcc 1p 1p 625 625 6mA 7777 777	RGB signal output pins.


Electrical Characteristics

 $(Ta = 25^{\circ}C, Vcc = 5V)$

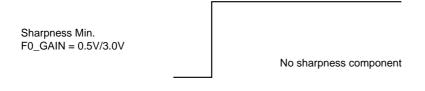

No.	Item	Symbol	Measure- ment pins	Input signals	Measurement contents	Min.	Тур.	Max.	Unit
1	Power consumption	Icc	6 16 18		Vcc pin inflow current	45	69	95	mA
2	I/O gain R	VGR	21		Input video signal to Pins 1, 3 and 5, input clamp pulse to Pin 13, and	-0.5	0.5	1.5	dB
3	I/O gain G	VGG	19	Pins 1, 3, 5: Sig-1 Pin 13: Sig-2	measure the output amplitude of each output pin. Then calculate the I/O gain.	-0.5	0.5	1.5	dB
4	I/O gain B	VGB	17		$VGR = 20 \log \frac{\text{output amplitude}}{0.7}$	-0.5	0.5	1.5	dB
5	Input dynamic range	Drng	17 19 21	Pins 1, 3, 5: Sig-3 Pin 13: Sig-2	Input video signal to Pins 1, 3 and 5, input clamp pulse to Pin 13, and measure the output amplitude of each output pin.	0.9	1.05	1.2	Vp-p
6	Sharpness gain 1	VSG1	19	Pins 1, 3, 5: CW Pin 13: 5 V Pin 12: 0.5 V	Input 30MHz and 0.1Vp-p sine wave to Pins 1, 3 and 5, and measure the output amplitude of Pin 19.	60	110	150	mVp-p
7	Sharpness gain 2	VSG2	19	Pins 1, 3, 5: CW Pin 13: 5 V Pin 12: 2.5 V	Input 30MHz and 0.1Vp-p sine wave to Pins 1, 3 and 5, and measure the output amplitude of Pin 19. Then calculate the I/O gain. VGR = 20 log output amplitude 0.1	5.0	7.0	9.0	dB
8	Sharpness gain 3	VSG3	19	Pins 1, 3, 5: CW Pin 13: 5 V Pin 12: 3.0 V	Input 30MHz and 0.1Vp-p sine wave to Pins 1, 3 and 5, and measure the output amplitude of Pin 19.	60	110	150	mVp-p
9	Sharpness gain 4	VSG4	19	Pins 1, 3, 5: CW Pin 13: 5 V Pin 12: 4.5 V	Input 30MHz and 0.1Vp-p sine wave to Pins 1, 3 and 5, and measure the output amplitude of Pin 19. Then calculate the I/O gain. VGR = 20 log output amplitude 0.1	5.0	7.0	9.0	dB
10	DIFOUT output level	VDF	15	Pin 1: CW Pin 13: 5 V Pin 12: 4.5 V	Input 30MHz and 0.3Vp-p sine wave to Pin 1, and measure the output amplitude of Pin 15.	290	375	455	mVp-p
11	SYNCSEP output high level	VSHi			Input video signal to Pin 7, and measure the high level of Pin 14.	3.9	4.2	4.5	V
12	SYNCSEP output low level	VSLo	14	Pin 7: Sig-4	Input video signal to Pin 7, and measure the low level of Pin 14.	0.1	0.18	0.26	V
13	SYNCSEP output delay 1	SDtr	'-	Tim T. Olg T		0	19	40	ns
14	SYNCSEP output delay 1	SDtf			→ SDtr → SDtf	30	51	70	ns

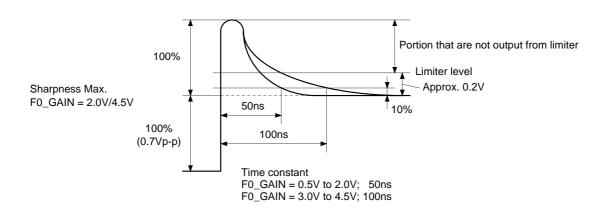
Signals Used for Measurement



Electrical Characteristics Measurement Circuit

Application Circuit

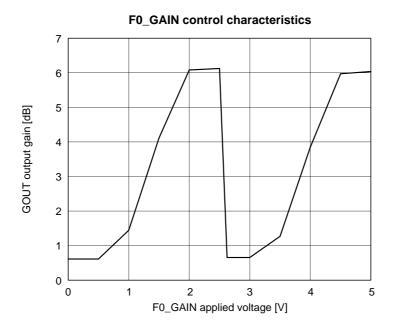


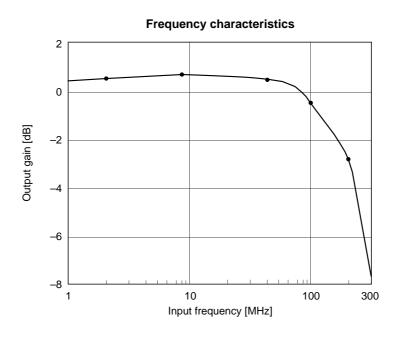

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Description of Operation

1. Video signal system

RGB signals input to Pins 1, 3 and 5 is synchronous clamped by the clamp pulse input from Pin 13. This RGB signals are mixed in the ratio of 0.6G + 0.3R + 0.1B, and Y signal is generated. The high frequency component is pulled out from a Y signal through a differential circuit, and the amplitude is varied according to the gain control circuit. The selecting of gain control and differential circuit time constant is performed by the DC voltage input from Pin 12. Gain controlled signal is output from Pin 15 after amplitude limited from a limiter circuit. At the same time, its signal is added to RGB signals input to Pins 1, 3 and 5, and then is output from Pins 17, 19 and 21.

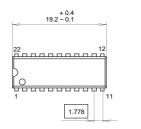


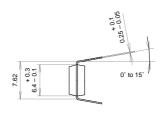

2. Synchronous system

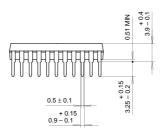
The sync on green signal input to Pin 7 is synchronous separated by the sync separation circuit after diode clamped, and is output from Pin 14 as a positive polarity pulse.

The input signal is not sync on green signal, video portion is sliced and then is output as a positive polarity pulse.

Example of Representative Characteristics





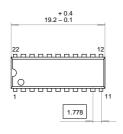

Package Outline

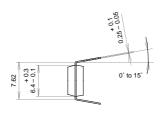
Unit: mm

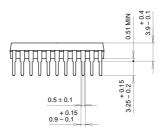
22PIN SDIP (PLASTIC)

Two kinds of package surface:

1.All mat surface type.


2.All mirror surface type.


PACKAGE STRUCTURE


SONY CODE	SDIP-22P-01
EIAJ CODE	SDIP022-P-0300
JEDEC CODE	

MOLDING COMPOUND	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.95g

22PIN SDIP (PLASTIC)

Two kinds of package surface:

1.All mat surface type.

2.All mirror surface type.

PACKAGE STRUCTURE

SONY CODE	SDIP-22P-01
EIAJ CODE	SDIP022-P-0300
JEDEC CODE	

MOLDING COMPOUND	EPOXY RESIN	
LEAD TREATMENT	SOLDER PLATING	
LEAD MATERIAL	COPPER ALLOY	
PACKAGE MASS	0.95g	

LEAD PLATING SPECIFICATIONS

ITEM	SPEC.
LEAD MATERIAL	COPPER ALLOY
SOLDER COMPOSITION	Sn-Bi Bi:1-4wt%
PLATING THICKNESS	5-18µm