
Advance Information
The RF Small Signal Line
Silicon Lateral FET
N-Channel Enhancement-Mode MOSFET

Designed for use in low voltage, moderate power amplifiers such as portable analog and digital cellular radios and PC RF modems.

- Performance Specifications at 6 Volt, 850 MHz:
Output Power = 31.5 dBm Min
Power Gain = 8.5 dB Typ
Efficiency = 60% Min
- Guaranteed Ruggedness at Load VSWR = 20:1
- Available in Tape and Reel Packaging Options:
T1 Suffix = 1,000 Units per Reel
- MXR9745RT1 is Gate-Drain Pin Out Reversed.
All Electricals Same as MXR9745T1

MXR9745T1
MXR9745RT1

31.5 dBm, 850 MHz
**HIGH FREQUENCY
POWER TRANSISTOR**
LDMOS FET

CASE 345-03
(MXR9745RT1, STYLE 8)
(MXR9745T1, STYLE 9)
(SOT-89)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	35	Vdc
Drain-Gate Voltage ($R_{GS} = 1 \text{ M}\Omega$)	V_{DGO}	25	Vdc
Gate-Source Voltage	V_{GS}	± 10	Vdc
Drain Current – Continuous	I_D	2	Adc
Total Device Dissipation @ $T_C = 50^\circ\text{C}$ Derate above 50°C	P_D	10 100	W mW/ $^\circ\text{C}$
Storage Temperature Range	T_{stg}	-65 to +150	$^\circ\text{C}$
Operating Junction Temperature	T_J	150	$^\circ\text{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	10	$^\circ\text{C}/\text{W}$

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Drain-Source Leakage Current ($V_{DS} = 35 \text{ V}$, $V_{GS} = 0$)	I_{DSS}	-	-	10	μAdc
Gate-Source Leakage Current ($V_{GS} = 5 \text{ V}$, $V_{DS} = 0$)	I_{GSS}	-	-	1	μAdc

NOTE – **CAUTION** – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS – continued ($T_C = 25^\circ\text{C}$ unless otherwise noted)

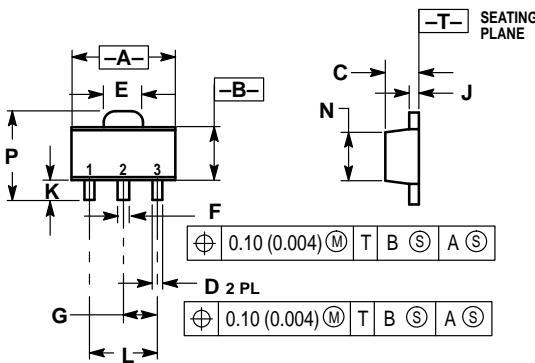

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
Gate Threshold Voltage ($V_{DS} = 6 \text{ V}$, $I_D = 500 \mu\text{A}$)	$V_{GS(\text{th})}$	1	1.3	2	Vdc
Forward Transconductance ($V_{DS} = 6 \text{ V}$, $I_D = 400 \text{ mA}$)	g_{fs}	–	550	–	mmhos
Resistance Drain–Source ($V_{GS} = 4 \text{ V}$, $I_D = 100 \text{ mA}$)	$R_{DS(\text{on})}$	–	1	2.5	Ω
DYNAMIC CHARACTERISTICS					
Input Capacitance ($V_{DS} = 6 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$)	C_{iss}	–	14	–	pF
Output Capacitance ($V_{DS} = 6 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$)	C_{oss}	–	11	–	pF
Feedback Capacitance ($V_{DS} = 6 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$)	C_{rss}	–	1.8	–	pF
FUNCTIONAL CHARACTERISTICS					
Power Gain ($V_{DD} = 6 \text{ Vdc}$, $P_{in} = 23 \text{ dBm}$, $I_{DQ} = 250 \text{ mA}$, $f = 850 \text{ MHz}$)	G_{ps}	8	8.5	–	dB
Drain Efficiency ($V_{DD} = 6 \text{ Vdc}$, $P_{in} = 23 \text{ dBm}$, $I_{DQ} = 250 \text{ mA}$, $f = 850 \text{ MHz}$)	η_D	55	60	–	%
Ruggedness Test ($V_{DD} = 6 \text{ Vdc}$, $P_{in} = 23 \text{ dBm}$, $I_{DQ} = 250 \text{ mA}$, $f = 850 \text{ MHz}$, Load VSWR = 20:1, All Phase Angles at Frequency Test)	Ψ	No Degradation in Output Power after Test			

Table 1. Large Signal Impedance
 $V_{DD} = 6 \text{ V}$, $P_{in} = 23 \text{ dBm}$, $I_{DQ} = 250 \text{ mA}$

f MHz	Z_{in} Ohms	Z_{OL^*} Ohms
850	$4.8 - j6.4$	$6 - j7.5$

Z_{OL^*} is the conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.40	4.60	0.174	0.181
B	2.29	2.60	0.091	0.102
C	1.40	1.60	0.056	0.062
D	0.36	0.48	0.015	0.018
E	1.62	1.80	0.064	0.070
F	0.44	0.55	0.018	0.021
G	1.50	BSC	0.058	BSC
J	0.35	0.44	0.014	0.017
K	0.89	1.20	0.035	0.047
L	3.00	BSC	0.118	BSC
N	2.14	2.28	0.084	0.089
P	3.94	4.25	0.156	0.167

STYLE 8:	STYLE 9:
PIN 1. GATE	PIN 1. DRAIN
2. SOURCE	2. SOURCE
3. DRAIN	3. GATE
(MXR9745RT1)	(MXR9745T1)

**CASE 345-03
ISSUE H
(SOT-89)**

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1,
Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602-244-6609
– US & Canada ONLY 1-800-774-1848

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: <http://motorola.com/sps>

MOTOROLA