2．5／3．3V，200－MHz High－Speed Multi－Phase PLL Clock Buffer

Features

－2．5V or 3.3 V operation
－Split output bank power supplies
－Output frequency range： 6 MHz to 200 MHz
－Output－output skew＜ 100 ps
－Cycle－cycle jitter＜ 100 ps
－$\pm 2 \%$ max output duty cycle
－Selectable output drive strength
－Selectable positive or negative edge synchronization
－Eight LVTTL outputs driving 50Ω terminated lines
－LVCMOS／LVTTL over－voltage－tolerant reference input
－Phase adjustments in 625－／1250－ps steps up to ± 7.5 ns
－ $2 x, 4 x$ multiply and（ $1 / 2$ ）x，（1／4）x divide ratios
－Spread－Spectrum－compatible
－Industrial temp．range：$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
－32－pin TQFP package

Description

The CY7B9950 RoboClock ${ }^{\circledR}$ is a low－voltage，low－power， eight－output， $200-\mathrm{MHz}$ clock driver．It features output phase programmability which is necessary to optimize the timing of high－performance computer and communication systems．
The user can program the phase of the output banks through $\mathrm{nF}[0: 1]$ pins．The adjustable phase feature allows the user to skew the outputs to lead or lag the reference clock．Any one of the outputs can be connected to feedback input to achieve different reference frequency multiplication and divide ratios and zero input－output delay．

The device also features split output bank power supplies which enable the user to run two banks（1Qn and 2Qn）at a power supply level different from that of the other two banks （3Qn and 4Qn）．Additionally，the three－level PE／HD pin controls the synchronization of the output signals to either the rising or the falling edge of the reference clock and selects the drive strength of the output buffers．The high drive option （PE／HD＝MID）increases the output current from $\pm 12 \mathrm{~mA}$ to $\pm 24 \mathrm{~mA}(3.3 \mathrm{~V})$ ．

Block Diagram

Pin Configuration

Pin Description

Pin	Name	$1 / 0^{[1]}$	Type	Description
29	REF	1	LVTTL/LVCMOS	Reference Clock Input.
13	FB	I	LVTTL	Feedback Input.
27	TEST	1	Three-level	When MID or HIGH, Disables Phase-locked Loop (PLL) (except for conditions of note 3). REF goes to outputs of Bank 1 and Bank 2. REF goes to outputs of Bank 3 and Bank 4 through output dividers K and M . Set LOW for normal operation.
22	sOE\#	I, PD	Two-level	Synchronous Output Enable. When HIGH, it stops clock outputs (except 2Q0 and 2Q1) in a LOW state (for PE $=\mathrm{H}$ or M) - 2Q0 and 2Q1 may be used as the feedback signal to maintain phase lock. When TEST is held at MID level and sOE\# is HIGH, the $\mathrm{nF}[1: 0$] pins act as output disable controls for individual banks when $\mathrm{nF}[1: 0]=\mathrm{LL}$. Set sOE\# LOW for normal operation.
4	PE/HD	I, PU	Three-level	Selects Positive or Negative Edge Control and High or Low output drive strength. When LOW/HIGH the outputs are synchronized with the negative/positive edge of the reference clock, respectively. When at MID level, the output drive strength is increased and the outputs synchronize with the positive edge of the reference clock (see Table 6).
$\begin{aligned} & 24,23,26, \\ & 25,1,32,3, \\ & 2 \end{aligned}$	nF[1:0]	I	Three-level	Select frequency and phase of the outputs (see Tables 1, 2, 3, 4, and 5).
31	FS	1	Three-level	Selects VCO operating frequency range (see Table 4).
$\begin{aligned} & 19,20,15, \\ & 16,10,11, \\ & 6,7 \end{aligned}$	nQ[1:0]	0	LVTTL	Four banks of two outputs (see Tables 1, 2, and 3).
21	$\mathrm{V}_{\mathrm{DDQ1}}{ }^{[2]}$	PWR	Power	Power supply for Bank 1 and Bank 2 output buffers (see Table 7 for supply level constraints).
12	$\mathrm{V}_{\text {DDQ3 }}{ }^{[2]}$	PWR	Power	Power supply for Bank 3 output buffers (see Table 7 for supply level constraints).
5	$\mathrm{V}_{\mathrm{DDQ4}}{ }^{[2]}$	PWR	Power	Power supply for Bank 4 output buffers (see Table 7 for supply level constraints).
14,30	$\mathrm{V}_{\mathrm{DD}}{ }^{[2]}$	PWR	Power	Power supply for internal circuitry (see Table 7 for supply level constraints).
$\begin{aligned} & 8,9,17,18, \\ & 28 \end{aligned}$	$\mathrm{V}_{\text {SS }}$	PWR	Power	Ground.

Device Configuration

The outputs of the CY7B9950 can be configured to run at frequencies ranging from 6 to 200 MHz . Banks 3 and 4 output dividers are controlled by $3 \mathrm{~F}[1: 0]$ and $4 \mathrm{~F}[1: 0]$ as indicated in Table 1 and Table 2, respectively.
Table 1. Output Divider Settings - Bank 3

3F[1:0]	K — Bank3 Output Divider
LL	2
HH	4
Other $^{[4]}$	1

Table 2. Output Divider Settings - Bank 4

4F[1:0]	M - Bank4 Output Divider
LL	2
Other $^{[4]}$	1

The three-level FS control pin setting determines the nominal operating frequency range of the divide-by-one outputs of the device. The CY7B9950 PLL operating frequency range that corresponds to each FS level is given in Table 3.
Table 3. Frequency Range Select

FS	PLL Frequency Range
L	24 to 50 MHz
M	48 to 100 MHz
H	96 to 200 MHz

Selectable output skew is in discrete increments of time unit $\left(t_{U}\right)$. The value of t_{U} is determined by the FS setting and the maximum nominal frequency. The equation to be used to determine the t_{U} value is as follows: $t_{U}=1 /\left(f_{\text {NOM }} \times M F\right.$) where MF is a multiplication factor, which is determined by the FS setting as indicated in Table 4.

Notes:

1. "PD" indicates an internal pull-down and "PU" indicates an internal pull-up. " 3 " indicates a three-level input buffer
2. A bypass capacitor $(0.1 \mu \mathrm{~F})$ should be placed as close as possible to each positive power pin (<0.2 "). If these bypass capacitors are not close to the pins their high-frequency filtering characteristic will be cancelled by the lead inductance of the traces.
3. When TEST = MID and sOE\# = HIGH, PLL remains active with $\mathrm{nF}[1: 0]=$ LL functioning as an output disable control for individual output banks. Skew selections remain in effect unless $\mathrm{nF}[1: 0]=\mathrm{LL}$.
4. These states are used to program the phase of the respective banks (see Table 5).

Table 4. MF Calculation

FS	MF	$\mathbf{f}_{\text {NOM }}$ at which $\mathbf{t}_{\mathbf{U}}$ is $\mathbf{1 . 0} \mathbf{~ n s (M H z) ~}$
L	32	31.25
M	16	62.5
H	8	125

Table 5. Output Skew Settings

nF[1:0]	Skew (1Q[0:1],2Q[0:1])	Skew (3Q[0:1])	Skew (4Q[0:1])
$\mathrm{LL}^{[5]}$	$-4 t_{U}$	Divide By 2	Divide By 2
LM	$-3 t_{u}$	$-6 t_{U}$	v6tu
LH	$-2 t_{U}$	$-4 t_{U}$	$-4 t_{U}$
ML	$-1 t_{U}$	$-2 t_{U}$	v2tu
MM	Zero Skew	Zero Skew	Zero Skew
MH	$+1 t_{U}$	$+2 t_{U}$	$+2 t_{U}$
HL	$+2 t_{u}$	$+4 \mathrm{t}_{\mathrm{U}}$	$+4 t_{U}$
HM	$+3 \mathrm{t}_{\mathrm{U}}$	$+6 \mathrm{t}_{\mathrm{U}}$	$+6 \mathrm{t}_{\mathrm{U}}$
HH	$+4 \mathrm{t}_{\mathrm{U}}$	Divide By 4	Inverted ${ }^{[6]}$

In addition to determining whether the outputs synchronize to the rising or the falling edge of the reference signal, the 3-level PE/HD pin controls the output buffer drive strength as indicated in Table 6.

The CY7B9950 features split power supply buses for Banks 1 and 2, Bank 3 and Bank 4, which enables the user to obtain both 3.3 V and 2.5 V output signals from one device. The core power supply (VDD) must be set a level that is equal or higher than on any one of the output power supplies.

Table 6. PE/HD Settings

PE/HD	Synchronization	Output Drive Strength ${ }^{[7]}$
L	Negative	Low Drive
M	Positive	High Drive
H	Positive	Low Drive

Table 7. Power Supply Constraints

\mathbf{V}_{DD}	$\mathbf{V}_{\text {DDQ1 }}{ }^{[8]}$	$\mathbf{V}_{\text {DDQ3 }}{ }^{[8]}$	$\mathbf{V}_{\text {DDQ4 }}{ }^{[8]}$
3.3 V	3.3 V or 2.5 V	3.3 V or 2.5 V	3.3 V or 2.5 V
2.5 V	2.5 V	2.5 V	2.5 V

Governing Agencies

The following agencies provide specifications that apply to the CY7B9950. The agency name and relevant specification is listed below.

Table 8.

Agency Name	Specification
JEDEC	JESD 51 (Theta JA) JESD 65 (Skew, Jitter)
IEEE	1596.3 (Jitter Specs)
UL-194_V0	94 (Moisture Grading)
MIL	$883 E$ Method 1012.1 (Therma Theta JC)

Notes:
5. LL disables outputs if TEST $=$ MID and sOE\# $=$ HIGH.
6. When 4Q[0:1] are set to run inverted (HH mode), sOE\# disables these outputs HIGH when PE/HD = HIGH or MID, sOE\# disables them LOW when PE/HD $=\mathrm{LOW}$.
7. Please refer to "DC Parameters" section for $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$ specifications.
8. $V_{D D Q 1 / 3 / 4}$ must not be set at a level higher than that of V_{DD}. They can be set at different levels from each other, e.g., $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ1}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ}}=2.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DDQ4}}=2.5 \mathrm{~V}$.

Absolute Maximum Conditions

Parameter	Description	Condition	Min.	Max.	Unit
V_{DD}	Operating Voltage	Functional @ 2.5V $\pm 5 \%$	2.375	2.625	V
V_{DD}	Operating Voltage	Functional @ 3.3V $\pm 10 \%$	2.97	3.63	V
$\mathrm{V}_{\text {IN(MIN }}$	Input Voltage	Relative to $\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{S S}-0.3$	-	V
$\mathrm{V}_{\text {IN(MAX) }}$	Input Voltage	Relative to V_{DD}	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{T}_{\text {S }}$	Temperature, Storage	Non-functional	-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Temperature, Operating Ambient	Functional	-40	+85	${ }^{\circ} \mathrm{C}$
T_{J}	Temperature, Junction	Functional	-	155	${ }^{\circ} \mathrm{C}$
$\varnothing_{J C}$	Dissipation, Junction to Case	Mil-Spec 883E Method 1012.1	-	42	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\varnothing_{\text {JA }}$	Dissipation, Junction to Ambient	JEDEC (JESD 51)	-	105	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD ${ }_{\text {HBM }}$	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000	-	V
UL-94	Flammability Rating	@1/8 in.	V-0		
MSL	Moisture Sensitivity Level		1		
$\mathrm{F}_{\text {IT }}$	Failure in Time	Manufacturing Testing	10		ppm

DC Electrical Specifications @ 2.5V

Parameter	Description	Conditions	Min.	Max.	Unit
$V_{\text {DD }}$	2.5 Operating Voltage	$2.5 \mathrm{~V} \pm 5 \%$	2.375	2.625	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	REF, FB and sOE\# Inputs	-	0.7	V
V_{IH}	Input HIGH Voltage		1.7	-	V
$\mathrm{V}_{\mathrm{IHH}}{ }^{[9]}$	Input HIGH Voltage	3-Level Inputs (TEST, FS, nF[1:0], PE/HD) (These pins are normally wired to $\mathrm{V}_{\mathrm{DD}}, \mathrm{GND}$ or unconnected.)	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	V
$\mathrm{V}_{\text {IMM }}{ }^{[9]}$	Input MID Voltage		$\mathrm{V}_{\mathrm{DD}} / 2-0.2$	$\mathrm{V}_{\mathrm{DD}} / 2+0.2$	V
$\mathrm{V}_{\mathrm{ILL}}{ }^{[9]}$	Input LOW Voltage		-	0.4	V
IIL	Input Leakage Current	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{DD}} / \mathrm{G}_{\mathrm{ND}}, \mathrm{V}_{\mathrm{DD}}=\max$. (REF and FB inputs)	-5	5	$\mu \mathrm{A}$
I_{3}	3-Level Input DC Current	$\begin{aligned} & \text { 3-Level Inputs } \\ & \text { (TEST, FS, nF[1:0], } \\ & \text { DS[1:0], PD\#/DIV, PE/HD) } \end{aligned}$	-	200	$\mu \mathrm{A}$
			-50	50	$\mu \mathrm{A}$
			-200	-	$\mu \mathrm{A}$
IPU	Input Pull-up Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=\max$.	-25	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {PD }}$	Input Pull-down Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=$ max., (sOE\#)	-	100	$\mu \mathrm{A}$
V_{OL}	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{L} / \mathrm{H}),(\mathrm{nQ}[0: 1])$	-	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{MID}),(\mathrm{nQ}[0: 1])$	-	0.4	V
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{L} / \mathrm{H}),(\mathrm{nQ}[0: 1])$	2.0	-	V
		$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$ (PE/HD $\left.=\mathrm{MID}\right),(\mathrm{nQ}[0: 1])$	2.0	-	V
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Supply Current	$\mathrm{V}_{\mathrm{DD}}=$ max., TEST = MID, REF = LOW, sOE\# = LOW, outputs not loaded	-	2	mA
I_{DD}	Dynamic Supply Current	@ 100 MHz	150		mA
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance			4	pF
Note:					

DC Specifications @ 3.3V

Parameter	Description	Condition	Min.	Max.	Unit
V_{DD}	3.3 Operating Voltage	$3.3 \mathrm{~V} \pm 10 \%$	2.97	3.63	V
V_{IL}	Input LOW Voltage	REF, FB and sOE\# Inputs	-	0.8	V
V_{IH}	Input HIGH Voltage		2.0	-	V
$\mathrm{V}_{\mathrm{IHH}}{ }^{[9]}$	Input HIGH Voltage	3-Level Inputs (TEST, FS, nF[1:0], PE/HD) (These pins are normally wired to V_{DD}, GND or unconected.)	$\mathrm{V}_{\mathrm{DD}}-0.6$	-	V
$\mathrm{V}_{\text {IMM }}{ }^{[9]}$	Input MID Voltage		$\mathrm{V}_{\mathrm{DD}} / 2-0.3$	$\mathrm{V}_{\mathrm{DD}} / 2+0.3$	V
$\mathrm{V}_{\text {ILL }}{ }^{\text {9] }}$	Input LOW Voltage		-	0.6	V
IIL	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} / \mathrm{G}_{\mathrm{ND}}, \mathrm{V}_{\mathrm{DD}}=$ max. (REF and FB inputs)	-5	5	$\mu \mathrm{A}$
I_{3}	3-Level Input DC Current	$\begin{aligned} & \text { 3-Level Inputs } \\ & \text { (TEST, FS, nF[1:0], } \\ & \text { DS[1:0], PD\#/DIV, PE/HD) } \end{aligned}$	-	200	$\mu \mathrm{A}$
			-50	50	$\mu \mathrm{A}$
			-200	-	$\mu \mathrm{A}$
I_{PU}	Input Pull-up Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=\max$.	-100	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {PD }}$	Input Pull-down Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=$ max., (sOE\#)	-	100	$\mu \mathrm{A}$
V_{OL}	Output LOW Voltage	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{L} / \mathrm{H}),(\mathrm{nQ}[0: 1])$	-	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{MID}),(\mathrm{nQ}[0: 1])$	-	0.4	V
V_{OH}	Output HIGH Voltage	$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{L} / \mathrm{H}),(\mathrm{nQ}[0: 1])$	2.4	-	V
		$\mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{MID}),(\mathrm{nQ}[0: 1])$	2.4	-	V
IDDQ	Quiescent Supply Current	$\mathrm{V}_{\mathrm{DD}}=\text { max., TEST }=\text { MID, REF = LOW, sOE\# = LOW, }$ outputs not loaded	-	2	mA
I_{DD}	Dynamic Supply Current	@ 100 MHz	230		mA
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance		4		pF

AC Test Loads and Waveforms

For Lock Output

3.3V LVTTL OUTPUT WAVEFORM

3.3VLVTLLINPUTTESTWAVEOORM

For All Other Outputs

25VLVTLLINPUTTESTWAVEFORM

AC Input Specifications

Parameter	Description	Condition	Min.	Max.	Unit
$\mathrm{T}_{\mathrm{R}}, \mathrm{T}_{\mathrm{F}}$	Input Rise/Fall Time	0.8V-2.0V	-	10	ns/V
$\mathrm{T}_{\text {PWC }}$	Input Clock Pulse	HIGH or LOW	2	-	ns
$\mathrm{T}_{\text {DCIN }}$	Input Duty Cycle		10	90	\%
$\mathrm{F}_{\text {REF }}$	Reference Input Frequency	FS = LOW	6	50	MHz
		FS = MID	12	100	
		FS $=\mathrm{HIGH}$	24	200	

Switching Characteristics

Parameter	Description	Condition	Min.	Max.	Unit
$\mathrm{F}_{\text {OR }}$	Output Frequency Range		6	200	MHz
$\mathrm{VCO}_{\text {LR }}$	VCO Lock Range		200	400	MHz
$\mathrm{VCO}_{\text {LBW }}$	VCO Loop Bandwidth		0.25	3.5	MHz
${ }^{\text {tSKEWPR }}$	Matched-Pair Skew ${ }^{[10]}$	Skew between the earliest and the latest output transitions within the same bank.	-	100	ps
$\mathrm{t}_{\text {SKEW0 }}$	Output-Output Skew ${ }^{[10]}$	Skew between the earliest and the latest output transitions among all outputs at $0 \mathrm{t}_{\mathrm{u}}$.	-	200	ps
$\mathrm{t}_{\text {SKEW1 }}$		Skew between the earliest and the latest output transitions among all outputs for which the same phase delay has been selected.	-	200	ps
${ }^{\text {tSKEW2 }}$		Skew between the nominal output rising edge to the inverted output falling edge	-	500	ps
${ }^{\text {S SKEW3 }}$	Output-Output Skew ${ }^{[10]}$	Skew between non-inverted outputs running at different frequencies	-	500	ps
${ }^{\text {tSKEW4 }}$		Skew between nominal to inverted outputs running at different frequencies	-	500	ps
tskew5		Skew between nominal outputs at different power supply levels	-	650	ps
$\mathrm{t}_{\text {PART }}$	Part-Part Skew	Skew between the outputs of any two devices under identical settings and conditions ($\mathrm{V}_{\mathrm{DDQ}}, \mathrm{V}_{\mathrm{DD}}$,temp, air flow, frequency, etc.)	-	750	ps
tPD0	Ref-FB Propagation Delay ${ }^{[11]}$		-250	+250	ps
todcv	Output Duty Cycle	Fout < 100 MHz , measured at $\mathrm{V}_{\mathrm{DD}} / 2$	48	52	\%
		Fout > 100 MHz , measured at $\mathrm{V}_{\mathrm{DD}} / 2$	45	55	
$\mathrm{t}_{\text {PWH }}$	Output High Time Deviation from 50\%	Measured at 2.0V for $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ and at 1.7 V for $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$.	-	1.5	ns
$\mathrm{t}_{\text {PWL }}$	Output Low Time Deviation from 50\%	Measured at 0.8 V for $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ and at 0.7 V for $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$.	-	2.0	ns
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time	Measured at $0.8 \mathrm{~V}-2.0 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ and $0.7 \mathrm{~V}-1.7 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	0.15	1.5	ns
$\mathrm{t}_{\text {LOCK }}$	PLL lock time ${ }^{[12,13]}$		-	0.5	ms
tccJ	Cycle-Cycle Jitter	Divide by 1 output frequency, FS = L, FB = divide by 1,2,4	-	100	ps
		Divide by 1 output frequency, FS = M/H, FB = divide by 1,2,4	-	150	ps

Notes:
10. Test load $=20 \mathrm{pF}$, terminated to $\mathrm{V}_{\mathrm{CC}} / 2$. All outputs are equally loaded.
11. $t_{P D}$ is measured at 1.5 V for $\mathrm{V}_{D D}=3.3 \mathrm{~V}$ and at 1.25 V for $\mathrm{V}_{D D}=2.5 \mathrm{~V}$ with REF rise/fall times of 0.5 ns between $0.8 \mathrm{~V}-2.0 \mathrm{~V}$.
12. $t_{\text {LOCK }}$ is the time that is required before outputs synchronize to REF. This specification is valid with stable power supplies which are within normal operating limits.
13. Lock detector circuit may be unreliable for input frequencies lower than 4 MHz , or for input signals which contain significant jitter.

AC Timing Definitions

Ordering Information

Part Number	Package Type	Product Flow
CY7B9950AC	32 TQFP	Commercial, 0° to $70^{\circ} \mathrm{C}$
CY7B9950ACT	32 TQFP - Tape and Reel	Commercial, 0° to $70^{\circ} \mathrm{C}$
CY7B9950AI	32 TQFP	Industrial, -40° to $85^{\circ} \mathrm{C}$
CY7B9950AIT	32 TQFP - Tape and Reel	Industrial, -40° to $85^{\circ} \mathrm{C}$

Package Drawing and Dimension

32-lead Thin Plastic Quad Flatpack $7 \times 7 \times 1.0 \mathrm{~mm}$ A32

detail A
51-85063-*B

RoboClock is a registered trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

RoboClock ${ }^{\text {® }}$
CY7B9950

Document History Page

Document Title: RoboClock ${ }^{\circledR}$ CY7B9950 2.5/3.3V, 200-MHz High-Speed Multi-Phase PLL Clock Buffer Document Number: 38-07338				
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	121663	11/25/02	RGL	New Data Sheet
*A	122548	12/12/02	RGL	Removed the PD\#/DIV and DS[1:0] pins in $\mathrm{V}_{\mathrm{IHH}}, \mathrm{V}_{\mathrm{IMM}}$ and $\mathrm{V}_{\mathrm{ILL}}$ for both 2.5V and 3.3V DC Electrical Specs tables
*B	124646	03/05/03	RGL	Corrected the description of Pin 27(TEST) in the Pin Description table Corrected the description of Pin $12\left(\mathrm{~V}_{\mathrm{DDQ}}\right)$ in the Pin Description table Corrected the Min and Max values of V_{DD} from 2.25/2.75 to 2.375/2.625 Volts in the Absolute Maximum Conditions table

