查询CXA2566M供应商

捷多邦,专业PCB打样工厂,24小时加急出货

SONY

16 pin SOP (Plastic)

Headphone Stereos

Description

This is a bipolar IC designed for headphone stereos. It provides functions such as automatic volume limiter control, bass boost, standby, headphone driver and others.

Features

- Low guiescent current (3.2mA at 2.4V Vcc)
- Thermal shutdown circuitry at 120°C
- Headphone driver (30mW at 2.4V Vcc for 16Ω load)
- Bass boost function (9dB)
- Standby function
- Wide operating voltage (1.8 to 5V)
- Automatic volume limiter control (100mVrms)
- Uses SOP 16 pin package

Application

Headphone Stereos

Structure

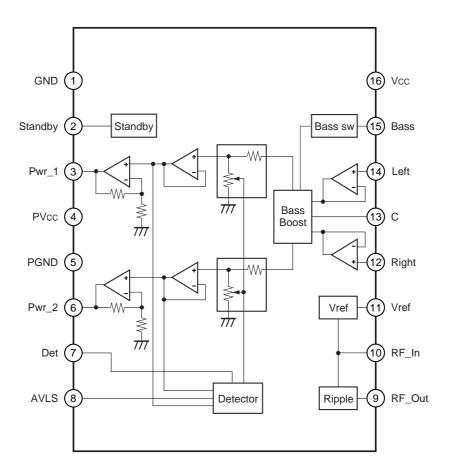
Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta = 25°C)

- 7 Supply voltage Vcc V °C
- Operating temperature Topr -20 to +75
- Storage temperature Tstg -65 to +150 mW
- Allowable power dissipation PD 500

Operating Conditions

Supply voltage	Vcc	1.8 to 5	
----------------	-----	----------	--


Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

°C

V

Block Diagram and Pin Configuration

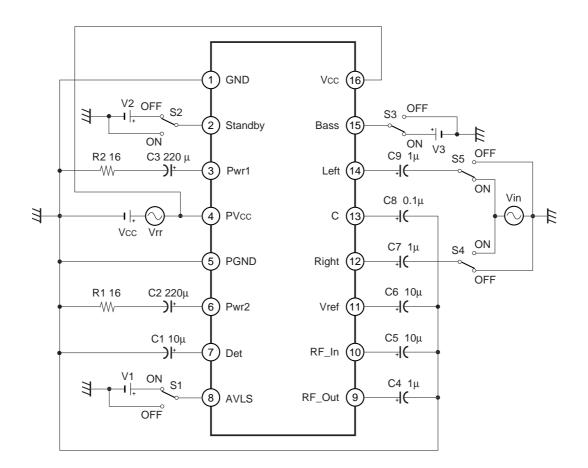
Pin Description

Pin No.	Symbol	Pin Voltage	Equivalent circuit	Description
1 5	GND PGND	0 0		Pre-amp ground Power amp ground
2	Standby	1	2k 2k 20k 124 20k 124 20k 124 20k 124 20k 124 20k 100k €100k GND	Standby switch H: Operate L: Standby
3 6	Pwr_1 Pwr_2	1.2 1.2	Vcc V V V V V V V V V V V V V	Left channel output Right channel output
4 16	PVcc Vcc	0 0		Power amp supply Pre-amp supply
7	Det	< 1	10k 10k	Detector output
8	AVLS	0	20k 124 8 \$100k GND	AVLS switch H: AVLS on L: AVLS off

Pin No.	Symbol	Pin Voltage	Equivalent circuit	Description
9 10	RF_Out RF_In	2.2 2.2	Vcc → 32k VV 124 100k 124 368k 124 10 GND	Ripple filter output
11	Vref	1.2	10k 10k	Voltage reference output
12 14	Right Left	1.2	10k 10k Vcc	Right channel input Left channel input
13	С	1.2	Vcc V 32k V 32k V 32k V 32k V 32k V C GND	Low pass filter output

Pin No.	Symbol	Pin Voltage	Equivalent circuit	Description
15	Bass	1	20k 20k 20k 124 15 100k GND	Bass switch H: Bass on L: Bass off

Electrical Characteristics

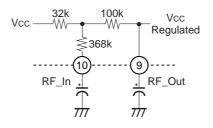

Itomo	Symbole	Sw Condition					Vin	Vrr	Maggurament conditions
Items	Symbols	Sw1	Sw2	Sw3	Sw4	Sw5	VIN	VII	Measurement conditions
Current consumption 1	Icc1	Off	On	Off	Off	Off			
Current consumption 2	ICC2	Off	Off	Off	Off	Off			
Voltage gain 1	A∨1	Off	Off	Off	On	On	–20dBm		
Voltage gain 2	Av2	Off	Off	On	On	On			BB on, ΔAv at 100Hz and 1kHz
AVLS output 1	VAVLS1	On	Off	Off	On	On	50mVp-p		
AVLS output 2	VAVLS2	On	Off	Off	On	On	250mVp-p		
Maximum Power	P 01	Off	Off	Off	On	On			THD = 10%
Distortion factor	THD	Off	Off	Off	On	On			Vo = 0.3Vrms
Noise output	Vno	Off	Off	Off	Off	Off			Rg = 0, A-weight
Ripple Rejection	RR	Off	Off	Off	Off	Off		–20dBm	
Channel Separation	CS	Off	Off	Off	On/ off	Off/ on			Vo = -10dBv
Standby off	Vstandby	Off	Off	Off	Off	Off			
Standby switch	Istandby	Off	Off	Off	Off	Off			Vstandby = 1V
Bass on	VBass	Off	Off	On	Off	Off			
Bass switch	lBass	Off	Off	On	Off	Off			VBass = 1V
AVLS on	Vavls	On	Off	Off	Off	Off			
AVLS switch	lavis	On	Off	Off	Off	Off			Vavis = 1V

SONY

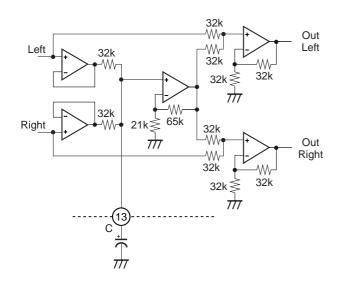
No.	Items	Symbols	Measurement conditions	Min.	Тур.	Max.	Units
1	Current consumption 1	Icc1	Standby on		18	23	μA
2	Current consumption 2	Icc2		_	3.2	5	mA
3	Voltage gain 1	Av1	Vin = -20dBm	11	11.78	12	dB
4	Voltage gain 2	Av2	BB on, ΔAv at 100Hz and 1kHz	8	9.22	10	dB
5	AVLS output 1	VAVLS1	AVLS on, Vin = 50mVp-p	86	103	116	mVrms
6	AVLS output 2	VAVLS2	AVLS on, Vin = 250mVp-p	86	104	116	mVrms
7	Maximum Power	Po ₁	Vcc = 2.4V, THD = 10%	15	30		mW
8	Distortion factor	THD	Vo = 0.3Vrms		0.13	0.3	%
9	Noise output	Vno	Rg = 0		-84	-80	dBm
10	Ripple Rejection	RR*1	fr = 1kMz, Vrr = -20dBm	36	61		dB
11	Channel Separation	CS*1	Vo = -10dBv	-46	-50	_	dB
12	Standby off	Vstandby			1		V
13	Standby switch	Istandby	Vstandby = 1V		15		μA
14	Bass on	VBass			1		V
15	Bass switch	Bass	VBass = 1V		30		μA
16	AVLS on	Vavls			1		V
17	AVLS switch	lavis	Vavls = 1V		15		μA

(Unless otherwise specified. Ta = 25°C, Vc = 2.4V, R_L = 16 Ω , f = 1kHz, standby off, AVLS off, BB off)

*1 Values are measured with respect to input source.


Description of Operation

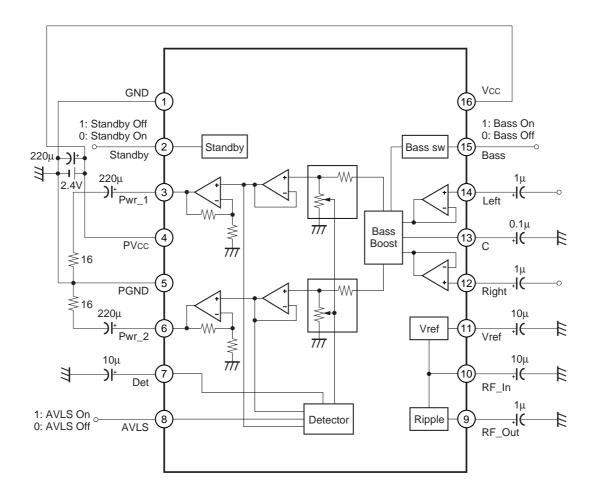
1) Det Pin (Pin 7)


This is the external pin for the detector during AVLS mode. The attack time is determined by the internal charging buffer and the external capacitor. The recovery time is determined by both the 80k impedance inside the IC and the external capacitor.

2) RF_Out (Pin 9) / RF_In (Pin 10)

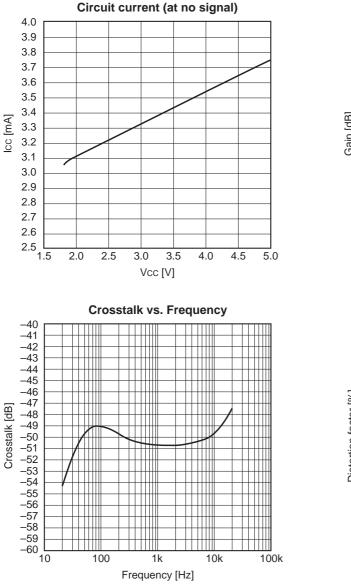
These are the two external pin for the power supply's ripple filter. It provides a regulated $0.92 \times Vcc$ to the internal circuits. The rejection ratio is determined by the resistors inside the IC and the two external capacitors.

3) C Pin (Pin 13)



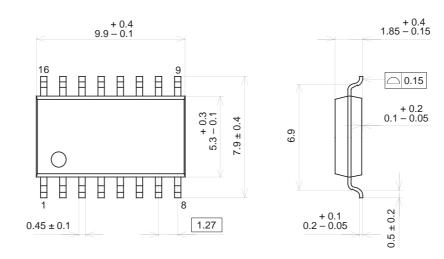
The bass boost circuitry is designed to provide a 9dB gain at 100Hz for C = 0.1μ F.

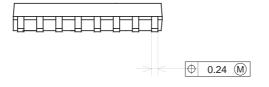
The cut off frequency is determined by:


$$f_{cutoff} = \frac{1}{2\pi \times 16k \times C}$$

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.




Frequency characteristic 23.0 22.0 21.0 Bass Boost On 20.0 $C = 0.1 \mu F$ 19.0 18.0 17.0 [gp] 17.0 16.0 15.0 14.0 13.0 12.0 11.0 10.0 000 Π 9.0 8.0 7.0 6.0 5.0 4.0 4.∪ 3.0 ∟ 10 100 1k 10k 100k Frequency [Hz]

Distortion factor vs. Input characteristics 10 Distortion factor [%] 1 0.1 Ħ 0.01 0.01 0.1 1 Input [Vpk]

Package Outline Unit: mm

16PIN SOP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	SOP-16P-L01
EIAJ CODE	SOP016-P-0300
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.2g