RX Gain Control Amplifier

Description

CXA3001N is an RX gain control amplifier for CDMA cellular mobile phone．

Features

－Wide gain control range
－Linear gain slope
－Noise figure Typ． 6 dB at Gain $=45 \mathrm{~dB}$
－Output $\mathrm{IP}_{3} \quad$ Typ．+2 dBm at Gain $=40 \mathrm{~dB}$
－ 2 input ports
－Power save function included

Absolute Maximum Ratings

－Supply voltage Vcc 6
－Operating temperature
－Storage temperature
－Allowable power dissipation
Topr
Tstg
-40 to +85
${ }^{\circ} \mathrm{C}$

Po

$$
-65 \text { to }+150 \quad{ }^{\circ} \mathrm{C}
$$

$$
420 \quad \mathrm{~mW}
$$

-0.3 to $6 \quad V$
-0.3 to $\mathrm{Vcc}+0.3 \mathrm{~V}$

$$
-0.3 \text { to } \mathrm{Vcc}+0.3 \quad \mathrm{~V}
$$

0 to $2.5 \quad V$

Operating Conditions

Supply voltage
3.1 to 3.8 V

Applications

－CDMA cellular mobile phone
－CDMA \＆AMPS cellular phone

Structure

Bipolar sillicon monolithic IC

Block Diagram

Pin Configuration

Pin Description

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage Typ. (V)	Equivalent circuit	Description
$\begin{array}{\|l\|} \hline 18 \\ 20 \\ 21 \\ 22 \end{array}$	N.C.			No connection.
23	GCTL			Gain control pin with a ripple filter.
24	PSV			Power save function pin. High: Active Low: Power save

SONY

Electrical Characteristics

DC characteristics
$\left(\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Current consumption 1	Icc1	$\mathrm{VGGTL}=1.5 \mathrm{~V}$, Pin 2	10	14	19	mA
Current consumption 2	Icc2	VGCtL $=1.5 \mathrm{~V}$, Pin 15	4.7	6.6	9.0	
Current consumption 3	Icc3	VPSV $=0.5 \mathrm{~V}$, Pin 2			1	$\mu \mathrm{A}$
Current consumption 4	Icc4	VPSV $=0.5 \mathrm{~V}$, Pin 15			1	
Input current pin 1H	Imode h	$\mathrm{V}_{\text {mode }}=3 \mathrm{~V}$			10	
Input current pin 1L	Imodel	Vmode $=0.5 \mathrm{~V}$	-20			
Input current pin 23H	Igctl H	$\mathrm{VGCTL}=3 \mathrm{~V}$			10	
Input current pin 23L	Igctl L	$\mathrm{VGCTL}=0.5 \mathrm{~V}$	-10			
Input current pin 24H	IPSV H	VPSV $=3 \mathrm{~V}$			10	
Input current pin 24L	IPSV L	VPSV $=0.5 \mathrm{~V}$	-10			
MODE high voltage	$\mathrm{V}_{\text {MH }}$	Pin 1	3			V
MODE low voltage	VML	Pin 1			0.5	
PSV high voltage	VpSh	Pin 24	3			
PSV low voltage	VPSL	Pin 24			0.5	

AC characteristics
$\left(\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Operating frequency range	FR		10		100	MHz
Gain CDMA2.3	Gcdmaz 3	$\begin{array}{ll} \hline \text { VMODE }=" \mathrm{H} " & \mathrm{f}=85.38 \mathrm{MHz} \\ \text { VGCTL }=2.3 \mathrm{~V} & \text { Level }=-50 \mathrm{dBm} \end{array}$	37	41	46	
Gain CDMA1.5	Gcdmal. 5	$\begin{aligned} & \text { VMODE }=\text { " } \mathrm{H} " \\ & \text { VGCTL }=1.5 \mathrm{~V} \quad \text { Level }=-30 \mathrm{dBm} \end{aligned}$	-7.5	-3	1.5	dB
Gain CDMA0.7	Gcdma0. 7	```Vmode = "H" VGctL = 0.7V Level = -10dBm```	-55	-49	-44	
CDMA Gain slope	Gclin	Vmode $=$ " H " VGCtL $=1$ to 2V	57	60	63	dB/V
Gain FM2.3	Gfm2.3	$\begin{array}{ll} \hline \text { VMODE }=" \mathrm{L"} & \mathrm{f}=85.38 \mathrm{MHz} \\ \text { VGCTL }=2.3 \mathrm{~V} & \text { Level }=-50 \mathrm{dBm} \end{array}$	37	41	46	
Gain FM1.5	Gfm1. 5	$\begin{array}{ll} \hline \text { VMODE }=" L " \\ \text { VGCTL }=1.5 \mathrm{~V} & \text { Level }=-30 \mathrm{dBm} \end{array}$	-7.5	-3	1.5	dB
Gain FM0.7	Gfm0.7	$\begin{array}{ll} \hline \text { VMODE }=\text { "L" } \\ \text { VGCTL }=0.7 \mathrm{~V} & \text { Level }=-10 \mathrm{dBm} \end{array}$	-55	-49	-44	
FM Gain slope	Gfmlin	Vmode = "L" VGctL $=1$ to 2V	57	60	63	dB/V
Input level 3rd order intercept point	IIP_{3}	$\begin{aligned} & \hline \mathrm{V} \text { MOde }=" \mathrm{H}^{\prime} \\ & \mathrm{GCDMA}=40 \mathrm{~dB}^{*} \\ & \mathrm{~F}_{1}=86.38 \mathrm{MHz} \\ & \mathrm{~F}_{2}=87.38 \mathrm{MHz} \end{aligned}$ Measure of 85.38 MHz	-42	-38		dBm
Noise Figure	NF	$\begin{aligned} & \hline \text { VMODE }=\text { " } \mathrm{H}^{\prime} \\ & \text { GCDMA }=40 \mathrm{~dB} * \\ & \text { Used } 1 \mathrm{MHz} \mathrm{BPF} \\ & \text { Measure of } 85.38 \mathrm{MHz} \end{aligned}$		6.5	9.5	dB

* Adjust GCTL voltage, and set the overall gain to 40 dB .

Measurement Circuit

Application Circuit

* Must be adjusting values to result a best impedance matching between BPF filter and this IC.

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Design Reference Values

Single ended measurement
$\left(\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Conditions	Typ.	Unit
Input resistance	RIN	$\mathrm{f}=85.38 \mathrm{MHz}, \mathrm{VGCTL}=1.5 \mathrm{~V}$	900	Ω
Input capacitance	CIn		9	pF
Output resistance	Rout		30	Ω

Notes on Operation

1) This IC is a wideband amplifier with wide gain control range. Separate Pin 3 (GND1) and Pin 14 (GND2) to prevent interference between input and output. Furthermore, the decoupling capacitors between Pins 2 and 3 , Pins 14 and 15 should be as close to the IC as possible.
2) The resistors connected to Pins 17 and 19 should be as close to the IC as possible.
3) This IC assumes the excellent characteristics when the differential input impedance between Pins 5 and 7, Pins 9 and 11 is 500Ω. Refer to the Measurement Circuit for the external element settings, etc.
4) Connect the capacitors, which are connected to Pins 12 and 13, to Pin 14 (GND2).
5) Pay attention to handling this IC because its electrostatic discharge strength is weak.

Package Outline Unit: mm

24PIN SSOP (PLASTIC) 275mil

(1)

NOTE : *NOT INCLUDE MOLD FINS.

SONY CODE	SSOP-24P-L01
EIAJ CODE	A SIMILAR TO SSOP024-P-0300
JEDEC CODE	-

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY / PHENOL RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE WEIGHT	-

