

CXA3627ER

All Band Tuner IC with On-chip PLL

Description

The CXA3627ER is a monolithic TV tuner IC which integrates local oscillator and mixer circuits for VHF band, local oscillator and mixer circuits for UHF band, an IF amplifier and a tuning PLL onto a single chip, enabling further miniaturization of the tuner by adopting a small package.

Features

- Low power consumption (5V, 63mA typ.)
- Low noise figure, low distortion characteristics
- High gain/low gain selectable
- Supports IF double-tuned/adjacent channel trap
- Balanced oscillator circuits with excellent oscillation stability
- On-chip PLL supports I²C bus
- On-chip high voltage drive transistor for charge pump
- Frequency step selectable from 31.25, 50 or 62.5kHz (when using a 4MHz crystal)
- · Low-phase noise synthesizer
- On-chip 4-output band switch (output voltage: 5V, current capacity: 13mA)
- 32-pin VQFN small package
- UHF band switch output switchable

Applications

- TV tuners
- VCR tuners
- CATV tuners

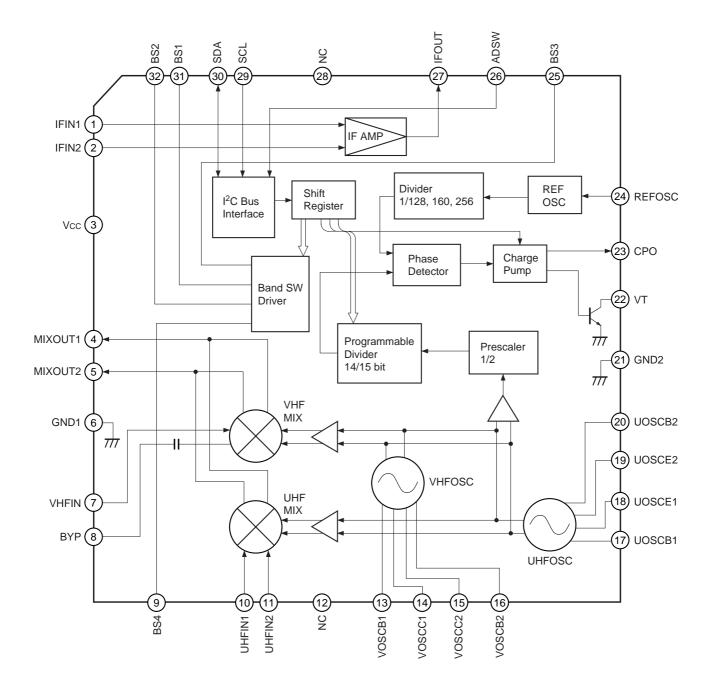
Structure

Bipolar silicon monolithic IC

32 pin VQFN (Plastic)

Absolute Maximum Ratings

 Supply voltage 	Vcc	-0.3 to +5.5	V
 Operating temperature 	Topr	-25 to +75	°C
 Storage temperature 	Tstg	-55 to +150	°C
Allowable power dissipa	tion		
	PD	610	mW


Operating Conditions

Supply voltage	Vcc	4.75 to 5.30	V
----------------	-----	--------------	---

Note: This IC has pins whose electrostatic discharge strength is weak as the operating frequency is high and the high-frequency process is used for this IC. Take care of handling the IC.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration

Pin Description

Pin No.	Symbol	Pin voltage [V]	Equivalent circuit	Description	
1			IFIN1 3 1 1.6k 2.0 2.0		IF inputs. These pins must be connected
2	IFIN2	2.0		to the mixer outputs via coupling capacitance.	
3	Vcc	—	_	Power supply.	
4	MIXOUT1			Mixer outputs. These pins output the signal in	
5	5 MIXOUT2			open collector format, and they must be connected to the power supply via a load.	
6	GND1	_		Analog circuit GND.	
7	VHFIN	2.4 during VHF reception 0.0 during UHF reception		VHF input. The input format is unbalanced input.	
8	ВҮР	3.8 (when open)	$3k \ge 0 \text{We} \ge 3k$ 777 777 777 777 777 777 777 8	VHF input GND and selection of band switching. GND: BS4 UHF Open: BS3 UHF	

Pin No.	Symbol	Pin voltage [V]	Equivalent circuit	Description	
9	BS4				
25	BS3	_ High: 4.9	igh: 4.9	Band switch outputs.	
31	BS1	Low: 0.0		This pin corresponding to the selected band goes High.	
32	BS2				
10	UHFIN1	0.0 during VHF reception		UHF inputs. Input a balanced signal to Pins 14 and 15, or ground	
11	2.3 during UHF reception			either of Pin 14 or 15 with a capacitor and input the signal to the other pin.	
12	NC	—	_		
13	VOSCB1	2.3 during VHF reception 2.5 during UHF reception			
14	14 VOSCC1 15 VOSCC2	4.0 during VHF reception Vcc during UHF reception	$3 \\ 5k \\ 5$	External resonance circuit	
15		4.0 during VHF reception Vcc during UHF reception		connection for VHF oscillator.	
16	VOSCB2	2.3 during VHF reception 2.5 during UHF reception	\vec{m} \vec{m} \vec{m}		

Pin No.	Symbol	Pin voltage [V]	Equivalent circuit	Description
17	UOSCB1	2.4 during VHF reception 2.2 during UHF reception	3	
18	UOSCE1	2.0 during VHF reception 1.5 during UHF reception		External resonance circuit
19	UOSCE2	2.0 during VHF reception 1.5 during UHF reception		connection for UHF oscillator.
20	UOSCB2	2.4 during VHF reception 2.2 during UHF reception		
24	GND2		_	PLL circuit GND.
22	VT	_		Varicap drive voltage output. This pin outputs the signal in open collector format, and it must be connected to the tuning power supply via a load.
23	СРО	2.0		Charge pump output. Connects the loop filter.
24	REFOSC	4.4	3	Crystal connection for reference oscillator.
26	ADSW	1.25 (when open)	3 26 50k 5p = 77777777777777777777777777777777777	Address selection. Controls address bits 1 and 2.

Pin No.	Symbol	Pin voltage [V]	Equivalent circuit	Description
27	IFOUT	2.8		IF output.
28	NC		_	
29	SCL			Clock input.
30	SDA	_	3 30 40k ₩ 40k 5p 7// 7// 7// 7//	Data input.

Electrical Characteristics (See the Electrical Characteristics Measurement Circuit.)

Circuit	Current
Oncun	ouncill

(Vcc = 5V, IFVcc = 5V, Ta = 25°C)

Item	Symbol	Measurement conditions		Тур.	Max.	Unit
Circuit current	lccv	Vcc current Band switch output open during VHF operation	41	64	88	mA
	lccu	Vcc current Band switch output open during UHF operation	40	63	87	mA

OSC/MIX/IF Amplifier Block

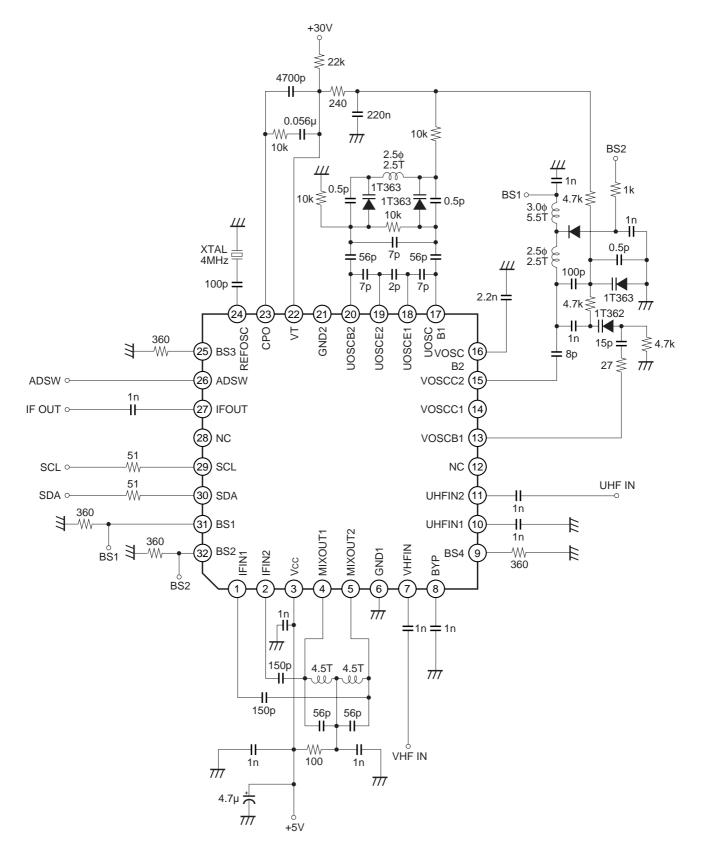
	<u> </u>		N.4.	-		11.12
Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
	CG1	VHF operation fRF = 55MHz High gain mode	19.0	22.0	25.0	dB
	CG2	VHF operation fRF = 360MHz High gain mode	19.5	22.5	25.5	dB
	CG3	UHF operation fRF = 360MHz High gain mode	23.0	26.0	29.0	dB
Conversion gain*1	CG4	UHF operation fRF = 800MHz High gain mode	23.0	26.0	29.0	dB
Convoloion gain	CG5	VHF operation $f_{RF} = 55MHz$ Low gain mode	17.0	20.0	23.0	dB
	CG6	VHF operation $f_{RF} = 360MHz$ Low gain mode	17.5	20.5	23.5	dB
	CG7	UHF operation $f_{RF} = 360MHz$ Low gain mode	21.0	24.0	27.0	dB
	CG8	UHF operation $f_{RF} = 800MHz$ Low gain mode	21.0	24.0	27.0	dB
	NF1	VHF operation $f_{RF} = 55MHz$ High gain mode		12	15	dB
	NF2	VHF operation fRF = 360MHz High gain mode		12	15	dB
	NF3	UHF operation fRF = 360MHz High gain mode		10	13	dB
Naiss Gauge *1 *2	NF4	UHF operation fre = 800MHz High gain mode		11	14	dB
Noise figure ^{*1, *2}	NF5	VHF operation fRF = 55MHz Low gain mode		13	16	dB
	NF6	VHF operation fRF = 360MHz Low gain mode		13	16	dB
	NF7	UHF operation fre = 360MHz Low gain mode		11	14	dB
	NF8	UHF operation fref = 800MHz Low gain mode		12	15	dB
	CM1	VHF operation $f_D = 55MHz$ $f_{UD} = \pm 12MHz$ (30% AM) High gain mode	99	103		dBµ
	CM2	VHF operation $f_D = 360MHz$ fub = ±12MHz (30% AM) High gain mode	99	103		dBµ
	CM3	UHF operation $f_D = 360MHz$ fuD = ±12MHz (30% AM) High gain mode	97	101		dBµ
1% cross	CM4	UHF operation fb = $800MHz$ fub = $\pm 12MHz$ (30% AM) High gain mode	94	98		dBµ
modulation 1*1, *3	CM5	VHF operation fb = $55MHz$ fub = $\pm 12MHz$ (30% AM) Low gain mode	100	104		dBµ
	CM6	VHF operation $f_D = 360MHz$ fub = ±12MHz (30% AM) Low gain mode	100	104		dBµ
	CM7	UHF operation $f_D = 360MHz$ fup = ±12MHz (30% AM) Low gain mode	98	102		dBµ
	CM8	UHF operation $f_D = 800MHz$ fup = ±12MHz (30% AM) Low gain mode	94	98		dBµ
Maximum output	Pomax	50Ω load, saturation output	8	11		dBm

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
	∆fsw1	VHF operation fosc = 100MHz Δ f from 3s to 3min after switch ON			±200	kHz
Switch ON drift (PLL not	∆fsw2	VHF operation fosc = $405MHz$ Δf from 3s to 3min after switch ON			±650	kHz
operating) *4	∆fsw3	UHF operation fosc = $405MHz$ Δf from 3s to 3min after switch ON			±350	kHz
	∆fsw4	UHF operation fosc = $845MHz$ Δf from 3s to 3min after switch ON			±400	kHz
	∆fst1	VHF operation fosc = 100MHz Δf when Vcc 5V changes ±5%			±100	kHz
Supply voltage drift	∆fst2	VHF operation fosc = $405MHz$ Δf when Vcc 5V changes $\pm 5\%$			±350	kHz
(PLL not operating) *4	∆fst3	UHF operation fosc = $405MHz$ Δf when Vcc 5V changes $\pm 5\%$			±100	kHz
	∆fst4	UHF operation fosc = 845MHz Δf when Vcc 5V changes ±5%			±100	kHz
Oscillator phase noise	C/N1	VHF operation 10kHz offset CP = 1 Phase comparison frequency = 31.25kHz	80			dBc/Hz
	C/N2	UHF operation 10kHz offset CP = 1 Phase comparison frequency = 31.25kHz	80			dBc/Hz

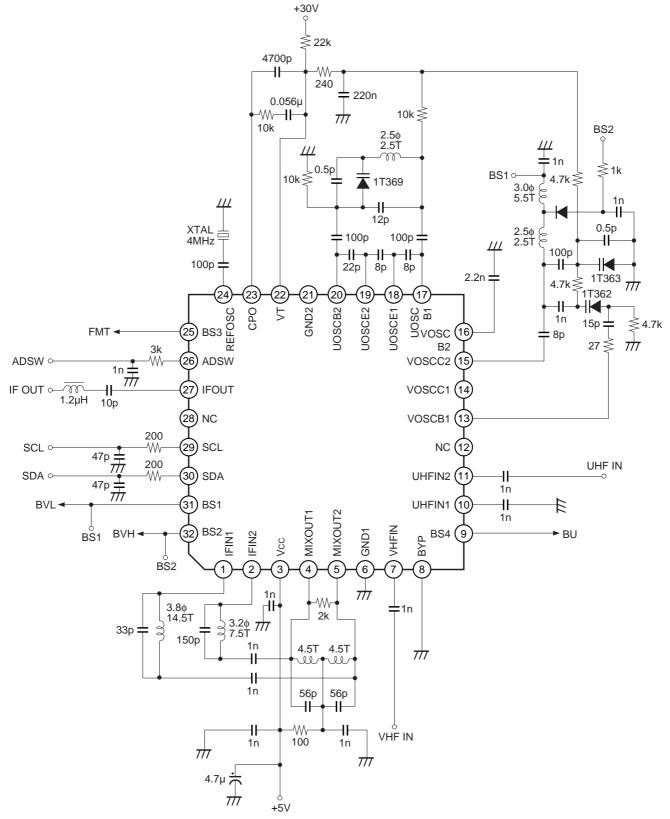
*1 Value measured with untuned input.

*2 NF meter direct-reading value (DSB measurement).

*3 Value with a desired reception signal input level of -30dBm, an interference signal of 100kHz/30% AM, and an interference signal level where S/I = 46dB measured with a spectrum analyzer.


*4 Value when the PLL is not operating.

PLL Block


Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
	LUT1	VHF operation CP = 1 fosc 100MHz \leftrightarrow fosc 405MHz			50	ms
Lock-up time	LUT2	UHF operation CP = 1 fosc 405MHz \leftrightarrow fosc 845MHz			50	ms
Reference leak	REFL	Phase comparison frequency = 31.25kHz CP = 1	50			dBc
CL and DA inputs	1				I I	
"H" level input voltage	Viн		3		Vcc	V
"L" level input voltage	VIL		GND		1.5	V
"H" level input current	Ін	VIH = Vcc		0	-0.1	μA
"L" level input current	lı∟	VIL = GND		-0.2	-4	μA
AD input	-			1		
"H" level input voltage	Viн		3		Vcc	V
"L" level input voltage	VIL		GND		1	V
"H" level input current	Ін	VIH = Vcc		100	200	μA
"L" level input current	lı∟	VIL = GND		-35	-100	μA
SDA output	-1			1		
"H" output leak current	ISDALK	VIN = 5.5V			5	μA
"L" output voltage	VSDAL	Sink = -3mA	GND		0.4	V
CPO (charge pump)	1					
Output current 1	ICPO1	When CP = 0 is selected	±30	±50	±80	μA
Leak current 1	LeakCP1	When CP = 0 is selected			30	nA
Output current 2	Ісро2	When CP = 1 is selected	±120	±200	±320	μA
Leak current 2	LeakCP2	When CP = 1 is selected			100	nA
VT (VC voltage output)	1					
Maximum output voltage	Vтн				34	V
Minimum output voltage	Vtl	Sink current = 1mA		0.15	0.8	V
REFOSC						
Oscillation frequency range	Fxtosc		3		12	MHz
Input capacitance	Схтоѕс		22	24	26	pF
Negative resistance	RNEG	Crystal source impedance fREF = 4MHz	-1	-3		kΩ
Band SW						
Output current	lвs	When ON			-13	mA
Saturation voltage	VSAT	When ON Source current = 13mA		250	330	mV
Leak current	LeakBS	When OFF IFVcc = 5.5V		0.5	3	μA

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Bus timing (I ² C bus)						
SCL clock frequency	fscL		0		400	kHz
Start waiting time	tw;sta		1300			ns
Start hold time	t h;sta		600			ns
Low hold time	tLOW		1300			ns
High hold time	tнigн		600			ns
Start setup time	ts;sta		600			ns
Data hold time	th;dat		0		900	ns
Data setup time	ts;dat		600			ns
Rise time	tR				300	ns
Fall time	t⊧				300	ns
Stop setup time	ts;sто		600			ns

Electrical Characteristics Measurement Circuit

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Description of Functions

The CXA3627ER is the terrestrial TV broadcasting tuner IC which converts frequencies to IF in order to tune and detect only the desired reception frequency of VHF and UHF band signals.

In addition to the mixer, local oscillation and IF amplifier circuits required for frequency conversion to IF, this IC also integrates a PLL circuit for local oscillation frequency control onto a single chip.

The functions of the various circuits are described below.

1. Mixer circuit

This circuit outputs the frequency difference between the signal input to VHFIN or UHFIN and the local oscillation signal.

2. Local oscillation circuit

A VCO is formed by externally connecting an LC resonance circuit composed of a varicap diode and inductance.

3. IF amplifier circuit

This circuit amplifies the mixer IF output, and consists of an amplifier stage and low impedance output stage.

4. PLL circuit

This PLL circuit fixes the local oscillation frequency to the desired frequency. It consists of a programmable divider, reference divider, phase comparator, charge pump and reference oscillator. The control format supports the I²C bus format.

The frequency steps of 31.25, 50 or 62.5kHz can be selected by the I²C bus data-based reference divider frequency division setting value.

5. Band switch circuit

The CXA3627ER has four sets of built-in PNP transistors for switching between the VL, VH and UHF bands and for switching the FM trap, etc. These PNP transistors can be controlled by the bus data.

The emitters for these PNP transistors are connected to the power supply pin (Vcc), and are ON and output 5V when the bus data is "1 (H)".

Two types of relations of the bus data and the IC internal OSC/MIX circuits operation are available as shown below. These relations can be selected by grounding or leaving open Pin 8 (BYP).

BYP: Grounding

	Band S	W data		MIX circuit		OSC circuit	
BS1	BS2	BS3	BS4	VHF	UHF	VHF	UHF
*	*	*	0	0	Х	0	Х
*	*	*	1	Х	0	Х	0

BYP: Open

	Band S	SW data		MIX circuit		OSC circuit	
BS1	BS2	BS3	BS4	VHF	UHF	VHF	UHF
*	*	0	*	0	Х	0	Х
*	*	1	*	Х	0	Х	0

*: Don't care O: Operating X: Not operating

Description of Analog Block Operation (See the Electrical Characteristics Measurement Circuit.)

VHF oscillator circuit

• This is the differential amplifier-type oscillator circuit. Pins 13 and 16 are base and Pins 14 and 15 are collector. Pins 13, 15 and Pins 16, 14 have the in-phase input/output relation respectively.

This circuit is oscillated with the positive feedback applied by connecting the output to the input via the coupling capacitor and the feedback capacitor.

Oscillation frequency is varied by connecting an LC parallel resonance circuit including a varicap and controlling the voltage applied to the varicap.

VHF mixer circuit

• The mixer circuit employs a double balanced mixer with little local oscillation signal leakage.

The input format is base input type, with Pin 8 grounded either directly or via a capacitor and the RF signal input to Pin 7.

(Pin 8 can also be used to select VHF/UHF switching mode with the BS3/BS4 data.)

• The RF signal is fed from the oscillator, converted to IF frequency and output from Pins 4 and 5. Pins 4 and 5 are open collectors, so external power feed is necessary. Also, connect single-tuned filters to Pins 4 and 5.

UHF oscillator circuit

- The oscillator circuit is designed so that two collector ground type Colpitts oscillators perform differential oscillation operation via an LC resonance circuit including a varicap.
- Resonance capacitance is connected between Pins 17 and 18, Pins 18 and 19, and Pins 19 and 20, and an LC resonance circuit including a varicap is connected between Pins 17 and 20.

UHF mixer circuit

- This circuit employs a double balanced mixer like the VHF mixer circuit.
- The input format is base input type, with Pins 10 and 11 as the RF input pins. The input method can be selected from balanced input consisting of differential input to Pins 10 and 11 or unbalanced input consisting of grounding Pin 10 via a capacitor and input to Pin 11.
- Pins 4 and 5 are the mixer outputs. Pins 4 and 5 are open collectors, so external power feed is necessary. Also, connect single-tuned filters to Pins 4 and 5.

IF amplifier circuit

- Pins 1 and 2 are the IF amplifier inputs, and the input impedance is approximately $1.6k\Omega$.
- The signals frequency converted by the mixer are output from Pins 4 and 5, and Pins 4 and 5 are connected to Pins 1 and 2 via capacitors. (An adjacent channel trap circuit can be formed by connecting LC parallel circuits in place of capacitors.)
- The signal amplified by the IF amplifier is output from Pin 27. The output impedance is approximately 10Ω .

Description of PLL Block

This IC is controlled by the I^2C bus.

The PLL of this IC performs high-speed phase comparison, providing low reference leak and quick lock-up time characteristics.

During power on, the power-on reset circuit operates to initialize the frequency data to all "0" and the band data to all "OFF". Power-on reset is performed when $Vcc \ge 3.2V$ at room temperature (Ta = 25°C).

1) Address setting

Up to four addresses can be selected by the hardware bit settings, so that multiple PLL can exist within one system.

The responding address can be set according to the ADSW pin voltage.

Address

_								
	1	1	0	0	0	MA1	MA0	R/W

Hardware bits

ADSW pin voltage	MA1	MA0
0 to 0.1Vcc	0	0
OPEN or 0.2Vcc to 0.3Vcc	0	1
0.4Vcc to 0.6Vcc	1	0
0.9Vcc to Vcc	1	1

2) Frequency data setting

The VCO lock frequency is obtained according to the following formula.

 $fosc = 2 \times fref \times (32M + S)$

fosc: local oscillator frequency

- fref: phase comparison frequency
- M: main divider frequency division ratio
- S: swallow counter frequency division ratio

The variable frequency division ranges of M and S are as follows, and are set as binary.

 $S < M \le 1023$

 $0 \le S \le 31$

3) Control format

When performing control for this IC, byte 1 contains the address data, bytes 2 and 3 contain the frequency data, byte 4 contains the control data, and byte 5 contains the band switch data.

These data are latch transferred in the manner of byte 1, byte 2 + byte 3, and byte 4 + byte 5.

When the correct address is received and acknowledged, the data is recognized as frequency data if the first bit of the next byte is "0", and as control data and band switch data if this bit is "1".

Also, when data transmission is stopped part-way, the previously programmed data is valid. Therefore, once the control and band switch data have been programmed, 3-byte commands consisting of the address and frequency data are possible.

Further, even if the I²C bus stop conditions are not met, data can be input by sending the start conditions and the new address.

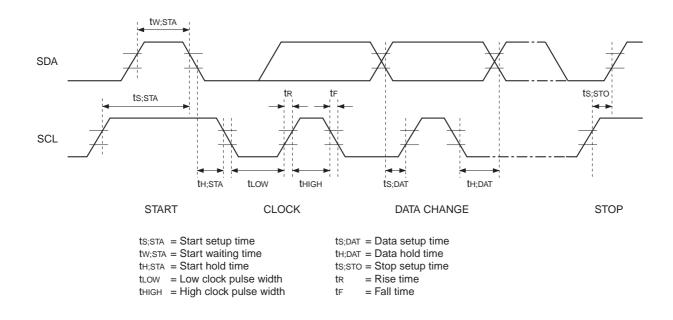
The control format is as shown in the table below.

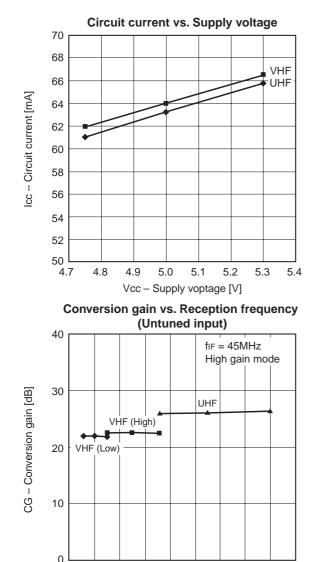
Slave Receiver

Λ.

	MSB							LSB	
Mode	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Address byte	1	1	0	0	0	MA1	MA0	0	А
Divider byte1	0	M9	M8	M7	M6	M5	M4	M3	А
Divider byte2	M2	M1	MO	S4	S3	S2	S1	S0	А
Control byte	1	CP	GC	CD	Х	R1	R0	OS	А
Band SW byte	Х	Х	Х	Х	BS4	BS3	BS2	BS1	А

X: Don't care

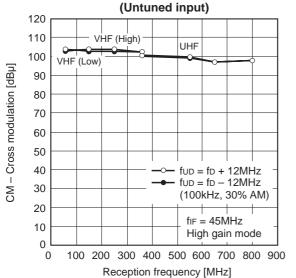

A:	Acknowledge bit
MA0, MA1:	address setting
M0 to:	main divider frequency division ratio setting
S0 to:	swallow counter frequency division ratio setting
CD:	charge pump OFF (when "1")
OS:	varicap output OFF (when "1")
CP:	charge pump current switching (200µA when "1", 50µA when "0")
GC:	gain switching (IC gain reduced by 2dB when "1")
BS1 to BS4:	band switch control (output PNP transistor ON when "1")
R0, R1:	reference divider frequency division ratio setting (See the Reference Divider Frequency
	Division Ratio Table.)


Reference Divider Frequency Division Ratio Table

R1	R0	Reference Divider
0	1	256
1	1	128
Х	0	160

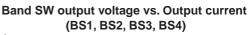
X: Don't care

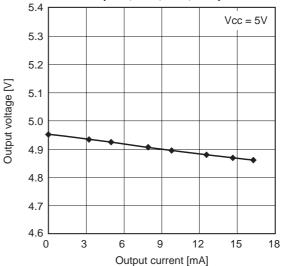
I²C Bus Timing Chart

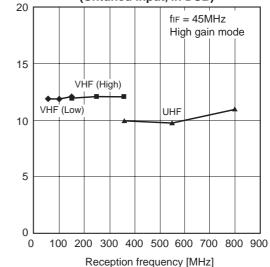


Example of Representative Characteristics

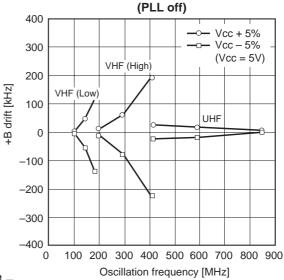
Reception frequency [MHz] Next adjacent cross modulation vs. Reception frequency


0


100 200 300 400 500 600 700 800 900



NF – Noise figure [dB]



Noise figure vs. Reception frequency (Untuned input, in DSB)

Oscillation frequency power supply fluctuation

10

0

-10

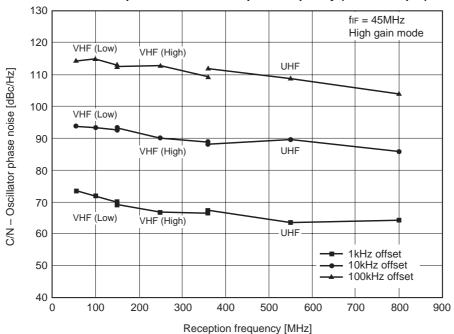
-20

-30

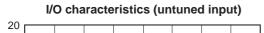
-40

-50

-60


-60

-50


-40

-30

IF output level [dBm]

Oscillator phase noise vs. Reception frequency (untuned input)

fRF = 45MHz

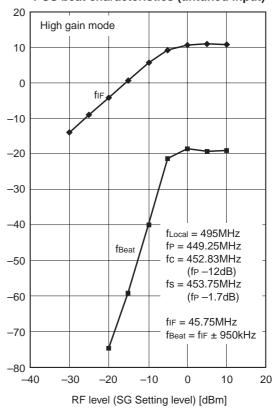
-20

RF level [dBm]

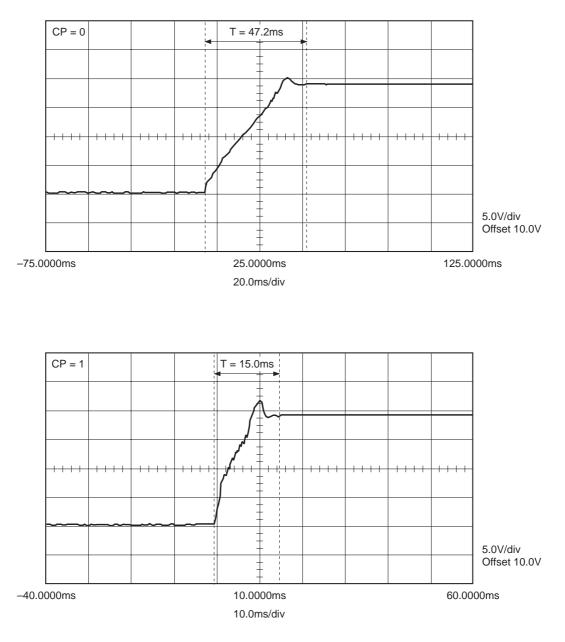
High gain mode

-10

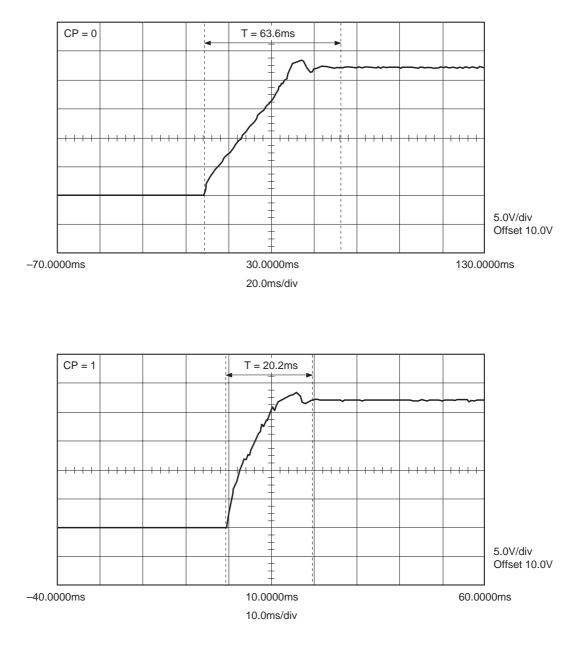
---- frF = 145MHz (VHF)

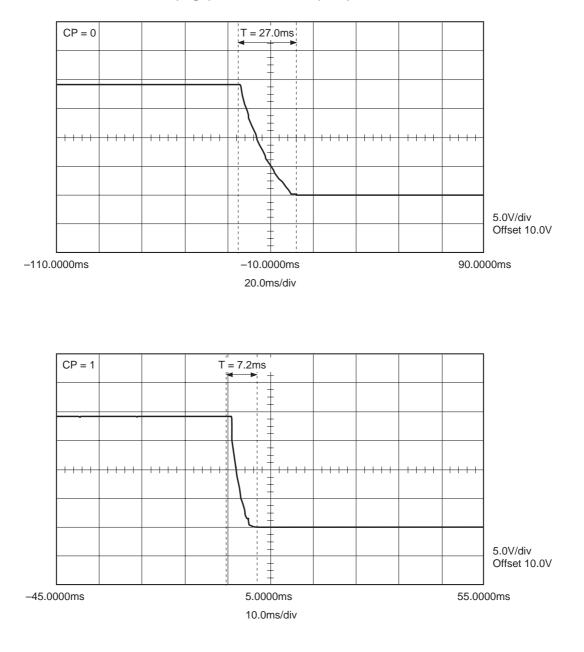

– frf = 495MHz (UHF)

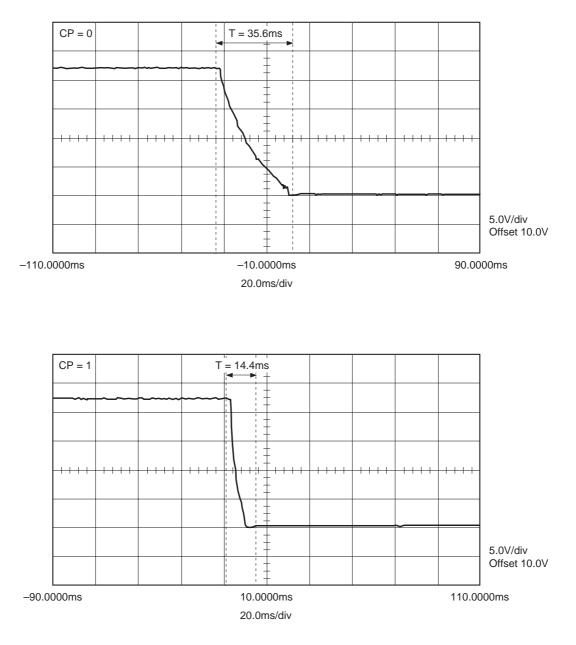
0


10

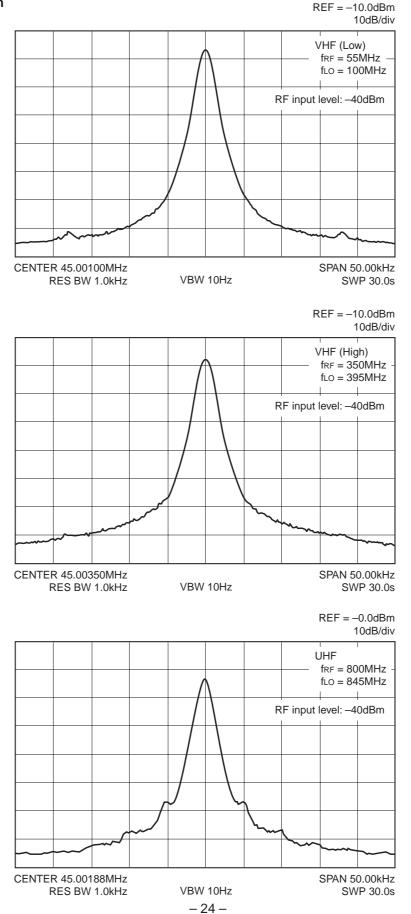
20


PCS beat characteristics (untuned input)

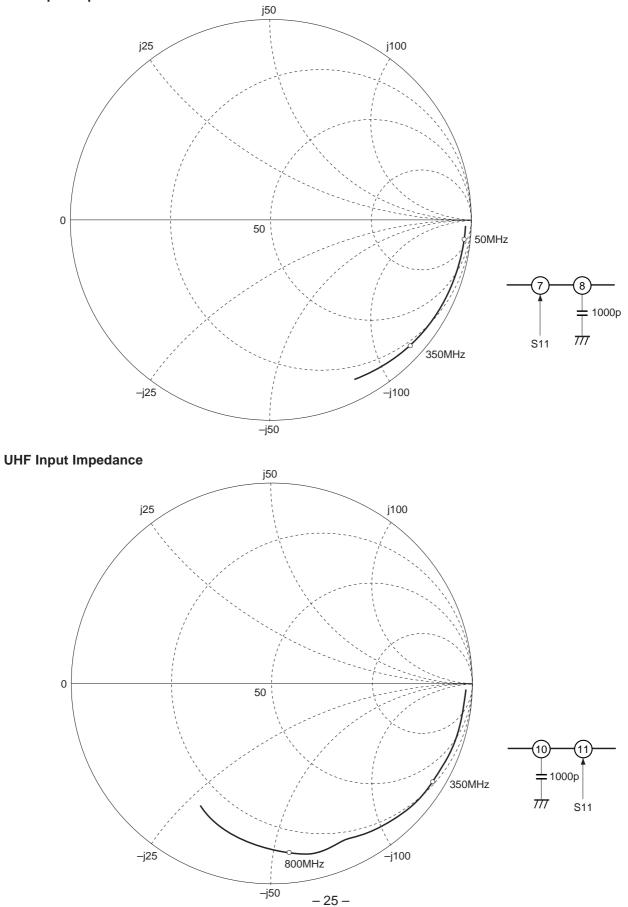

Tuning Response Time


VHF (Low) 95MHz \rightarrow VHF (High) 395MHz

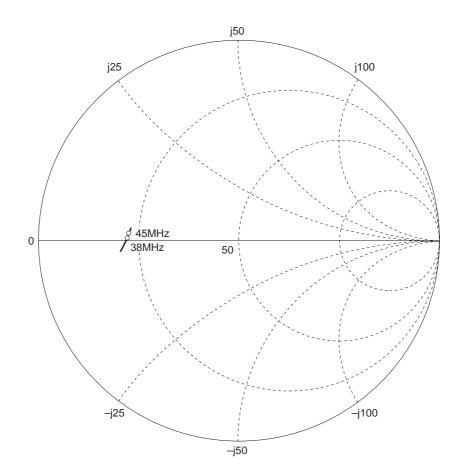
UHF 413MHz \rightarrow UHF 847MHz

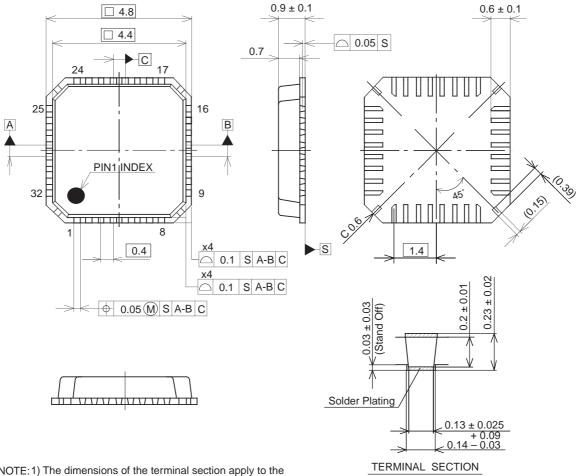


VHF (High) 395MHz \rightarrow VHF (Low) 95MHz



UHF 847MHz \rightarrow UHF 413MHz


IF output spectrum


VHF Input Impedance

IF Output Impedance

Package Outline Unit: mm

32PIN VQFN (PLASTIC)

NOTE: 1) The dimensions of the terminal section apply to the ranges of 0.1mm and 0.25mm from the end of a terminal.

SONY CODE	VQFN-32P-03
EIAJ CODE	P-VQFN32-4.4X4.4-0.4
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN	
LEAD TREATMENT	SOLDER PLATING	
LEAD MATERIAL	COPPER ALLOY	
PACKAGE MASS	0.05g	

LEAD PLATING SPECIFICATIONS

ITEM	SPEC.		
LEAD MATERIAL	COPPER ALLOY		
SOLDER COMPOSITION	Sn-Bi Bi:1-4wt%		
PLATING THICKNESS	5-18µm		